5,569 research outputs found

    Finding the Right Tree: Topology Inference Despite Spatial Dependences

    Full text link
    Ā© 1963-2012 IEEE. Network tomographic techniques have almost exclusively been built on a strong assumption of mutual independence of link processes. We introduce model classes for link loss processes with non-Trivial spatial dependencies, for which the tree topology is nonetheless identifiable from leaf measurements using multicast probing. We show that these classes are large in a well-defined sense, and we provide an algorithm, SLTD, capable of returning the correct topology with certainty in the limit of infinite data

    Stiffness of Contacts Between Rough Surfaces

    Full text link
    The effect of self-affine roughness on solid contact is examined with molecular dynamics and continuum calculations. The contact area and normal and lateral stiffnesses rise linearly with the applied load, and the load rises exponentially with decreasing separation between surfaces. Results for a wide range of roughnesses, system sizes and Poisson ratios can be collapsed using Persson's contact theory for continuous elastic media. The atomic scale response at the interface between solids has little affect on the area or normal stiffness, but can greatly reduce the lateral stiffness. The scaling of this effect with system size and roughness is discussed.Comment: 4 pages, 3 figure

    Contact area of rough spheres: Large scale simulations and simple scaling laws

    Full text link
    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.Comment: 2 figures + Supporting Materia

    Breakdown of disordered media by surface loads

    Full text link
    We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the shear modulus, G, as a function of the order parameter, \phi, describing the state of damage, and also the ``spalled'' material (burst) size distribution. In particular, we evaluate the relation between the damage parameter and the applied force and explore the behaviour in the vicinity of material breakdown. Using this simple model for material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase transition. The scaling behaviour of G with \phi is explored analytically and numerically, close to \phi=0 and \phi=1 and in the vicinity of \phi_c, when the shear load is close but below the threshold force that causes material breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.Comment: 15 pages, 7 figure

    Global Alfven Eigenmodes in the H-1 heliac

    Get PDF
    Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heating power. At low power (<50 kW) modes with beta-induced Alfven eigenmode (BAE) frequency scaling are observed. At higher power modes consistent with an analysis of nonconventional Global Alfven Eigenmodes (GAEs) are observed, the subject of this work. We have computed the mode continuum, and identified GAE structures using the ideal MHD solver CKA and the gyrokinetic code EUTERPE. An analytic model for ICRH-heated minority ions is used to estimate the fast ion temperature from the hydrogen species. Linear growth rate scans using a local flux surface stability calculation, LGRO, are performed. These studies demonstrate growth from circulating particles whose speed is significantly less than the Alfven speed, and are resonant with the mode through harmonics of the Fourier decomposition of the strongly-shaped heliac magnetic field. They reveal drive is possible with a small, hot energetic tail of the hydrogen species. Local linear growth rate scans are also complemented with global calculations from CKA and EUTERPE. These qualitatively confirm the findings from the LGRO study, and show that the inclusion of finite Larmor radius effects can reduce the growth rate by a factor of three, but do not affect marginal stability. Finally, a study of damping of the global mode with the thermal plasma is conducted, computing continuum, and the damping arising from parallel electric fields. We find that continuum damping is of order 0.1% for the configuration studied. The inclusion of resistivity lifts the damping to 19%. Such large damping is consistent with experimental observations that in absence of drive the mode decays rapidly (~0.1 ms).Comment: 18 pages, 15 figures, submitted 07/04/2017 to Plasma Physics and Controlled Fusio

    Ecologically and geologically relevant isotope signatures of C, N, and S: okenone producing purple sulfur bacteria part I

    Get PDF
    Purple sulfur bacteria (PSB) are known to couple the carbon, nitrogen, and sulfur cycling in euxinic environments. This is the first study with multiple strains and species of okenone-producing PSB to examine the carbon (C), nitrogen (N), and sulfur (S) metabolisms and isotopic signatures in controlled laboratory conditions, investigating what isotopic fractionations might be recorded in modern environments and the geologic record. PSB play an integral role in the ecology of euxinic environments and produce the unique molecular fossil okenane, derived from the diagenetic alteration of the carotenoid pigment okenone. Cultures of Marichromatium purpuratum 1591 (Mpurp1591) were observed to have carbon isotope fractionations (13_Īµ_biomass ā€“ CO_2), via RuBisCO, ranging from āˆ’16.1 to āˆ’23.2ā€° during exponential and stationary phases of growth. Cultures of Thiocapsa marina 5653 (Tmar5653) and Mpurp1591 had a nitrogen isotope fractionation (15_Īµ_biomass ā€“ NH4) of āˆ’15ā€°, via glutamate dehydrogenase, measured and recorded for the first time in PSB. The Ī“^(34)S_VCDT values and amount of stored elemental sulfur for Mpurp1591 cells grown autotrophically and photoheterotrophically were dependent upon their carbon metabolic pathways. We show that PSB may contribute to the isotopic enrichments observed in modern and ancient anoxic basins. In a photoheterotrophic culture of Mpurp1591 that switched to autotrophy once the organic substrate was consumed, there were bulk biomass Ī“13C values that span a broader range than recorded across the Late Devonian, Permianā€“Triassic, Triassicā€“Jurassic, and OAE2 mass extinction boundaries. This finding stresses the complexities in interpreting and assigning Ī“13C values to bulk organic matter preserved in the geologic record

    Frictional sliding without geometrical reflection symmetry

    Get PDF
    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of macroscopically identical materials, but lack geometrical reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the title, extended analysis in the second par
    • ā€¦
    corecore