8 research outputs found

    Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization

    No full text
    Item does not contain fulltex

    Effect of immune regulatory pathways after immunization with GMZ2 malaria vaccine candidate in healthy lifelong malaria-exposed adults

    No full text
    BACKGROUND: Despite appreciable immunogenicity in malaria-naive populations, many candidate malaria vaccines are considerably less immunogenic in malaria-exposed populations. This could reflect induction of immune regulatory mechanisms involving Human Leukocyte Antigen G (HLA-G), regulatory T (Treg), and regulatory B (Breg) cells. Here, we addressed the question whether there is correlation between these immune regulatory pathways and both plasmablast frequencies and vaccine-specific IgG concentrations. METHODS: Fifty Gabonese adults with lifelong exposure to Plasmodium spp were randomized to receive three doses of either 30μg or 100μg GMZ2-CAF01, or 100μg GMZ2-alum, or control vaccine (rabies vaccine) at 4-week intervals. Only plasma and peripheral blood mononuclear cells isolated from blood samples collected before (D0) and 28 days after the third vaccination (D84) of 35 participants were used to measure sHLA-G levels and anti-GMZ2 IgG concentrations, and to quantify Treg, Breg and plasmablast cells. Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites (PfSPZ Challenge). RESULTS: The sHLA-G concentration increased from D0 to D84 in all GMZ2 vaccinated participants and in the control group, whereas Treg frequencies increased only in those receiving 30μg or 100μg GMZ2-CAF01. The sHLA-G level on D84 was associated with a decrease of the anti-GMZ2 IgG concentration, whereas Treg frequencies on D0 or on D84, and Breg frequency on D84 were associated with lower plasmablast frequencies. Importantly, having a D84:D0 ratio of sHLA-G above the median was associated with an increased risk of P. falciparum infection after sporozoites injection. CONCLUSION: Regulatory immune responses are induced following immunization. Stronger sHLA-G and Treg immune responses may suppress vaccine induced immune responses, and the magnitude of the sHLA-G response increased the risk of Plasmodium falciparum infection after CHMI. These findings could have implications for the design and testing of malaria vaccine candidates in semi-immune individuals

    Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization

    No full text
    Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity

    Exploratory analysis of the effect of helminth infection on the immunogenicity and efficacy of the asexual blood-stage malaria vaccine candidate GMZ2.

    No full text
    BackgroundHelminths can modulate the host immune response to Plasmodium falciparum and can therefore affect the risk of clinical malaria. We assessed here the effect of helminth infections on both the immunogenicity and efficacy of the GMZ2 malaria vaccine candidate, a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of P. falciparum. Controlled human malaria infection (CHMI) was used to assess the efficacy of the vaccine.MethodologyIn a randomized, double-blind Phase I clinical trial, fifty, healthy, lifelong malaria-exposed adult volunteers received three doses of GMZ2 adjuvanted with either Cationic Adjuvant Formulation (CAF) 01 or Alhydrogel, or a control vaccine (Rabies) on days (D) 0, D28 and D56, followed by direct venous inoculation (DVI) of 3,200 P. falciparum sporozoites (PfSPZ Challenge) approximately 13 weeks after last vaccination to assess vaccine efficacy. Participants were followed-up on a daily basis with clinical examinations and thick blood smears to monitor P. falciparum parasitemia for 35 days. Malaria was defined as the presence of P. falciparum parasites in the blood associated with at least one symptom that can be associated to malaria over 35 days following DVI of PfSPZ Challenge. Soil-transmitted helminth (STH) infection was assessed by microscopy and by polymerase chain reaction (PCR) on stool, and Schistosoma infection was assessed by microscopy on urine. Participants were considered as infected if positive for any helminth either by PCR and/or microscopy at D0 and/or at D84 (Helm+) and were classified as mono-infection or co-infection. Total vaccine-specific IgG concentrations assessed on D84 were analysed as immunogenicity outcome.Main findingsThe helminth in mono-infection, particularly Schistosoma haematobium and STH were significantly associated with earlier malaria episodes following CHMI, while no association was found in case of coinfection. In further analyses, the anti-GMZ2 IgG concentration on D84 was significantly higher in the S. haematobium-infected and significantly lower in the Strongyloides stercoralis-infected groups, compared to helminth-negative volunteers. Interesting, in the absence of helminth infection, a high anti-GMZ2 IgG concentration on D84 was significantly associated with protection against malaria.ConclusionsOur results suggest that helminth infection may reduce naturally acquired and vaccine-induced protection against malaria. Vaccine-specific antibody concentrations on D84 may be associated with protection in participants with no helminth infection. These results suggest that helminth infection affect malaria vaccine immunogenicity and efficacy in helminth endemic countries
    corecore