495 research outputs found

    A note on drastic product logic

    Full text link
    The drastic product ∗D*_D is known to be the smallest tt-norm, since x∗Dy=0x *_D y = 0 whenever x,y<1x, y < 1. This tt-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product tt-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called S3MTL{\rm S}_{3}{\rm MTL} in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the Δ\Delta projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.Comment: 11 pages, 3 figure

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    A Streamline-Upwind Petrov-Galerkin Finite Element Scheme for Non-Ionized Hypersonic Flows in Thermochemical Nonequilibrium

    Get PDF
    Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort

    A Qualitative Methodology for Studying Parent–Child Argumentation

    Get PDF
    This chapter provides a detailed exposĂ© of the research methodology on which the investigation of parent–child argumentation during mealtime is based. In the first part, the conceptual tools adopted for the analysis of argumentative discussions between parents and children, i.e., the pragma-dialectical ideal model of a critical discussion and the Argumentum Model of Topics, are presented. Subsequently, the process of data gathering and the procedures for the transcription of oral data are discussed. Finally, in the last part of the chapter, ethical issues and practical problems in collecting parent–child mealtime conversations present throughout the study are considered

    Introduction

    Get PDF
    Why do parent\u2013child argumentative interactions matter? What is the reason for such an interest? This chapter provides the reasons that motivated the study of parent\u2013child argumentation with the aim to understand the function of this type of interactions. Focusing on the activity of family mealtime, in the first part, the chapter draws attention to the distinctive features of parent\u2013child conversations. A second section of the chapter is devoted to discussing whether and, eventually, when children have the competence to construct arguments and engage in argumentative discussions with the aim to convince their parents to change opinion. In the last part of the chapter, research questions and structure of the volume are presented

    Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon

    Get PDF
    The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility

    An Analysis of Electronically Monitored Adherence to Antiretroviral Medications

    Get PDF
    Medication adherence studies increasingly collect data electronically, often using Medication Event Monitoring System (MEMS) caps. Analyses typically focus on summary adherence measures, although more complete analyses are possible using adaptive statistical methods. These methods were used to describe individual-subject adherence patterns for MEMS data from a clinical trial. Subjects were adaptively clustered into groups with similar adherence patterns and clusters were compared on a variety of subject characteristics. There were seven different adherence clusters: consistently high, consistently moderately high, consistently moderate, consistently moderately low, consistently low, deteriorating starting early, and deteriorating late. Compared to other subjects, subjects with consistently high and consistently moderately high adherence were more likely to be male, White, and older and to maintain during study participation a CD4 cell count over 500 and an HIV viral load of at most 400 copies/ml. These results demonstrate the effectiveness of adaptive methods for comprehensive analysis of MEMS data

    Scalability of Incompressible Flow Computations on Multi-GPU Clusters Using Dual-Level and Tri-Level Parallelism

    Get PDF
    High performance computing using graphics processing units (GPUs) is gaining popularity in the scientific computing field, with many large compute clusters being augmented with multiple GPUs in each node. We investigate hybrid tri-level (MPI-OpenMP-CUDA) parallel implementations to explore the efficiency and scalability of incompressible flow computations on GPU clusters up to 128 GPUS. This work details some of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain parallelism using OpenMP for intra-node and MPI for inter-node communication. Comparisons between the tri-level MPI-OpenMP-CUDA and dual-level MPI-CUDA implementations are shown using computationally large computational fluid dynamics (CFD) simulations. Our results demonstrate that a tri-level parallel implementation does not provide a significant advantage in performance over the dual-level implementation, however further research is needed to justify our conclusion for a cluster with a high GPU per node density or when using software that can utilize OpenMP’s fine-grain parallelism more effectively
    • 

    corecore