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Pseudorabies virus (PRV)—the causative agent of Aujeszky’s disease—was
eliminated from commercial pig production herds in the United States (US) in
2004; however, PRV remains endemic among invasive feral swine (Sus scrofa). The
circulation of PRV among abundant, widespread feral swine populations poses a
sustained risk for disease spillover to production herds. Risk–based surveillance
has been successfully implemented for PRV in feral swine populations in the US.
However, understanding the role of host genetics in infection statusmay offer new
insights into the epidemiology and disease dynamics of PRV that can be applied to
management strategies. Genetic mechanisms underlying host susceptibility to
PRV are relatively unknown; therefore, we sought to identify genomic regions
associated with PRV infection status among naturally infected feral swine using
genome–wide association studies (GWAS) and gene set enrichment analysis of
single nucleotide polymorphism data (GSEA–SNP). Paired serological and
genotypic data were collected from 6,081 feral swine distributed across the
invaded range within the contiguous US. Three complementary study
populations were developed for GWAS: 1) comprehensive population
consisting of feral swine throughout the invaded range within the contiguous
US; 2) population of feral swine under high, but temporally variable PRV infection
pressure; and 3) population of feral swine under temporally stable, high PRV
infection pressure. We identified one intronic SNP associated with PRV infection
status within candidate gene AKAP6 on autosome 7. Various gene sets linked to
metabolic pathways were enriched in the GSEA–SNP. Ultimately, improving
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disease surveillance efforts in feral swine will be critical to further understanding of
the role host genetics play in PRV infection status, helping secure the health of
commercial pork production.
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Aujeszky’s disease, disease spillover, feral swine, GSEA-SNP, GWAS, pseudorabies virus
(PRV), pseudo-heritability

1 Introduction

Pseudorabies virus (PRV), also referred to as suid herpesvirus 1
(SuHV–1), is a DNA herpesvirus in the Herpesviridae family
(Mettenleiter et al., 2019). Members of the Suidae family are the
only natural hosts for PRV; however, numerous mammals can be
naturally or experimentally infected with PRV (Mettenleiter, 2008;
Bo and Li, 2022). The primary route of transmission among swine
(Sus scrofa) is direct oronasal contact; however, venereal, aerosol,
transplacental, and fomite–mediated transmission can also occur
(Mettenleiter, 2008; Mettenleiter et al., 2019; Bo and Li, 2022). In
swine, the virus primarily replicates in the epithelial cells of the
upper respiratory tract prior to reaching the tonsils and local lymph
nodes. Pseudorabies virus can gain access to neurons innervating the
facial and oropharyngeal region and ultimately spread to the cell
bodies of infected neurons, where a lytic or latent infection occurs
(Verpoest et al., 2017; Mettenleiter et al., 2019). Strains of PRV differ
in virulence, which impacts both clinical disease and tissue tropism.
Highly virulent strains of PRV primarily cause neuroinvasion,
whereas strains of PRV with low to moderate virulence have
weak neuroinvasiveness but a distinct tropism for the respiratory
tract. Highly adapted and/or attenuated strains often demonstrate a
tropism for the reproductive tract (Mettenleiter et al., 2019).

Clinical manifestation of disease following PRV infection is
highly dependent upon the age of the affected swine (Nauwynck,
1997; Mettenleiter, 2008; Verpoest et al., 2017). Piglets, less than
3 weeks of age, are highly susceptible to PRV with up to 100%
mortality and may exhibit high fever, dullness, anorexia, vomiting,
weakness, incoordination, twitching, and convulsions. As swine
surpass 3 weeks of age, neurological symptoms are less common,
as is mortality. Mature pigs primarily exhibit respiratory distress in
the form of coughing, sneezing, and heavy breathing. If gestational
infection occurs, fetal resorption, mummification, abortions, or
weakened piglets may be observed. Individuals that recover from
clinical infection can remain latently infected in their olfactory bulb,
trigeminal ganglia, brain stem, or sacral ganglia (Mettenleiter, 2008;
Verpoest et al., 2017; Mettenleiter et al., 2019; USDAAPHIS, 2020a).
At the herd level, PRV results in morbidity and mortality of afflicted
individuals and cumulative production losses (Anderson et al.,
2008).

In the United States (US), invasive populations of feral swine
(Sus scrofa) are known reservoirs for PRV and pose a sustained risk
of disease spillover for domestic herds, from which PRV was
eliminated in 2004 (Anderson et al., 2008; Pedersen et al., 2013;
Hernández et al., 2018b). Free–ranging feral swine populations have
been present in the US since domestic pigs were first introduced in
1539 to the Florida peninsula. Historically, feral swine populations
were composed of domestic pigs that were either released or escaped
as a consequence of free–range livestock practices; however,

contemporary populations generally represent animals of mixed
wild boar and domestic pig ancestry following the importation of
European wild boar for hunting purposes (Smyser et al., 2020).
Despite their long history in the US, the distribution of feral swine
has expanded dramatically in recent years largely due to human-
facilitated movement (i.e., translocation; Bevins et al., 2014; McClure
et al., 2015; Snow et al., 2017; Tabak et al., 2017; Hernández et al.,
2018a; Smyser et al., 2020). This expansion increases the risk of
disease spillover, as feral swine are now established in agricultural
productions regions with domestic livestock, poultry, and cervids
that demonstrate susceptibility to feral swine pathogens (Miller
et al., 2017). Miller et al. (2017) found that in 2012, an average
of 47.7% of all farms in the contiguous US were in counties with
known feral swine populations. Furthermore, previous studies have
reported the presence of feral swine in livestock housing areas
(Anderson et al., 2019) and documented feral swine consuming
livestock feed and supplements (Carlisle et al., 2021). Feral swine
have also been observed in close proximity to pork production
facilities (Wyckoff et al., 2009; Engeman et al., 2011) including
outdoor operations (Patterson et al., 2022). Such interactions are
particularly worrisome given that PRV is primarily spread via direct
contact between animals (Mettenleiter et al., 2019; USDA APHIS,
2020b).

Eliminating PRV from feral swine in the US is unlikely due to the
abundant and widespread nature of invasive populations as well as the
high prevalence of PRV, with apparent seroprevalence of 22% across
the invaded range (USDA APHIS WS unpublished data, 2020).
Additionally, traditional methods of PRV mitigation among
domestic herds (e.g., depopulation or vaccination; Anderson et al.,
2008) cannot be readily applied to this free–ranging and prolific
invasive species. Thus, a logical approach for controlling PRV in feral
swine is using disease surveillance data to quantify pathogen
transmission on the landscape and ensuring that allocated control
resources are commensurate with associated disease spillover risks
(Müller et al., 2011; Brown et al., 2019). Targeted, risk–based
surveillance has been successfully implemented for PRV across
feral swine populations throughout the US (Brown et al., 2019;
Brown et al., 2020). The National Feral Swine Damage
Management Program (NFSP), a United States Department of
Agriculture (USDA) program that facilitates feral swine control
efforts throughout the invaded range and collects associated
biological samples for disease surveillance, screens approximately
6,000 feral swine annually for diseases of national concern.
However, understanding the role of host genetics in susceptibility
may offer new insights into the epidemiology and disease dynamics of
PRV that can be applied to management strategies (Robinson et al.,
2012; Blanchong et al., 2016; Queirós et al., 2018; Seabury et al., 2020).

Accordingly, our goal was to utilize serological data collected
under USDA disease surveillance efforts and paired single
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nucleotide polymorphism (SNP) genotypes to build upon previous
studies that have identified loci associated with susceptibility/
resistance to PRV in experimentally and naturally infected
domestic pigs (Reiner et al., 2002; Yuan et al., 2009) and
European wild boar (Fabbri et al., 2021). Specifically, our
objective was to 1) identify loci associated with PRV infection
status among naturally infected feral swine sampled throughout
their invaded range within the contiguous US using case/control
genome–wide association studies (GWAS) and 2) use a
pathway–based approach, gene set enrichment analysis of single
nucleotide polymorphism data (GSEA–SNP), to analyze the GWAS
data and identify gene sets (groups of genes that share biological
function, regulation or chromosomal location; Subramanian et al.,
2005) associated with PRV infection status.

2 Materials and methods

2.1 Sample collection

Blood, hair, and tissue samples were collected from adult feral
swine (n = 6,081) throughout the invaded range within the
contiguous US (33 states) as an extension of damage
management efforts led by the United States Department of
Agriculture (USDA) Animal and Plant Health Inspection Service
(APHIS) Wildlife Services (WS). Samples were collected from May
2012 to September 2020 with the majority of samples (93%)
collected since 2014. Samples were acquired ancillary to legally
authorized control of invasive feral swine; therefore, sample
collection was exempted from Institutional Animal Care and Use
Committee review (Sikes et al., 2016).

2.2 Serological assay

Disease status was not known at the time of sampling, so cases
and controls were not determined by study design. Individuals that
were positive for PRV antibodies were considered cases, whereas
individuals negative for PRV antibodies were considered controls.

Serum samples were tested for PRV antibodies at the Kentucky
Federal Brucellosis Laboratory (Frankfort, Kentucky, United States)
using the “short protocol” for Pseudorabies–gB Enzyme–Linked
Immunosorbent Assay (PRV–gB ELISA; IDEXX Laboratories Inc.,
Westbrook, Maine, United States). Samples were considered positive
for PRV if the S/N value ≤0.60 and negative if the S/N value >0.70.
Individuals with 0.60 < S/N ≤ 0.70 were indeterminate in PRV
infection status and were excluded from our analyses. Of the
6,081 samples tested for PRV antibodies, 1,294 were positive, and
4,787 were negative.

2.3 Genotype data

DNA extraction and genotyping were conducted at GeneSeek
(Neogen Corporation, Lincoln, Nebraska, United States). DNA
extraction was performed using the MagMAX™ DNA Multi-
Sample Ultra Kit (Thermo Fisher Scientific Inc., Waltham, MA,
United States) and genotyping was completed using the GeneSeek

Genomic Profiler (GGP) for Porcine 80 k array [68,516 loci;
Illumina BeadChip microarrays (San Diego, California,
United States) licensed exclusive to GeneSeek, Neogen
Corporation, (Lincoln, Nebraska, United States)]. Bi–allelic SNP
were mapped to the Sscrofa11.1 reference genome assembly (Warr
et al., 2020), and unmapped and non–autosomal markers were
removed, leaving 62,128 loci for further consideration. Standard
quality control filters for genotype data were implemented using
SNP & Variation Suite (SVS; version 8.9.0; Golden Helix, Bozeman,
Montana, United States), specifically removing samples with call
rates <0.90 and then pruning loci with call rates <0.90 or minor allele
frequency <0.05. Following quality control measures, we retained
5,875 feral swine samples (1,246 PRV positive and 4,629 PRV
negative) and 56,024 loci for subsequent analyses.

2.4 Study populations

Imperfect diagnostics, incomplete pathogen exposure, and
varying levels of infection pressure over time and space can
result in biased, primarily lower, heritability and SNP effect
estimates (Bishop and Woolliams, 2010; Bishop et al., 2012;
Bishop and Woolliams, 2014). Therefore, from the 5,875 feral
swine samples that passed genotype quality control, three study
populations were derived based on the presence and persistence of
PRV on the landscape.

2.4.1 Comprehensive study population
The feral swine data were stratified into populations that

experienced similar PRV exposure as well as abiotic and biotic
factors that may interact with PRV to reduce fitness of infected
individuals. We used watersheds as a means of defining populations
and associated landscape scale features. Hydrologic units are a
hierarchical classification system of watersheds that represent a
discrete set of biotic and abiotic factors and serve as an
ecologically relevant unit for aggregating landscape–level
covariates (Miller, 2017; McClure et al., 2018). We chose the
subbasin level [hydrological unit code (HUC) eight], here–after
referred to as watershed, to encompass populations of feral swine
experiencing similar environments, including PRV infection
pressure (see description of true seroprevalence prediction
below). Variation in PRV infection status amongst the samples
was evaluated for each unique combination of sampling year and
watershed; combinations that lacked variation in PRV infection
status (i.e., all samples were either cases or controls) were excluded
from the analysis. The remaining samples were considered the
comprehensive study population during subsequent analysis.

2.4.2 High PRV infection pressure with temporal
variation

Feral swine samples were opportunistically collected during
routine USDA APHIS Wildlife Services management efforts;
therefore, misclassification of cases and controls could result
from imperfect sero–diagnostics or a lack of PRV exposure on
the landscape (Bishop et al., 2012). Serologic diagnostic assays can
underestimate disease prevalence resulting in biased estimates of
parameter effects and, in some cases, resulting in invalid inferences
(Tabak et al., 2019). Therefore, true seroprevalence for PRV, that
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accounts for imperfect detection was predicted for each year in each
watershed. Predictions were made using a hierarchical Bayesian
model (see Supplementary Material) with 28,030 feral swine
sampled across 37 states in the contiguous US between October
2010 and September 2020. Similar to the paired genetic and
serological samples that serve as the focus of this study (n =
6,081), these samples were more broadly collected (temporally
and spatially) by USDA APHIS Wildlife Services as a component
of disease surveillance and population control efforts.

True seroprevalence can have year–to–year variation, and
predictions are also influenced by the amount of data available to
fit models. To reduce the likelihood of misclassifying an unexposed
individual as a control, data were truncated to only include
watersheds in which feral swine were sampled across ≥3 years.
Watersheds were then partitioned into either high or low true
seroprevalence groups using the median true seroprevalence
(35.8%) observed across the comprehensive study population.
Controls in the high true seroprevalence group were assumed to
have experienced PRV infection pressure and thus were truly
resistant to PRV. Accordingly, feral swine in the high true
seroprevalence group, here–after referred to as the HTS study
population, were retained for subsequent analysis.

2.4.3 High PRV infection pressure without
temporal variation

Changes in infection pressure can result from temporal
variation; therefore, high and low true seroprevalence groups
were further stratified as stable or unstable using the mean
annual change in true seroprevalence (±14.8%) as a threshold.
There is uncertainty associated with predictions of true
seroprevalence; therefore, watersheds were identified as uncertain
if the standard deviation of the true seroprevalence was greater than
the mean annual change (±14.8%) and certain if the standard
deviation was less. The certain, stable high true seroprevalence
group, here–after referred to as the CSHTS study population, was
retained for subsequent analysis.

2.5 Bioclimatic regions

Environmental conditions are known to influence PRV infection
risk and may interact with PRV prevalence to influence selective
pressures. Animals that experience physiological stress resulting
from environmental conditions are more likely to have clinical
manifestations of PRV that may reduce overall host fitness (Tozzini
et al., 1982; Capua et al., 1997; de Groot et al., 2001). Accordingly, each
watershedwas assigned to a bioclimatic region using data fromMetzger
et al. (2013). Bioclimatic regions represent unique biological and
climatic conditions and can be interpreted as a discrete
representation of environmental gradients. The median number of
watersheds assigned to a bioclimatic region across the Comprehensive,
HTS, and CSHTS study populations were 21, 7.5, and 2, respectively.

2.6 Percent European wild boar ancestry

Feral swine in this study overwhelmingly represent individuals
that are of mixed domestic swine and European wild boar ancestry.

Management strategies of domestic livestock have reduced genetic
diversity within host populations, which subsequently increases
disease susceptibility (Springbett et al., 2003; King and Lively,
2012). In contrast, wild populations do not undergo genetic
management or artificial selection for production traits but
instead genomic processes are influenced by natural selective
pressures including disease. Accordingly, one could hypothesize
that individual feral swine with greater European wild boar
ancestry would be more resilient to PRV.

The methods described in Smyser et al. (2020) were used to
estimate the percent European wild boar ancestry of individual feral
swine included in our analysis. Briefly, ADMIXTURE (Alexander et
al. 2009) was used in a supervised framework to query an individual
genotype against a comprehensive reference set for Sus scrofa,
comprised of 105 domestic breeds, 23 wild boar populations, and
4 sister taxa. This method proportionately associates the origin of
individual feral swine genotypes among the 17 ancestry groups that
comprise the Sus scrofa wild–domestic species complex reference set.

2.7 Model selection

For each study population, binary logistic regression was used to
examine the probability of an individual being PRV antibody
positive given sex of the individual (male vs. female), percent
European wild boar ancestry (continuous), PRV true
seroprevalence (continuous), and bioclimatic region (6 unique
bioclimatic regions for HTS and 5 unique bioclimatic regions for
CSHTS). Since the effect of European wild boar ancestry may
depend on infection pressure, an interaction between percent
European wild boar ancestry and PRV true seroprevalence was
also investigated. All predictors, including the interaction, were
treated as fixed effects. Logistic regression models were fit using
the R stats package (version 4.1.1; R Core Team, 2021).

Potential candidate models, representing all possible
combinations of predictors, were evaluated using Akaike
Information Criterion (AIC) implemented in R (version 4.1.1; R
Core Team, 2021) package MuMIn (Bartoń, 2020). Akaike
Information Criterion balances model parsimony with goodness
of fit; the model with the lowest AIC value then represents the
most informative or “best”model for predicting PRV infection status
given the data and the candidate models considered (Bozdogan, 1987;
Portet, 2020). To account for model uncertainty (i.e., competing
models within two Δ AIC of the “best” model), we examined the
support for each predictor by calculating cumulative covariate
weights where weights over 0.5 were considered supported
(Doherty et al., 2012). Supported predictors were included as
fixed effects in the mixed model GWAS described below.

2.8 Genome–wide association studies

Single–locus mixed model GWAS with efficient mixed–model
association eXpedited (EMMAX) methodology (Kang et al., 2010)
were performed for each study population using SNP & Variation
Suite software (SVS; version 8.9.0; Golden Helix, Bozeman,
Montana, United States). The mixed model equation can be
expressed as:
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y � Xβ + Zu + ε

where, y was an n × 1 vector of PRV infection status phenotypes, X
was an n× qmatrix of fixed effects (q), β was an q × 1 vector of fixed
effect coefficients to be estimated, Z was an n× t matrix relating
random effects (t) to the phenotypes in y, u was a vector of random
effects to be estimated, and ε was a vector of residuals. This model
assumed that Var(u) = σ2gK and Var(ε) = σ2eI; thus, Var(y) =
σ2gZKZ′ + σ2eI. K was a pairwise genetic relatedness matrix and Z
was the identity matrix I (Kang et al., 2008).

For each study population, three models of genetic architecture
were evaluated to account for uncertainty regarding the mode of
inheritance for PRV: additive, dominance, and recessive.
Considering a bi-allelic SNP with alleles D and d, an additive
model assumes a linear increase in disease risk with each
additional copy of the risk allele (D); therefore, the risk for DD
would be twice that of Dd. A dominance model assumes that the
presence of one or more copies of the risk allele increases disease
risk; thus, DD or Dd would have a higher disease risk than dd.
Finally, a recessive model assumes that two copies of the risk allele
are needed to alter the risk of disease, so individuals possessing DD
genotypes would be compared to those with Dd or dd genotypes
(Bush and Moore, 2012).

Pseudo–heritability was estimated for each model as:

h2 � σ2g

σ2g + σ2e( )

where, σ2g represented the estimated genetic variance, and σ2e
represented the estimated random residual (error) variance (Kang
et al., 2010). Test statistics can be artificially inflated due to
underlying population structure resulting in spurious
associations; therefore, genomic inflation factors were assessed for
each model using the “Calculate an Approximate Lambda from a Set
of P-Values” script in SVS (version 8.9.0; Golden Helix, Bozeman,
Montana, United States). The genomic inflation factor was
expressed as:

λ � Median χ2

Expected Median χ2

where, χ2 was the chi–square values and λ < 1.01, λ < 1.05, or λ >
1.1 suggest minimally, moderately, or highly inflated test statistics,
respectively (Aulchenko, 2015). For this study, SNPwere moderately
associated with PRV infection status when the P value was between
5 × 10−7 and 1 × 10−5 and strongly associated when the P value
was <5 × 10−7 (Wellcome Trust Case Control Consortium, 2007).

2.9 Gene set enrichment analysis—single
nucleotide polymorphism

To investigate gene sets associated with PRV infection status, we
performed GSEA–SNP using the GenGen software package (Wang
et al., 2007). The GenGen algorithm was adapted from GSEA
(Subramanian et al., 2005) for specific application to GWAS data.
Briefly, SNP are mapped to genes and the test statistic [P value or
chi–square value (χ2)] of themost significant SNPmapped to the gene
is used as a proxy for gene significance. Genes are then ranked based
on their significance (e.g., largest χ2 test statistic to smallest) and an

enrichment score (ES), a weighted Kolmogorov–Smirnov–like
running sum statistic that reflects the degree to which the genes in
a gene set are overrepresented at the top of the ranked gene list, is then
calculated for each gene set. The ES of a gene set will be higher if its
genes are at the top of the ranked list.

Larger genes may be ranked higher than smaller genes due to
increased numbers of SNP within the gene, thus artificially inflating
pathway significance (Holmans et al., 2009; Wang et al., 2010;
Fridley and Biernacka, 2011). The GenGen algorithm accounts
for variable gene size and linkage disequilibrium among SNP in a
gene using a two-step approach (Wang et al., 2007; Wang et al.,
2009; Wang et al., 2011). First, phenotype–based permutations are
used to describe the distribution of the test statistics under the null
hypothesis that there is no association between genotype and
phenotype. For each permutation, the ES is calculated as
described above. Second, the ES derived from the empirical data
and the permutations are used to compute normalized enrichment
scores (NES). The nominal P value of each ES is calculated from the
permutations and a false discovery rate (FDR) is used to account for
multiple–hypothesis testing.

To obtain input files for the GenGen algorithm, we reran the
GWAS for each of the three study populations using a GRAMMAR
(Genome Wide Rapid Association using Mixed Model and
Regression; Aulchenko et al., 2007a) approach with the GenABEL
package (Aulchenko et al., 2007b) in R (version 4.1.1; R Core Team,
2021). First, an additive polygenic model was fit with a genomic
kinship matrix [identity–by–state (IBS)] and binomial distribution to
derive environmental residuals. Note that for each study population,
we used the same fixed effects in the polygenic model as we used for
the EMMAX implemented in SVS. Second, environmental residuals
were used as the trait in the “qtscore” function in GenABEL, which
performs a score test for association between SNP and a trait of
interest. The resulting P values were converted to chi–square values
using the “qchisq” function in the R stats package (version 4.1.1; R
Core Team, 2021). We performed 10,000 phenotype–based
permutations (without replacement) on the environmental
residuals using the “sample” function in R (version 4.1.1; R Core
Team, 2021) and for each permutation the score test was performed,
and chi–square values were generated.

Using the Sscrofa11.1 genome assembly (29,862 genes; NCBI
Sus scrofa Annotation Release 106; Assembly accession GCF_
000003025.6; National Center for Biotechnology Information
(NCBI), 1988; Warr et al., 2020), the 56,024 SNP from the
GWAS were mapped to genes if they fell within the gene or
within a haplotype block of the gene (74 kb; 37 kb 5′ and 37 kb
3′). The average haplotype block size was calculated using the
comprehensive study population (n = 2,490) and the default
parameters in SVS (version 8.9.0; Golden Helix, Bozeman,
Montana, United States) which implements the methods
previously described by Gabriel et al. (2002). Human (Homo
sapiens) gene sets are highly curated, whereas less information is
available for swine; therefore, we referenced human gene sets (n =
12,121) available from five databases: BioCarta (n = 289; Nishimura,
2001), Gene Ontology (GO; n = 9,996; Ashburner et al., 2000; The
Gene Ontology Consortium et al., 2023), Kyoto Encyclopedia of
Genes and Genome (KEGG; n = 186; Kanehisa and Goto, 2000),
Protein Analysis THrough Evolutionary Relationships (PANTHER;
n = 151; Mi and Thomas, 2009; Thomas et al., 2022), and Reactome
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(n = 1,499; Gillespie et al., 2021; Supplementary Table S1). Gene sets
were filtered for redundancy to increase our power in respect to false
discovery rate (see Supplementary Material; Subramanian et al.,
2005; Wang et al., 2007; Broad Institute, 2023). The minimum gene
set size (i.e., the number of genes in a gene set) was set to 15 and the
maximum gene set size was set to 500. As recommended by Wang
et al. (2007), the “largest_es” argument was implemented so that
only the largest enrichment scores were used instead of enrichment
scores with the largest absolute value. When evaluating gene
expression data, negative enrichment scores may be attributed to
negative regulation making absolute values appropriate whereas this
is not the case with GWAS data.

The established threshold for statistically significant gene sets is
FDR <0.25 (Subramanian et al., 2005; Wang et al., 2009; Wang et al.,
2011; Broad Institute, 2023). However, in the absence of statistically
significant gene sets, evaluating the top ranked gene sets is
recommended as these gene sets may yet be biologically
meaningful for PRV infection (Broad Institute, 2023). For the
current study, gene sets were considered top ranked
(i.e., putatively associated with PRV infection status) if their NES
fell within the top 0.1% percentile (NES >0.999 quantile), aligning
with thresholds implemented by Lee et al. (2013), Del Corvo et al.
(2017), Kiser et al. (2018), and Neupane et al. (2018). Genes that
positively contributed to the ES within a gene set, termed leading
edge genes (LEGs), were also identified during the analyses.

3 Results

3.1 Study populations

A detailed description of each study population is provided in
Table 1. Briefly, the comprehensive study population consisted of
2,490 feral swine (1,062 cases and 1,428 controls) sampled across
18 states, primarily in the southeastern US, and six bioclimatic
regions. The HTS study population was comprised of
approximately half of the samples in the comprehensive study
population, with 1,183 feral swine (653 cases and 530 controls)
sampled from six bioclimatic regions across eight states. The
smallest study population was CSHTS which consisted of 291 feral

swine (164 cases and 127 controls). Given the specified bounds on
temporal variation, the CSHTS study population only included feral
swine sampled from Florida, South Carolina, and Texas. Within these
three states, five unique bioclimatic regions were represented.

3.2 Model selection

For each of the three study populations, we identified multiple
competing models within two AIC units of the best model
(ΔAIC ≤2; Supplementary Tables S2–S4); therefore, cumulative
covariate weights were calculated to evaluate the relative
importance of each predictor (Doherty et al., 2012). Based on
these weights, PRV true seroprevalence (0.83) was considered
informative for predicting PRV infection status within the
comprehensive study population. Given that the true
seroprevalence for PRV was used to define the HTS and CSHTS
study populations, true seroprevalence and interactions that
included true seroprevalence were not evaluated as potential
predictors for these models. Percent European wild boar ancestry
was informative for predicting PRV infection status within the HTS
and CSHTS populations with cumulative covariate weights of
0.82 and 0.72, respectively. Quantile–quantile (Q–Q) plots
(Supplementary Figure S1), as well as genomic inflation factors
(Supplementary Table S5), demonstrated that underlying
population stratification was adequately corrected for in every
model and test statistics would not be artificially inflated.

3.3 Pseudo–heritability estimates and
candidate genes

Pseudo–heritability estimates using the comprehensive study
population were low (0.10 ± 0.03–0.13 ± 0.04), whereas estimates
calculated using the HTS population were moderate (0.30 ±
0.06–0.38 ± 0.08). The pseudo–heritability estimates from the
CSHTS population were low (0.13) with high standard errors
(±0.13–0.16). Using GWAS, no significant SNP were identified for
the Comprehensive or HTS study populations. Moreover, no
significant loci were identified using the dominance or recessive

TABLE 1 Descriptions of three complementary study populations used to identify genomic regions associated with pseudorabies virus (PRV) infection status in
naturally infected feral swine (Sus scrofa) within the contiguous United States.

Phenotype
classificationc

Sex PRV true
seroprevalenced

Percent European
wild boar ancestrye

Populationa Watershed-year combinationsb Case Control Male Female Min Median Max Min Median Max

Comprehensive 291 1,062 1,428 1,075 1,415 2.60 35.8 88.5 0.80 27.0 79.2

HTS 126 653 530 527 656 11.0 54.2 88.5 2.90 20.1 69.2

CSHTS 27 164 127 126 165 24.2 54.4 88.5 4.90 24.9 69.2

aStudy population examined: a comprehensive population consisting of adult feral swine throughout the invaded range within the contiguous United States (Comprehensive), a population of

adult feral swine experiencing high PRV infection pressure with high temporal variability (HTS), and a population of adult feral swine experiencing temporally stable high PRV infection

pressure (CSHTS).
bThe number of unique watershed–year combinations represented in the study population.
cThe number of pseudorabies antibody positive swine (case) and pseudorabies antibody negative swine (control) in the study population.
dTrue seroprevalence of PRV predicted using hierarchical Bayesian modeling.
ePercent European wild boar ancestry calculated using the methods of Smyser et al. (2020).
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models. An intronic variant within A–Kinase Anchoring Protein 6
(AKAP6) gene, rs80904263 (base pair position 7:67,174,060), was
moderately associated with PRV infection status in the additive model
using the CSHTS study population (P value = 3.90 × 10−6; Figure 1).

3.4 Enriched gene sets

Using the 74 kb haplotype block, 44,744 SNP from the GWAS
were successfully mapped to 22,810 genes from the
Sscrofa11.1 genome assembly. Of the 12,121 human gene sets,
5,843 were retained for gene–set enrichment analysis based on
redundancy filtering and the minimum and maximum size
criteria. Seventeen top ranked gene sets (Table 2) were identified
using the 0.1% percentile of the NES distribution for each study
population (Supplementary Figure S2). Leading edge genes for each
gene set are provided in Supplementary Table S6.

Of the top ranked gene sets (the top 0.1% based on NES), muscle
cell cellular homeostasis and negative regulation of cellular protein
localization had significant P values (P < 0.01), but high FDR (FDR =
1.00). However, the FDR for these gene sets fell to 0.458 and
0.486 respectively when a more conservative pruning methodology
was implemented (Jaccard similarity coefficient >0.5) and
approximately half the number of gene sets were removed (see
Supplementary Material).

4 Discussion

Opportunistic serological data, amassed under USDA disease
surveillance efforts, provided a unique opportunity to enhance our

understanding of PRV epidemiology and disease dynamics by
coupling this data with host genetics. Results from the GWAS
suggest that variation in PRV infection status, as determined by
the presence/absence of antibodies, may, in part, be attributed to
genetics. Further, metabolic pathways that may be biologically
relevant for PRV infection in free–ranging feral swine were
identified through complimentary, pathway–based analyses of the
GWAS data.

Pseudo–heritability estimates were low to moderate across our
three study populations, which aligns with previous heritability
estimates for disease presence/absence in domestic swine
(Henryon et al., 2001; Henryon et al., 2003; Bishop and
Woolliams, 2010). We identified one intronic SNP within AKAP6
on autosome 7 that was moderately associated with PRV infection
status. In swine, the highest expression levels of AKAP6 are in the
heart and skeletal muscle (Li et al., 2017). Gross and histologic
lesions are not typically described in the heart muscle of swine
infected with PRV (Yang et al., 2016); however there have been
reports of domestic dogs (Canis lupus familiaris) inoculated with
PRV that developed heart lesions with herpes-like viral particles
observed by electron microscopy in autonomic ganglia and
myocardial endothelial cells (Olson and Miller, 1986).

Previous research on susceptibility/resistance to PRV in
domestic swine identified quantitative trait loci (QTL) on
autosomes 5, 6, 9, and 13 that were associated with the
appearance/non–appearance of neurologic symptoms following
PRV challenge. In addition, QTL associated with rectal
temperature were identified on autosomes 2, 4, 8, 10, 11, and 16
(Reiner et al., 2002). Similarly, a gene expression analysis using brain
and lung tissues of naturally infected commercial breed piglets
identified differentially expressed genes on autosomes 8, 9, and

FIGURE 1
Manhattan plot of loci associated with pseudorabies virus (PRV) infection status in naturally infected feral swine (Sus scrofa) within the contiguous
United States. Autosome position (Sscrofa 11.1 genome assembly) on the x-axis and -log10(P values) on the y-axis. Significance threshold denoted by the
dashed line (P < 1 × 10−5; Wellcome Trust Case Control Consortium, 2007). A dbSNP Reference SNP (rs) number is provided for the significant locus
(Sherry et al., 2001).
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13 (Yuan et al., 2009). In studying susceptibility/resistance in
free–ranging, naturally infected European wild boar, (Fabbri
et al., 2021) identified intergenic and intronic SNP on autosomes
12 and 18, respectively. Given that previous studies focused on
different lineages under unique selection pressure it is reasonable
that the findings differed from ours (Bruns and Stalder, 2019).

Based on previous work with swine brucellosis in feral swine, it
was hypothesized that enriched gene sets would include processes
involved in the immune response or, more specifically, the humoral
response (Pierce et al., 2020); however, results from our study did
not find any significant associations with genes sets involved in the
host immune response to infection. Instead, gene sets identified in
this study were associated with neuronal development, muscle cells,
calcium transport, and actin filaments, protein localization, and
cellular metabolic processes (particularly lipid metabolic processes).
Previous PRV research in both in vivo and in vitro models
demonstrated similar findings.

Three of the top ranked gene sets in our study were related to
neuronal development including negative regulation of synapse
organization, ventral spinal cord development, and spinal cord
motor neuron differentiation. Similarly, Yuan et al. (2009)
demonstrated that genes associated with nervous system
development and synaptic transmission were upregulated in

brain and lung tissue while investigating the transcriptional
response of commercial breed piglets to natural PRV infection.
Pseudorabies virus infections often occur with infection of neurons
in the periphery and then spread to the central nervous system
(CNS) via synapses linking neurons. Proteomic analysis revealed
that synapse organization proteins were altered in mice (Mus
musculus) infected with Bartha K61-an attenuated strain of PRV.
Moreover, many of these proteins showed a decreasing tendency,
suggesting that PRV infection could inhibit host synaptic
transmission (Zeng et al., 2018).

In young swine, PRV infection can be characterized by neuronal
clinical signs, including ataxia, incoordination, convulsions, and
paralysis. Histologically, nonsuppurative inflammation has been
observed in the brain, spinal cord, and ganglia as characterized
by neuronal degeneration and necrosis, neuronophagia, and
microglial activation (Sehl and Teifke, 2020). Neurons clearly
play a large role in PRV infection in swine, but the association
between neuronal development and PRV infection status of swine
remains unknown.

Gene sets associated with muscle cells, calcium transport, and
actin filaments were also enriched in our study, specifically muscle
cell cellular homeostasis, membrane depolarization during cardiac
muscle cell action potential, regulation of calcium ion transport into

TABLE 2 Gene sets associated with pseudorabies virus (PRV) infection status in adult feral (Sus scrofa) sampled across the invaded range in the United States using
gene set enrichment analysis of single nucleotide polymorphism data (GSEA–SNP).

Populationa Gene setb NESc P value FDRd Genese LEGsf

Comprehensive Muscle cell cellular homeostasis (GO:0046716) 3.50 0.0001 1.00 17 4

Comprehensive Negative regulation of cellular protein localization (GO:1903828) 3.31 0.0004 1.00 93 36

Comprehensive Spinal cord motor neuron differentiation (GO:0021522) 3.19 0.0008 1.00 30 6

Comprehensive Ventral spinal cord development (GO:0021517) 3.03 0.0007 1.00 42 8

Comprehensive Protein localization to cilium (GO:0061512) 2.98 0.0020 1.00 40 15

Comprehensive Epithelial cell apoptotic process (GO:1904019) 2.92 0.0021 1.00 90 43

HTS Membrane depolarization during cardiac muscle cell action potential (GO:0086012) 3.09 0.0005 1.00 21 8

HTS Cellular response to sterol (GO:0036315) 3.08 0.0005 1.00 22 11

HTS Sumoylation of transcription factors (Reactome) 3.06 0.0008 1.00 15 7

HTS Cell adhesion mediator activity (GO:0098631) 3.02 0.0011 1.00 54 27

HTS Negative regulation of synapse organization (GO:1905809) 2.90 0.0017 1.00 21 11

CSHTS Glycosaminoglycan biosynthesis chondroitin sulfate (KEGG) 3.21 0.0004 1.00 20 11

CSHTS Regulation of calcium ion transport into cytosol (GO:0010524) 3.06 0.0011 1.00 86 26

CSHTS Actin filament organization (GO:0007015) 3.05 0.0020 1.00 336 113

CSHTS Pyruvate metabolism and citric acid (TCA) cycle (Reactome) 3.03 0.0011 1.00 44 23

CSHTS Thioester metabolic process (GO:0035383) 2.90 0.0027 1.00 35 17

CSHTS Sphingolipid metabolic process (GO:0006665) 2.88 0.0023 1.00 64 21

aStudy population examined: a comprehensive population consisting of adult feral swine throughout the invaded range within the contiguous United States (Comprehensive), a population of

adult feral swine experiencing high PRV infection pressure with high temporal variability (HTS), and a population of adult feral swine experiencing temporally stable high PRV infection

pressure (CSHTS).
bName of gene set and database: Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), Reactome.
cNormalized enrichment score.
dFalse discovery rate.
eNumber of genes in the gene set.
fNumber of leading edge genes in the gene set.
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cytosol, and actin filament organization. Although PRV does not
demonstrate a tropism for muscle cells in swine, these cells could be
indirectly affected by the systemic inflammatory response elicited by
the virus as well as other stresses on muscle cells induced by
infection (i.e., muscle tremors, convulsions). Systemic
inflammation, evident by PRV–associated pyrexia and anorexia,
puts animals in a state of negative energy balance as immune
responses are energetically expensive and often accompanied by
decreased feed intake. Currently, there is not a clear connection
between muscle cells and PRV infection status in swine. However, as
mentioned previously, domestic dogs inoculated with PRV have
demonstrated varying degrees of heart lesions ranging from
myocardial degeneration to myolysis (Olson and Miller, 1986).
Moreover, upregulated pig gene homologues have been identified
in the calcium signaling pathway in response to PRV infection in
commercial breed piglets (Yuan et al., 2009).

Actin filaments are present in most cells providing shape and
mechanical properties to the cytoplasm but are well known for their
abundance in muscle cells. Herpesviruses such as PRV have been
reported to utilize the cytoskeleton and modify the actin filaments of
host cells for efficient viral entry and replication in the nucleus
(Lyman and Enquist, 2009). Specifically, US3 a tegument protein of
PRV has been shown to lead to actin filament disruption in order to
facilitate viral transport to the nucleus and bind to antiviral proteins
in the host cell (Jacob et al., 2015; Zhang et al., 2023). How efficiently
a virus gains host entry, replicates, and exits the host cell, can impact
its ability to establish infections and even avoid immune detection.
Targeting the actin filament organization of its host cells could
impact PRV infection status. Pig gene homologues involved in the
regulation of actin cytoskeleton were upregulated in piglets naturally
infected with PRV infection (Yuan et al., 2009).

Two of the enriched gene sets (i.e., protein localization to cilium
and negative cellular protein localization) were involved protein
localization. The association between PRV infection and cilium
protein transport may result from genetic variabilities among
hosts, resulting in varying degrees of cilium function and/or
cilium sensory capabilities. Since the upper respiratory tract is
the initial site of PRV invasion and replication, PRV has evolved
effective mechanisms to overcome the mucosal epithelial barrier,
which is coated in a mucus layer, and together, serve as the primary
defense against infection (Wittmann et al., 1980). The association
noted here may be indicative of small variations in cilium function
that allow PRV to more readily evade the mucosal barrier and allow
for PRV invasion and establishment of infection.

Negative cellular protein localization refers to regulatory
pathways that prevent normal localization of proteins to specific
sites within the cell. All aspects of the life cycle of PRV—infection,
latency and replication—are dependent on host cell machinery and
protein transport mechanisms (Pomeranz et al., 2005). Therefore, it
is not surprising to observe this type of association between
regulation of host cell protein transport and PRV infection.

Four gene sets related to cellular metabolic processes were
associated with PRV infection status including cellular response to
sterol, sphingolipid metabolism, thioester metabolic process, and
pyruvate metabolism and citric acid (TCA) cycle. Cell entry of PRV
has been shown to be inhibited by the depletion of sphingomyelin,
which is an abundant sphingolipid in cell membranes (Pastenkos et al.,
2019). In addition, the depletion of cholesterol in the cell membrane

also impaired the infectivity of different PRV strains (Ren et al., 2011).
In a study analyzing differentially expressed metabolites in porcine
kidney (PK) cells infected with PRV compared to uninfected cells, 35%
belonged to lipid metabolites (Liu et al., 2022). Research with PRV
infected porcine alveolar macrophages had similar results, with over
50% of altered metabolites being lipid and lipid–like molecules (Yao
et al., 2021). Thus, these data would support differential sphingolipid
metabolism and generally lipid metabolism as serving a role in the
susceptibility of swine to PRV infection. However, metabolic networks
studied using mass spectrometry after PK cell infection with PRV
showed the tricarboxylic acid (TCA) cycle had little effect on viral
replication (Gou et al., 2021).

Gene set enrichment analysis conducted using high density
genotypes of naturally infected European wild boar classified
metabolic process as an enriched gene set (Fabbri et al., 2021). In
vitrowork with various cell lines infected with PRV found that many
altered metabolites were lipids or lipid–like molecules (Yao et al.,
2021; Liu et al., 2022). Given the pressures and stressors that affect
overall host fitness, lipid metabolic activity could be biologically
meaningful for PRV infection. Infections can affect host cells directly
or indirectly. For example, PRV, as an enveloped virus, alters the
cellular membranes during replication and release from the cell,
which could explain changes in lipid metabolic pathways. Metabolic
activity of cells has been shown to be a factor driving permissibility
to viral replication (Munger et al., 2008), and through metabolomic
approaches, various studies have demonstrated viral–driven
alterations in metabolic pathways of host cells (Plaza et al., 2016).
Thus, the potential role of metabolism in host susceptibility plausible.
Nevertheless, given the complexity of metabolic pathways, it is
difficult to determine at this time which specific component may
be involved in resistance/susceptibility to PRV infection.

Utilizing retrospective field data enabled large sample sizes and
increased statistical power to detect genomic regions associated with
PRV infection status; however, these data were limited in that only
binary disease phenotypes based on serological data were collected. The
humoral immune response to PRV is stable, and it is thought to last
throughout the lifetime of the individual; therefore, it is difficult to use
serological data alone to infer timing of infection (Mettenleiter et al.,
2019). Moreover, interpreting the associations between the identified
genomic regions and PRV infection status is challenging because
seropositivity is an indication of infection or exposure, but does not
predict susceptibility to disease. Similarly, a seronegative animal may be
indicative of a resistant animal or incomplete exposure to PRV.

Future studies would benefit from continuous phenotypes that
allow individuals to be characterized as resistant, tolerant, or
susceptible (Bishop and Woolliams, 2014). For example, viral
shedding could be used alongside serology to further
characterize infection status. Previous work has demonstrated
that serology alone may underestimate the true prevalence of
PRV infection in feral swine and that viral detection via PCR
could identify infected yet seronegative animals (Hernández et al.,
2018b). Although this is easier to accomplish under experimental
settings where variables such as the timing of infection are known,
clinical signs can be tracked, and animals can be sampled
longitudinally, it may be feasible to accomplish this in
free–ranging populations.

Continuing to improve our understanding of the epidemiology
and disease dynamics of PRV in feral swine will be important for
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refining disease surveillance methods and assessing the ongoing risk
of spillover into commercial swine populations. Feral swine control
resources are limited, and priorities are dynamic. Data generated
from this study and surveillance programs can help guide control
efforts to prioritize regions with the greatest PRV prevalence.
Overall, if PRV can be reduced in feral swine populations, the
risk of spillover into commercial swine herds is lowered, thus
helping to secure the health of US pork production.
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