195 research outputs found

    Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (<i>Mytilus edulis</i>), Soft Shell Clam (<i>Mya arenaria</i>), Eastern Oyster (<i>Crassostrea virginica</i>) and Atlantic Jacknife Clam (<i>Ensis leei</i>)

    Get PDF
    Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Genomic tools reveal complex social organization of an invasive large mammal (\u3ci\u3eSus scrofa\u3c/i\u3e)

    Get PDF
    A comprehensive understanding of sociality in wildlife is vital to optimizing conservation and management efforts. However, sociality is complicated, especially for widely distributed species that exhibit substantive behavioral plasticity. Invasive wild pigs (Sus scrofa), often representing hybrids of European wild boar and domestic pigs, are among the most adaptable and widely distributed large mammals. The social structure of wild pigs is believed to be similar to European wild boar, consisting of matriarchal groups (sounders) and solitary males. However, wild pig social structure is understudied and largely limited to visual observations. Using a hierarchical approach, we incorporated genomic tools to describe wild pig social group composition in two disparate ecoregions within their invaded range in North America. The most common social unit was sounders, which are characterized as the association of two or more breeding-aged wild pigs with or without dependent offspring. In addition to sounders, pseudo-solitary females and male-dominated bachelor groups were observed at a greater frequency than previously reported. Though primarily composed of close female kin, some sounders included unrelated females. Bachelor groups were predominantly composed of young, dispersal-aged males and almost always included only close kin. Collectively, our study suggests social organization of wild pigs in their invaded range is similar to that observed among wild boar but is complex, dynamic, and likely variable across invaded habitats

    Uncontrolled pain:a call for better study design

    Get PDF
    Studies assessing animal pain in veterinary research are often performed primarily for the benefit of animals. Frequently, the goal of these studies is to determine whether the analgesic effect of a novel treatment is clinically meaningful, and therefore has the capacity to improve the welfare of treated animals. To determine the treatment effect of a potential analgesic, control groups are necessary to allow comparison. There are negative control groups (where pain is unattenuated) and positive control groups (where pain is attenuated). Arising out of animal welfare concerns, there is growing reluctance to use negative control groups in pain studies. But for studies where pain is experimentally induced, the absence of a negative control group removes the opportunity to demonstrate that the study methods could differentiate a positive control intervention from doing nothing at all. For studies that are controlled by a single comparison group, the capacity to distinguish treatment effects from experimental noise is more difficult; especially considering that pain studies often involve small sample sizes, small and variable treatment effects, systematic error and use pain assessment measures that are unreliable. Due to these limitations, and with a focus on farm animals, we argue that many pain studies would be enhanced by the simultaneous inclusion of positive and negative control groups. This would help provide study-specific definitions of pain and pain attenuation, thereby permitting more reliable estimates of treatment effects. Adoption of our suggested refinements could improve animal welfare outcomes for millions of animals globally.</p

    Contrasting microfossil preservation and lake chemistries within the 1200–1000 Ma Torridonian Supergroup of NW Scotland

    Get PDF
    We acknowledge the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. DW acknowledges funding from the European Commission and the Australian Research Council. This is publication number 838 from the Australian Research Council Centre of Excellence for Core to Crust Fluid Systems.Publisher PD

    Uncontrolled pain: a call for better study design

    Get PDF
    Studies assessing animal pain in veterinary research are often performed primarily for the benefit of animals. Frequently, the goal of these studies is to determine whether the analgesic effect of a novel treatment is clinically meaningful, and therefore has the capacity to improve the welfare of treated animals. To determine the treatment effect of a potential analgesic, control groups are necessary to allow comparison. There are negative control groups (where pain is unattenuated) and positive control groups (where pain is attenuated). Arising out of animal welfare concerns, there is growing reluctance to use negative control groups in pain studies. But for studies where pain is experimentally induced, the absence of a negative control group removes the opportunity to demonstrate that the study methods could differentiate a positive control intervention from doing nothing at all. For studies that are controlled by a single comparison group, the capacity to distinguish treatment effects from experimental noise is more difficult; especially considering that pain studies often involve small sample sizes, small and variable treatment effects, systematic error and use pain assessment measures that are unreliable. Due to these limitations, and with a focus on farm animals, we argue that many pain studies would be enhanced by the simultaneous inclusion of positive and negative control groups. This would help provide study-specific definitions of pain and pain attenuation, thereby permitting more reliable estimates of treatment effects. Adoption of our suggested refinements could improve animal welfare outcomes for millions of animals globally

    People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population

    Get PDF
    There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057 samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames

    Disease Progression and Serological Assay Performance in Heritage Breed Pigs following Brucella suis Experimental Challenge as a Model for Naturally Infected Feral Swine

    Get PDF
    Invasive feral swine (Sus scrofa) are one of the most important wildlife species for disease surveillance in the United States, serving as a reservoir for various diseases of concern for the health of humans and domestic animals. Brucella suis, the causative agent of swine brucellosis, is one such pathogen carried and transmitted by feral swine. Serology assays are the preferred field diagnostic for B. suis infection, as whole blood can be readily collected and antibodies are highly stable. However, serological assays frequently have lower sensitivity and specificity, and few studies have validated serological assays for B. suis in feral swine. We conducted an experimental infection of Ossabaw Island Hogs (a breed re-domesticated from feral animals) as a disease-free proxy for feral swine to (1) improve understanding of bacterial dissemination and antibody response following B. suis infection and (2) evaluate potential changes in the performance of serological diagnostic assays over the course of infection. Animals were inoculated with B. suis and serially euthanized across a 16-week period, with samples collected at the time of euthanasia. The 8% card agglutination test performed best, whereas the fluorescence polarization assay demonstrated no capacity to differentiate true positive from true negative animals. Froma disease surveillance perspective, using the 8%card agglutination test in parallel with either the buffered acidified plate antigen test or the Brucella abortus/suis complement fixation test provided the best performance with the highest probability of a positive assay result. Application of these combinations of diagnostic assays for B. suis surveillance among feral swine would improve understanding of spillover risks at the national level

    ANDES: Statistical tools for the ANalyses of DEep Sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advancements in DNA sequencing technologies have allowed researchers to progress from the analyses of a single organism towards the deep sequencing of a sample of organisms. With sufficient sequencing depth, it is now possible to detect subtle variations between members of the same species, or between mixed species with shared biomarkers, such as the 16S rRNA gene. However, traditional sequencing analyses of samples from largely homogeneous populations are often still based on multiple sequence alignments (MSA), where each sequence is placed along a separate row and similarities between aligned bases can be followed down each column. While this visual format is intuitive for a small set of aligned sequences, the representation quickly becomes cumbersome as sequencing depths cover loci hundreds or thousands of reads deep.</p> <p>Findings</p> <p>We have developed ANDES, a software library and a suite of applications, written in Perl and R, for the statistical ANalyses of DEep Sequencing. The fundamental data structure underlying ANDES is the position profile, which contains the nucleotide distributions for each genomic position resultant from a multiple sequence alignment (MSA). Tools include the root mean square deviation (RMSD) plot, which allows for the visual comparison of multiple samples on a position-by-position basis, and the computation of base conversion frequencies (transition/transversion rates), variation (Shannon entropy), inter-sample clustering and visualization (dendrogram and multidimensional scaling (MDS) plot), threshold-driven consensus sequence generation and polymorphism detection, and the estimation of empirically determined sequencing quality values.</p> <p>Conclusions</p> <p>As new sequencing technologies evolve, deep sequencing will become increasingly cost-efficient and the inter and intra-sample comparisons of largely homogeneous sequences will become more common. We have provided a software package and demonstrated its application on various empirically-derived datasets. Investigators may download the software from Sourceforge at <url>https://sourceforge.net/projects/andestools</url>.</p

    Genomic regions associated with pseudorabies virus infection status in naturally infected feral swine (Sus scrofa)

    Get PDF
    Pseudorabies virus (PRV)—the causative agent of Aujeszky’s disease—was eliminated from commercial pig production herds in the United States (US) in 2004; however, PRV remains endemic among invasive feral swine (Sus scrofa). The circulation of PRV among abundant, widespread feral swine populations poses a sustained risk for disease spillover to production herds. Risk–based surveillance has been successfully implemented for PRV in feral swine populations in the US. However, understanding the role of host genetics in infection status may offer new insights into the epidemiology and disease dynamics of PRV that can be applied to management strategies. Genetic mechanisms underlying host susceptibility to PRV are relatively unknown; therefore, we sought to identify genomic regions associated with PRV infection status among naturally infected feral swine using genome–wide association studies (GWAS) and gene set enrichment analysis of single nucleotide polymorphism data (GSEA–SNP). Paired serological and genotypic data were collected from 6,081 feral swine distributed across the invaded range within the contiguous US. Three complementary study populations were developed for GWAS: 1) comprehensive population consisting of feral swine throughout the invaded range within the contiguous US; 2) population of feral swine under high, but temporally variable PRV infection pressure; and 3) population of feral swine under temporally stable, high PRV infection pressure. We identified one intronic SNP associated with PRV infection status within candidate gene AKAP6 on autosome 7. Various gene sets linked to metabolic pathways were enriched in the GSEA–SNP. Ultimately, improving disease surveillance efforts in feral swine will be critical to further understanding of the role host genetics play in PRV infection status, helping secure the health of commercial pork production
    corecore