229 research outputs found
Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment
The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated
The Absence of Vortex Lattice Melting in a Conventional Superconductor
The state of the vortex lattice extremely close to the superconducting to
normal transition in an applied magnetic field is investigated in high purity
niobium. We observe that thermal fluctuations of the order parameter broaden
the superconducting to normal transition into a crossover but no sign of a
first order vortex lattice melting transition is detected in measurements of
the heat capacity or the small angle neutron scattering (SANS) intensity.
Direct observation of the vortices via SANS always finds a well ordered vortex
lattice. The fluctuation broadening is considered in terms of the Lowest Landau
Level theory of critical fluctuations and scaling is found to occur over a
large H_{c2}(T) range
The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements
We used WISE-derived geometric albedos (p_V) and diameters, as well as
geometric albedos and diameters from the literature, to produce more accurate
diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of
the current sample of \sim 8,800 known objects. As ten of the twelve objects
with the fastest predicted rates have observed arcs of less than a decade, we
list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3
figure
Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey
We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth
Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg^2 and span
distances ranging from 3-30 kpc from the Galactic Center. Object selection is
based on phased, photometric data with 28-50 epochs. We use this large sample
to explore the bulk properties of the stellar halo, including the spatial
distribution. The period-amplitude distribution of this sample shows that the
majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a
significant fraction (26 %) which have longer periods and appear to be
Oosterhoff type II. We find that the radial distributions of these two
populations have significantly different profiles (rho_{OoI} ~ R^(-2.26 +-
0.07) and rho_{OoII} ~ R^(-2.88 +- 0.11). This suggests that the stellar halo
was formed by at least two distinct accretion processes and supports dual-halo
models.Comment: 18 pages, 28 figures, apjemulated, minor corrections and
clarifications. Accepted to ApJ on Jan 21, 200
Fermi surface and order parameter driven vortex lattice structure transitions in twin-free YBa2Cu3O7
We report on small-angle neutron scattering studies of the intrinsic vortex
lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8
T. Because of the suppressed pinning to twin-domain boundaries, a new distorted
hexagonal VL structure phase is stabilized at intermediate fields. It is
separated from a low-field hexagonal phase of different orientation and
distortion by a first-order transition at 2.0(2) T that is probably driven by
Fermi surface effects. We argue that another first-order transition at 6.7(2)
T, into a rhombic structure with a distortion of opposite sign, marks a
crossover from a regime where Fermi surface anisotropy is dominant, to one
where the VL structure and distortion is controlled by the order-parameter
anisotropy.Comment: 4 pages, 3 figures (2 color), minor change
The pairing state in KFe2As2 studied by measurements of the magnetic vortex lattice
Understanding the mechanism and symmetry of electron pairing in iron-based
superconductors represents an important challenge in condensed matter physics
[1-3]. The observation of magnetic flux lines - "vortices" - in a
superconductor can contribute to this issue, because the spatial variation of
magnetic field reflects the pairing. Unlike many other iron pnictides, our
KFe2As2 crystals have very weak vortex pinning, allowing
small-angle-neutron-scattering (SANS) observations of the intrinsic vortex
lattice (VL). We observe nearly isotropic hexagonal packing of vortices,
without VL-symmetry transitions up to high fields along the fourfold c-axis of
the crystals, indicating rather small anisotropy of the superconducting
properties around this axis. This rules out gap nodes parallel to the c-axis,
and thus d-wave and also anisotropic s-wave pairing [2, 3]. The strong
temperature-dependence of the intensity down to T<<Tc indicates either widely
different full gaps on different Fermi surface sheets, or nodal lines
perpendicular to the axis.Comment: 13 pages, 3 figure
Spin density wave induced disordering of the vortex lattice in superconducting LaSrCuO
We use small angle neutron scattering to study the superconducting vortex
lattice in LaSrCuO as a function of doping and magnetic field.
We show that near optimally doping the vortex lattice coordination and the
superconducting coherence length are controlled by a van-Hove singularity
crossing the Fermi level near the Brillouin zone boundary. The vortex lattice
properties change dramatically as a spin-density-wave instability is approached
upon underdoping. The Bragg glass paradigm provides a good description of this
regime and suggests that SDW order acts as a novel source of disorder on the
vortex lattice.Comment: Accepted in Phys. Rev.
A revised asteroid polarization-albedo relationship using WISE/NEOWISE data
We present a reanalysis of the relationship between asteroid albedo and
polarization properties using the albedos derived from the Wide-field Infrared
Survey Explorer. We find that the function that best describes this relation is
a three-dimensional linear fit in the space of log(albedo)-log(polarization
slope)-log(minimum polarization). When projected to two dimensions the
parameters of the fit are consistent with those found in previous work. We also
define p* as the quantity of maximal polarization variation when compared with
albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic
types stand out in this three-dimensional space, notably the E, B, and M Tholen
types, while others cluster in clumps coincident with the S- and C-complex
bodies. We note that both low albedo and small (D<30 km) asteroids are
under-represented in the polarimetric sample, and we encourage future
polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap
NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results
The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 m relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 m enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 m. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap
Humidity cell tests for the prediction of acid rock drainage
This paper presents a study of various geochemical humidity-style weathering tests that were carried out on waste mine rock from Avoca, County Wicklow, Ireland. The aim of this paper is to present data that demonstrate some of the geochemical controls on weathering rates together with release rates from laboratory testwork. These data are used to determine the applicability of various interpretations of humidity cell data for prediction of acid rock drainage. Furthermore, within this context the paper offers opinion on common questions related to the use of such tests: should humidity cells be aerated? How long should the test be run for? Is pre-treatment of the samples required? Is inoculation of the samples with iron and sulfur oxidising microbes required? And should these tests really be considered to be accelerated weathering tests
- …