411 research outputs found

    PVD Coatings’ Strength Properties at Various Temperatures by Nanoindentations and FEM Calculations Determined

    Get PDF
    Nanoindentation is usually applied on thin films at ambient temperatures for hardness determination. Recently, instruments for conducting nanoindentation at elevated temperatures have been developed facilitating measurements up to 700 oC. Both indenter and specimen, if necessary, are heated in an inert atmosphere to avoid film oxidations. In the described investigations, nanoindentations were conducted on cemented carbides and high speed steel specimens, coated with various films, up to 400 oC. The obtained results were subjected to statistical analysis to estimate their reliability. Moreover, the results were evaluated by appropriate FEM (Finite Element Method) algorithms for determining the coatings’ elasticity modulus, yield and rupture stress as well as hardness at various temperatures. The results reveal a non-linear temperature dependence of the coating properties

    Position Tracking for Passive UHF RFID Tags with the Aid of a Scanned Array

    Get PDF
    Thanks to the proliferation of radio frequency identification systems (RFID), applications have emerged concerning positioning techniques for inexpensive passive RFID tags. The most accurate approaches for tracking the tag's position, deliver precision in the order of 20 cm over a range of a few meters and require moving parts in a predefined pattern (mechanical antenna steering), which limits their application. Herein, we introduce an RFID tag positioning system that utilizes an active electronically-steered array, based on the principles of modern radar systems. We thoroughly examine and present the main attributes of the system with the aid of an finite element method simulation model and investigate the system performance with far-field tests. The demonstrated positioning precision of 1.5, which translates to under 1 cm laterally for a range of a few meters can be helpful in applications like mobile robot localization and the automated handling of packaged goods.DF

    Optimal Design of a Cam Mechanism with Translating Flat-Face Follower using Genetic Algorithm

    Get PDF
    The optimum design of a cam mechanism is a time consuming task, due to the numerous alternatives considerations. In the present work, the problem of design parameters optimization of a cam mechanism with translating flat - face follower is investigated from a multi - objective point of view. The design parameters, just like the cam base circle radius, the follower face width and the follower offset can be determined considering as the optimization criteria minimization of the cam size, of the input torque and of the contact stress. During the optimization procedure, a number of constraints regarding the pressure angle, the contact stress, etcare taken into account. The optimization approach, based on genetic algorithm, is applied to find the optimal solutions with respect to the a fore - mentioned objective function and to Ensure the kinematic requirements. Finally, the dynamic behavior of the designed cam mechanism is investigated considering the frictional forces

    Краткий обзор балансирующих устройств активного типа

    Get PDF
    Balancing active type scheme was shown. Self-balancing device's classification was reported. Keynotes were explored of each mechanism. Mechanism's developing was trained to moving time

    Design of the tool for periodic not evolvent profiles

    Full text link
    The new approach to profiling of the tool for processing of parts with periodic not evolvent profiles are considered in the article The discriminatory analysis of periodic profiles including repetition of profile both in the plane of perpendicular axis of part, and in the plane of passing along part of axis is offered. In the basis of the offered profiling method the idea of space shaping by rated surface of product of tool surface lies. The big advantage of the offered approach in profiling is its combination with the analysis of parameters of process of engineering work. It allows to predict the accuracy and surface quality of product with not evolvent periodic profile. While using the offered approach the pinion cutter for processing of wheels with internal triangular teeths and mill for processing of the screw of the counter of consumption of liquid, complex profile of which consists of several formings, have been receive

    Применение сверточной нейронной сети U-Net для сегментации текстовых областей на изображениях реальных сцен

    Get PDF
    Micro-blasting on PVD films has been documented, among others, as an efficient method for inducing compressive stresses, thus for increasing the coating hardness and potentially tool life of coated tools. Since contradictory results have been registered concerning the efficiency of wet micro-blasting on coated tools for improving the wear behaviour, the paper aims at explaining how this process can be successfully applied for post-treatment of PVD films. In this context, the employed conditions such as pressure and grain size affect significantly the wear resistance of the micro-blasted coated tools.In the described investigations, TiAlN coatings were post-treated through wet micro-blasting by Al2O3 abrasives of various grains' diameter. Abrasion mechanisms after micro-blasting were investigated by roughness measurements. Nanoindentations on micro-blasted film surfaces at various pressures revealed the influence of this process on coating superficial hardness. The relat ed residual stress changes were estimated considering the film yield stress alterations, which were analytically determined, based on nanoindentation results. Nano-impact tests were conducted for investigating the effect of the developed film compressive stresses at certain micro-blasting pressures and grain sizes on the film's brittleness. To monitor film thickness and cutting edge radius changes of coatings subjected to micro-blasting, ball cratering tests and white light scans were carried out respectively. In this way, micro-blasting conditions for improving the film hardness, without revealing the substrate in the cutting edge region, were detected. Finally, the wear behaviour of coated and variously wet micro-blasted tools was investigated in milling of hardened steel

    Compact, precision duplex bearing mount for high vibration environments

    Get PDF
    A duplex bearing mount including at least one duplex bearing having an inner race and an outer race, the inner race disposed within the outer race and being rotatable relative to the outer race about an axis, the inner race having substantially no relative movement relative to the outer race in at least one direction along the axis, the inner and outer races each having first and second axial faces which are respectively located at the same axial end of the duplex bearing. The duplex bearing is radially supported by a housing, and a shaft extends through the inner race, the shaft radially and axially supported by the inner race. A first retainer is connected to the housing and engages the first axial surface of a bearing race, the movement of which race in a first direction along the axis being constrained by the first retainer. A second, resilient retainer is connected to the housing or the shaft and is deflected through engagement with the second axial face of a bearing race, the movement of which race in a second direction along the axis, opposite to the first direction, being constrained by the deflected second retainer. The bearing is preloaded by its being clamped between the first and second retainers, and the second retainer forms at least a portion of a spring having the characteristic of a substantially constant force value correlating to a range of various deflection values, whereby the preload of the bearing is substantially unaffected by variations in the deflection of the second retainer

    Равновесие и динамика адсорбции паров воды на металлорганическом каркасе MOF-801

    Get PDF
    В работе представлены результаты исследования равновесия и динамики адсорбции паров воды на металлоорганическом каркасе MOF-801 с целью оценки потенциала его применения в системах адсорбционного охлаждения. Показано, что адсорбция воды на MOF-801 характеризуется S-образными изобарами IV типа по классификации ИЮПАК. В условиях типичного рабочего цикла адсорбционного холодильника (АХ) MOF-801 обменивает 0,21 г/г и может быть регенерирован при 80-85°С, что позволяет использовать источники низкотемпературной теплоты (солнечная энергия). Динамика адсорбции на гранулах MOF-801 в условиях рабочего цикла АХ происходит в режиме, при котором скорость процесса определяется отношением S/m площади поверхности теплопереноса S к массе адсорбента m. Эффективность и удельная мощность АХ с использованием пары "MOF-801-вода" достигают 0,67 и 2 кВт/кг соответственно, что представляет большой практический интерес

    Разработка алгоритма для выполнения операции обратного проецирования

    Get PDF
    High Power Pulsed Magnetron Sputtering (HPPMS) techniques jointly with the deposition of a graded Cr/CrN-nanointerlayer on cutting inserts can increase the film adhesion and consequently the tool life. These improvements depend on the roughness of the employed cemented carbide substrates. The investigations described in the present paper intend to explain the effect of Cr/CrN-interlayer thickness and substrate roughness on the coating adhesion and cutting performance. To attain various roughnesses, the applied cemented carbide inserts were superficially treated. These treatments were grinding at a medium roughness level, or grinding with subsequent polishing for enhancing the surface integrity and finally, in all cases, micro-blasting by fine Al2O3 grains. After Ar-ion etching, graded Cr/CrN adhesive layers with different thicknesses were deposited by HPPMS technology on the variously pretreated substrates. Subsequently, an approximately 3m thick (Ti,Al)N film was depos ited by HPPMS PVD on all used inserts. Rockwell C indentations and inclined impact tests were performed to assess qualitatively and quantitatively the films' adhesion. The cutting performance of the coated tools was investigated in milling of 42CrMo4 QT. FEM supported calculations of the developed stresses during the material removal process contributed in explaining the obtained tool wear results. In these calculations, the adhesion, dependent on the substrate roughness characteristics and on the adhesive interlayer thickness, was taken into account. The results revealed that the effectiveness of HPPMS adhesive graded Cr/CrN-nanointerlayer strongly depends on the substrate surface integrity and on the interlayer thickness. Thus, the film adhesion and consequently the cutting performance can be significantly improved if the interlayer thickness is adapted to the substrate roughness
    corecore