1,605 research outputs found

    Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates

    Get PDF
    Both thermal stability and electrical conductivity of alkali ion conducting Na2CO3 and Na2SO4, were improved by adding alkaline earth carbonates and sulfates, respectively, as well as insulating materials like ¿-Al2O3. The admixing of divalent compounds causes two effects. First a more or less extended solution can exist depending on the radius of the alkaline earth ion and is accompanied by an increase in electrical conductivity. Secondly, a phase mixture with an excess of dopant was observed that shows an enhancement in conductivity and mechanical stability. This phenomenon known as composite effect was observed in the following systems: Na2CO3-BaCO3, Na2CO3-SrCO3, Na2SO4-BaSO4, Na2SO4-¿-Al2O3

    Latent variable modeling of cognitive processes in transitive reasoning

    Get PDF

    Generation of field mediated three qubit entangled state shared by Alice and Bob

    Full text link
    A scheme to generate shared tripartite entangled states, with two-trapped atoms in a cavity held by Alice (qubits A1 and A2) entangled to a single trapped atom in a remote lab owned by Bob (B), is proposed. The entanglement is generated through interaction of trapped atoms with two mode squeezed light shared by the two cavities. The proposed scheme is an extension of the proposal of ref. [W. Son, M. S. Kim, J. Lee, and D. Ahn, J. Mod. Opt. 49, 1739 (2002)], where the possibility of entangling two remote qubits using a bipartite continuous variable state was examined. While the global negativity detects the free entanglement of the three atom mixed state, the bound entanglement is detected by the negativity calculated from pure state decomposition of the state operator. The partial negativities calculated by selective partial transposition of the three atom mixed state detect the pairwise entanglement of qubit pairs A1B, A2B, and A1A2. The entanglement of three atoms is found to be W-like, no GHZ like quantum correlations being generated.Comment: 14 pages, 06 figures, section IV revised, Other minor changes to improve readabilit

    Quantum random walk of two photons in separable and entangled state

    Full text link
    We discuss quantum random walk of two photons using linear optical elements. We analyze the quantum random walk using photons in a variety of quantum states including entangled states. We find that for photons initially in separable Fock states, the final state is entangled. For polarization entangled photons produced by type II downconverter, we calculate the joint probability of detecting two photons at a given site. We show the remarkable dependence of the two photon detection probability on the quantum nature of the state. In order to understand the quantum random walk, we present exact analytical results for small number of steps like five. We present in details numerical results for a number of cases and supplement the numerical results with asymptotic analytical results

    Multiphoton path entanglement by non-local bunching

    Full text link
    Multiphoton path entanglement is created without applying post-selection, by manipulating the state of stimulated parametric down-conversion. A specific measurement on one of the two output spatial modes leads to the non-local bunching of the photons of the other mode, forming the desired multiphoton path entangled state. We present experimental results for the case of a heralded two-photon path entangled state and show how to extend this scheme to higher photon numbers.Comment: 4 pages, 5 figures, published versio

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve

    Quantum filter for non-local polarization properties of photonic qubits

    Get PDF
    We present an optical filter that transmits photon pairs only if they share the same horizontal or vertical polarization, without decreasing the quantum coherence between these two possibilities. Various applications for entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources adde

    Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity

    Full text link
    Detailed properties of resonance fluorescence from a single quantum dot in a micropillar cavity are investigated, with particular focus on emission coherence in dependence on optical driving field power and detuning. Power-dependent series over a wide range could trace characteristic Mollow triplet spectra with large Rabi splittings of Ω15|\Omega| \leq 15 GHz. In particular, the effect of dephasing in terms of systematic spectral broadening Ω2\propto \Omega^2 of the Mollow sidebands is observed as a strong fingerprint of excitation-induced dephasing. Our results are in excellent agreement with predictions of a recently presented model on phonon-dressed QD Mollow triplet emission in the cavity-QED regime
    corecore