6 research outputs found

    Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors

    Get PDF
    Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p

    Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors

    Get PDF
    Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p

    Epithelioid hemangioendothelioma, an ultra-rare cancer : a consensus paper from the community of experts

    Get PDF
    Epithelioid hemangioendothelioma (EHE) is an ultra-rare, translocated, vascular sarcoma. EHE clinical behavior is variable, ranging from that of a low-grade malignancy to that of a high-grade sarcoma and it is marked by a high propensity for systemic involvement. No active systemic agents are currently approved specifically for EHE, which is typically refractory to the antitumor drugs used in sarcomas. The degree of uncertainty in selecting the most appropriate therapy for EHE patients and the lack of guidelines on the clinical management of the disease make the adoption of new treatments inconsistent across the world, resulting in suboptimal outcomes for many EHE patients. To address the shortcoming, a global consensus meeting was organized in December 2020 under the umbrella of the European Society for Medical Oncology (ESMO) involving >80 experts from several disciplines from Europe, North America and Asia, together with a patient representative from the EHE Group, a global, disease-specific patient advocacy group, and Sarcoma Patient EuroNet (SPAEN). The meeting was aimed at defining, by consensus, evidence-based best practices for the optimal approach to primary and metastatic EHE. The consensus achieved during that meeting is the subject of the present publication
    corecore