170 research outputs found
Uncovering Roots of Systemic Oppression Within Law Enforcement: A Qualitative Study Exploring Why Police Officers Discriminate Against The Black Community
“Uncovering roots of systemic oppression within law enforcement: A qualitative study exploring why police officers discriminate against the Black community.” Rationale for this study is to uncover behavior and psychological reasons to uncover why police discriminate and oppress the Black community with little consequences for their actions. The dominant explanation for this trend uncovers previous research addressing oppression and the structure of institutions such as law enforcement that have relied heavily on past policies and tactics protecting an institution in the United States that has rarely been challenged. Recent riots and civil unrest against law enforcement institutions and dominant laws in society have prompted new research into the nature and behavior of policing in Black communities. Data used in this research project comes from personal accounts of police officer witnessing brutality and oppression in the Black communities they patrol. Former and current police officers have given first-hand accounts and personal experiences of systemic oppression that range from their childhood to the present day.
Contrary to what has often been assumed, modernity is in full force in a nation that has been founded on White supremacy and institutional dehumanization of the American Black race. My findings indicate that the rise of oppression suggests that it is usually the oppressed who must organize to force large-scale changes in systems of oppression. This means that all Americans who support racial justice and equality must organize aggressively and effectively to bring change in White racist thinking and practice, including change in the institutionalized feature of U.S. racism. This is by no means an easy task, for the systemic reality of racism and oppression means that it is deeply entrenched in society. Attacking it will take a huge effort by many people of all backgrounds
Filling the Gap of DataLimited Fish Species in the Eastern Mediterranean Sea: A Contribution by Citizen Science
: The biodiversity of the Mediterranean Sea is rapidly changing due to anthropogenic activity and the recent increase of seawater temperature. Citizen science is escalating as an important contributor in the inventory of rare and datalimited species. In this study, we present several records of five datalimited native fish species from the eastern Mediterranean Sea: Alectis alexandrina (Geoffroy SaintHilaire, 1817), Ranzania laevis (Pennant, 1776), Dalatias licha (Bonnaterre, 1788), Lophotus lacepede (Giorna, 1809), and Sudis hyalina (Rafinesque, 1810). All of the records were collected by a participatory process involving fishers and validated by associated taxonomic experts of the citizen science programme “Is it Alien to you? Share it!!!”. This study fills an important gap for the distribution of the reported species and signifies the important role of citizen participation as a tool for extending marine biodiversity knowledge and fisheries management in an area with several gaps of knowledge on targeted and nontargeted species.</jats:p
Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe3O4 Dual-Modality Contrast Agent in Peripheral Human Blood
The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood
In vivo biodistribution of edelfosine-loaded lipid nanoparticles radiolabeled with Technetium-99 m: Comparison of administration routes in mice
Edelfosine (ET) is a potent antitumor agent but causes severe side effects that have limited its use in clinical
practice. For this reason, nanoencapsulation in lipid nanoparticles (LNs) is advantageous as it protects from ET
side-effects. Interestingly, previous studies showed the efficacy of LNs containing ET in various types of tumor. In
this paper, biodistribution studies of nanoencapsulated ET, administered by three routes (oral, intravenous (IV)
and intraperitoneal (IP)), were tested in order to select the optimal route of administration. To do this, ET-LNs
were labeled with Technetium-99 m (99mTc) and administered by the oral, IV and IP route in mice. IV admin-
istration of the radiolabeled LNs led to fast elimination from the blood circulation and increased accumulation in
reticulo-endothelial (RES) organs, while their oral administration could not provide any evidence on their bio-
distribution since large radiocomplexes were formed in the presence of gastrointestinal fluids. However, when
the LNs were administered by the IP route they could access the systemic circulation and provided more constant
blood ET-LN levels compared to the IV route. These findings suggest that the IP route can be used to sustain the
level of drug in the blood and avoid accumulation in RES organs
Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this wor
99mTc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models
The combination of two imaging modalities in a single agent has received increasing attention during the last few years, since its synergistic action guarantees both accurate and timely diagnosis. For this reason, dual-modality contrast agents (DMCAs), such as radiolabeled iron oxide (namely Fe3O4) nanoparticles, constitute a powerful tool in diagnostic applications. In this respect, here we focus on the synthesis of a potential single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) DMCA, which consists of Fe3O4 nanoparticles, surface functionalized with 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) and radiolabeled with 99mTc, [99mTc]Tc-DPD-Fe3O4. The in vitro stability results showed that this DMCA is highly stable after 24 h of incubation in phosphate buffer saline (~92.3% intact), while it is adequately stable after 24 h of incubation with human serum (~67.3% intact). Subsequently, [99mTc]Tc-DPD-Fe3O4 DMCA was evaluated in vivo in mice models through standard biodistribution studies, MR imaging and gamma-camera imaging. All techniques provided consistent results, clearly evidencing noticeable liver uptake. Our work documents that [99mTc]Tc-DPD-Fe3O4 has all the necessary characteristics to be a potential DMCA
Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer
IntroductionProstate cancer (PCa) is the second most frequent cancer diagnosis in men and the fifth leading cause of death worldwide. Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) receptors are overexpressed in PCa. In this study, we have developed iron oxide nanoparticles (IONs) functionalized with the Prostate Specific Membrane Antigen (PSMA) and Gastrin Releasing Peptide (GRP) ligands for dual targeting of Prostate cancer.MethodsIONs were developed with a thin silica layer on their surface with MPTES (carrying -SH groups, IONs-SH), and they were coupled either with a pharmacophore targeting PSMA (IONs-PSMA) or with bombesin peptide (IONs-BN), targeting GRP receptors, or with both (IONs-PSMA/BN). The functionalized IONs were characterized for their size, zeta potential, and efficiency of functionalization using dynamic light scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FT-IR). All the aforementioned types of IONs were radiolabeled directly with Technetium-99m (99mTc) and evaluated for their radiolabeling efficiency, stability, and binding ability on two different PCa cell lines (PC3 and LNCaP).Results and DiscussionThe MTT assay demonstrated low toxicity of the IONs against PC3 and LNCaP cells, while the performed wound-healing assay further proved that these nanostructures did not affect cellular growth mechanisms. The observed hemolysis ratio after co-incubation with red blood cells was extremely low. Furthermore, the 99mTc-radiolabeled IONs showed good stability in human serum, DTPA, and histidine, and high specific binding rates in cancer cells, supporting their future utilization as potential diagnostic tools for PCa with Single Photon Emission Computed Tomography (SPECT) imaging
Chelator-free/chelator-mediated radiolabeling of colloidally stabilized iron oxide nanoparticles for biomedical imaging
The aim of this study was to develop a bioimaging probe based on magnetic iron oxide nanoparticles (MIONs) surface functionalized with the copolymer (p(MAA-g-EGMA)), which were radiolabeled with the positron emitter Gallium-68. The synthesis of the hybrid MIONs was realized by hydrolytic condensation of a single ferrous precursor in the presence of the copolymer. The synthesized MagP MIONs displayed an average D-h of 87 nm, suitable for passive targeting of cancerous tissues through the enhanced permeation and retention (EPR) effect after intravenous administration, while their particularly high magnetic content ascribes strong magnetic properties to the colloids. Two different approaches were explored to develop MIONs radiolabeled with Ga-68: the chelator-mediated approach, where the chelating agent NODAGA-NHS was conjugated onto the MIONs (MagP-NODAGA) to form a chelate complex with Ga-68, and the chelator-free approach, where Ga-68 was directly incorporated onto the MIONs (MagP). Both groups of NPs showed highly efficient radiolabeling with Ga-68, forming constructs which were stable with time, and in the presence of PBS and human serum. Ex vivo biodistribution studies of [Ga-68]Ga- MIONs showed high accumulation in the mononuclear phagocyte system (MPS) organs and satisfactory blood retention with time. In vivo PET imaging with [Ga-68]Ga-MagP MIONs was in accordance with the ex vivo biodistribution results. Finally, the MIONs showed low toxicity against 4T1 breast cancer cells. These detailed studies established that [Ga-68]Ga- MIONs exhibit potential for application as tracers for early cancer detection.Web of Science117art. no. 167
Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study
The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity ( GT 91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68 Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging
- …