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Latent Class Modeling of Phases in the
Development of Transitive Reasoning

Samantha Bouwmeester
Erasmus University, Rotterdam, The Netherlands

Klaas Sijtsma
Tilburg University, Tilburg, The Netherlands

Fuzzy trace theory posits that during development the use of verbatim information

for solving transitive relationships shifts to the use of gist information. In cognitive

developmental research that uses a cross-sectional design, the binomial mixture

model is often used to identify such shifts. Because the binomial mixture model

assumes equal task difficulty and uses the number of correctly solved tasks for

data analysis, it may be too restrictive and the more flexible latent class model

is adopted as an alternative. This model allows varying task difficulty and uses

the pattern of task scores as input for data analysis. The binomial mixture model

and the latent class model are compared theoretically, and applied to transitive

reasoning test data obtained from a cross-sectional sample of 615 children. The

latent class model is found to be more appropriate for identifying multiple phases.

Three phases are distinguished which can be interpreted well by means of fuzzy

trace theory. These phases do not encompass fixed age periods.

INTRODUCTION

Since Piaget formulated his developmental stage theory, the study of discon-

tinuity in cognitive development has become important in psychological and

methodological studies. More recently, influenced by catastrophe theory (Thom

& Fowler, 1975), discontinuity has been called phase transition, a terminology

adopted here and explained in more detail in the next section. Phase transition
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for Psychology, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands. E-mail:

bouwmeester@fsw.eur.nl
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458 BOUWMEESTER AND SIJTSMA

has been studied by many researchers under this or different names for several

cognitive developmental abilities (Brainerd, 1978, 1993; Dolan, Jansen, & Van

der Maas, 2004; Flavell, 1970; Formann, 2003; Hosenfeld, Van der Maas, &

Van den Boom, 1997; Jansen & Van der Maas, 1997, 2001; Thomas, 1989;

Thomas & Lohaus, 1993; Thomas, Lohaus, & Kessler, 1999; Van Geert, 1998).

This study focused on the detection of phases in the development of transitive

reasoning ability. An individual is capable of transitive reasoning if (s)he is able

to infer an ordinal relationship between two objects from other ordinal rela-

tionships in which these objects are involved. For example, if one knows that

stick A is longer than stick B, and that B is longer than C, the correct inference

that A is longer than C gives evidence of transitive reasoning ability.

In cognitive developmental psychology, phase transition is manifest in two

or more states. There are two definitions of such states, in cross-sectional de-

signs often called modes. First, Piaget defined a state as a general cognitive

structure or a developmental stage (e.g., Chapman, 1988; Flavell, 1985; Piaget,

1947). He distinguished different phases in cognitive development by assuming

that knowledge acquisition develops via cognitive structures which differ quali-

tatively (e.g., Case, 1992; Flavell, 1963). The transition of a cognitive structure

into a different cognitive structure is an intuitively appealing example of what

we would call phase transition in the development of knowledge. However, it

has been found difficult, or even impossible, to translate such general, abstract

cognitive structures into an empirical setting and investigate them systematically

(e.g., Brainerd, 1978; Flavell, 1970, 1985).

Second, other researchers defined a phase as a specific rule or strategy, which

is part of a particular ability. In this context, Flavell (in Brainerd, 1978) advised

“to give up on grand and sweeping developmental periods that try to find a

single, uniform ‘deep structure’ description of the thinking the child does at a

given age”, as is typical of the Piagetian approach. Instead he encouraged the

definition of phases as rules or strategies in a particular domain or subdomain,

and to interpret the transition from one phase to a different phase as discontinuity

in the development of a specific ability. For example, Jansen and Van der Maas

(1997, see also Jansen & Van der Maas, 2001, 2002) distinguished four rules

in solving the balance scale task. In this context, each phase represents the use

of a specific rule, and subsequent modes represent increasingly better or more

adequate rules (for other examples, see Hosenfeld et al., 1997; Siegler & Chen,

2002; Thomas et al., 1999; Van der Maas & Molenaar, 1992).

Cross-Sectional Versus Longitudinal Design

Before we discuss phase transition in development of transitive reasoning, it

may be useful to say something about the abruptness (e.g., manifest as sudden
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LATENT CLASS MODELING OF PHASES 459

jumps) with which transitions from one phase to the next phase occur and, in

particular, the design necessary to investigate this abruptness.

Catastrophe theory (Thom & Fowler, 1975) offers an opportunity to model

developmental phase transition in cognitive development using longitudinal de-

signs. Development can be monitored by means of repeated measurements dur-

ing a particular time interval. Longitudinal designs (see, e.g., Van Geert, 1998)

are appropriate when the aim is to describe the transition from one phase to

a subsequent phase in much detail; then sudden jumps, if any, may become

manifest. Markov chain models (e.g., Brainerd, 1979) and catastrophe mod-

els (Van der Maas & Molenaar, 1992) have been used to study such discon-

tinuity.

Several researchers studied phases in performance on Piagetian tasks using

a cross-sectional design. For example, Thomas (1989) and Raijmakers, Jansen,

and Van der Maas (2004) studied phases in classification performance; Thomas

and Turner (1991), Thomas and Lohaus (1993), Thomas et al. (1999) and For-

mann (2003) studied phases in performance on the water-level task; Hosenfeld

et al. (1997) studied phases in analogical reasoning; and Van der Maas (1998)

and Jansen and Van der Maas (2002, 2001) studied phases in performance on

balance scale tasks. Cross-sectional designs do not provide information about

the transition from one phase to a different phase and, as a result, hypotheses

concerning this transition—for example, is it sudden or gradual?—cannot be

tested. The presence of multiple phases in data collected by means of cross-

sectional designs is seen as an indicator of transitions in development (Jansen

& Van der Maas, 2001; Van der Maas & Molenaar, 1992).

The choice of a cross-sectional design or a longitudinal design depends on the

hypotheses to be tested and the resources available. In this study a cross-sectional

design was used because our aim was to detect phases in the development of

transitive reasoning and to interpret phases by means of fuzzy trace theory, to

be explained next.

Phases in Development of Transitive Reasoning

Our approach is based on fuzzy trace theory (Brainerd & Kingma, 1984; Brain-

erd & Reyna, 2001, 2004; Reyna & Brainerd, 1995). Fuzzy trace theory predicts

that different phases may be expected in performance on transitive reasoning

tasks. According to this theory, young children tend to use verbatim informa-

tion to solve problems (i.e., they use literal observable information), while older

children tend to use gist information (i.e., they use degraded, pattern-like infor-

mation, only holding the gist). Thus, fuzzy trace theory assumes an ability for

verbatim reasoning and another ability for gist reasoning. According to fuzzy

trace theory these levels of information process in parallel.
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460 BOUWMEESTER AND SIJTSMA

Given particular levels of verbatim ability and gist ability, the theory assumes

that children use both verbatim and gist traces but with different probabilities.

These traces may be seen as kinds of strategies. For example, when children

have low gist-ability level they tend to have high probability to use verbatim

information to solve a transitive relationship. However, this is expected not

to lead to a correct inference because the verbatim information used is not

relevant for the relationships between the objects (e.g., the child has correctly

remembered the colors of the objects or that the objects were sticks and not

triangles). When children pass a threshold on the gist ability “scale” they have

higher probability to use pattern information that enables the correct inference of

a transitive relationship (e.g., they may use the strategy: “sticks become shorter

from left to right; therefore, stick A is longer than stick C”). When they reach a

high gist-ability level they have a high probability to use pattern information also

for transitive reasoning tasks in which it is difficult to recognize the ordering

in the information presented (e.g., let Y represent length; then a difficult task

format is, for example, YA D YB > YC D YD).

Bouwmeester and Sijtsma (2004) and Bouwmeester, Sijtsma, and Vermunt

(2004) showed that young children give verbal explanations of their performance

that indicate predominant use of verbatim strategies. Older children give expla-

nations indicating predominant use of gist strategies. Bouwmeester et al. (2004)

showed that task characteristics influenced the use of particular strategies more

for older than for younger children.

Thus, fuzzy trace theory predicts that during development children shift from

verbatim processing to gist processing. This shift is assumed to be reflected in the

strategies that are used predominantly to solve transitive reasoning tasks. Thus,

the shift actually is a transition from one distribution of strategies stemming from

verbatim traces—provided multiple strategies are used—to another distribution

of strategies stemming from gist traces.

At least three phases are expected in the development of transitive reasoning.

In the first, low-performance phase, children tend to solve transitive reason-

ing tasks using verbatim information, which leads to incorrect answers to all the

types of tasks used. In the second, intermediate-performance phase, children have

passed a threshold on the gist ability “scale” and tend to use pattern information.

Children in this phase are expected to correctly infer the transitive relationship

for tasks in which the ordering of the objects is obvious (e.g., YA > YB > YC ;

all three objects are presented simultaneously) but not to be able to correctly

infer relationships in tasks in which the ordering is less obvious (Brainerd &

Reyna, 1990; Verweij, 1994). Children in the high-performance phase are ex-

pected to have high probability to correctly infer the transitive relationship for

all tasks.

Following fuzzy trace theory, our approach defines a phase by means of a

particular probability distribution of using a range of available strategies. Thus,
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LATENT CLASS MODELING OF PHASES 461

children who are in a particular phase have a probability typical of that phase

of using strategy S1, another probability of using strategy S2, and so on for

other available strategies. Children who are in another phase have a different

probability distribution of using these strategies, and so on for a possible third

phase, a fourth, and so on. This study is aimed at identifying these phases

from cross-sectional data and establishing phase transition in the development

of transitive reasoning. Because this is a cross-sectional study, no information

is available on whether transitions are sudden or gradual.

Finally, unlike fuzzy trace theory, information processing theory (Bryant &

Trabasso, 1971; Riley & Trabasso, 1974; Trabasso, Riley, & Wilson, 1975)

does not assume different phases but, based on Bryant’s and Trabasso’s (1971)

linear ordering theory, hypothesizes that transitive reasoning can be explained

by the ability to remember the premise information. This ability develops as a

process of cumulative learning of stimulus-response relationships and forming

internal representations of these relationships. This process is unidimensional

and develops quantitatively without qualitatively different phases and transitions

from one phase to the other. We will also investigate this possibility as an

alternative to fuzzy trace theory.

Phases and Age

Transitive reasoning ability increases with age (Brainerd & Kingma, 1984, 1985;

Reyna, 1992; Reyna & Brainerd, 1990) but rate of development need not be the

same for each child. Also, different children may learn to use different strategies

for transitive reasoning. These observations agree with Wohlwill (1973) who

argued that chronological age is not a useful variable in statements of functional

relationships with behavior. Thus, it may be appropriate to ignore fixed-age

groups and study development by distinguishing groups on the basis of their

probabilities to use particular strategies.

DATA ANALYSIS MODELS

The Binomial Mixture Model

The presence of multiple phases—sometimes called multimodality—in cross-

sectional data is studied usually by means of the binomial mixture model

(BMM). Thomas and Turner (1991), Thomas and Lohaus (1993), Thomas et al.

(1999) and Thomas and Hettmansperger (2001) used the BMM to study phases

in performance on the water-level task. This is a task in which children have to

draw the water level in a glass which has a particular angle with a horizontal

axis. The angle varies across tasks but it is assumed that this does not affect
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462 BOUWMEESTER AND SIJTSMA

task difficulty (Thomas & Hettmansperger, 2001). Hosenfeld et al. (1997) used

the BMM to analyze phases in analogical reasoning.

Assume that a test consists of J tasks, which are either correctly (score

1) or incorrectly solved (score 0). Let random variables Xj (j D 1; : : : ; J )

represent these task scores (Xj D 0; 1), and let XC D
PJ

j D1 Xj be the number

of correctly solved tasks, also called the number-correct score. Realizations of

XC are denoted xC. Assume c classes, which are indexed u (u D 1; : : : ; c).

In the BMM context such classes are called components, but because we will

compare the BMM to the latent class model (LCM) we will use the term “class”

throughout. In each class it is assumed that tasks are solved with a constant

success probability, ™u, such that the tasks can be conceived of as J independent

trials. Hence, XC follows a binomial distribution, denoted Bin.XCjJ; ™u/, which

may be different across classes depending on ™u. The BMM assumes that the

frequency distribution of XC in the whole group consists of a mixture of c

binomial distributions. Let  u be the marginal probability of belonging to a

particular class, with
Pc

uD1  u D 1, and let ™ = .™1; : : : ; ™c/; then the c-classes

binomial mixture distribution is defined as

f .XC D xCjJ; ™/ D

c
X

uD1

 uBin.XC D xCjJ; ™u/

D

c
X

uD1

 u

 

J

xC

!

™
xC
u .1 � ™u/J �xC ;

(1)

for xC D 0; : : : ; J . Despite its frequent use for studying phases in cross-sectional

data, the BMM has some serious drawbacks.

First, Hosenfeld et al. (1997) argued that a fitting BMM does not necessarily

imply presence of multiple modes. According to these authors (ibid., p. 532), and

adopting their terminology, “the presence of bi- (or multi-) modality can only

be concluded if the model plot (i.e., the estimated overall frequency distribution

of XC; the authors) displays two clearly separable peaks.” The number-correct

scores between these two peaks have relatively low frequencies, and are therefore

assumed to give evidence of what is called an inaccessible region. According to

catastrophe theory the presence of an inaccessible region is another indicator of

phase transition (Jansen & Van der Maas, 2001).

In real-data analysis, at least three types of problems may obscure the find-

ing of peaks and gaps that result from the use of different cognitive strategies.

First, if the binomial probabilities ™u differ only little between classes the result-

ing binomial distributions overlap to a high degree and peaks nearly coincide.

Second, if a small number of tasks is used the binomial distributions show

so little detail—meaning that they are very coarse—that their peaks cannot be

distinguished unless they are far apart. Third, there is no compelling reason
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LATENT CLASS MODELING OF PHASES 463

why different cognitive strategies would always lead to different binomial dis-

tributions that are located far apart. In fact, a mixture of largely overlapping

distributions may result and the estimated overall frequency distribution does

not show clearly visible gaps or peaks (Thomas & Lohaus, 1993). Thus, tak-

ing observable peaks and gaps as evidence for phase transition may often lead

to the wrong conclusion. Alternatively, phase transition due to the use of dif-

ferent rules and strategies with different probabilities may be detected much

better.

Second, the developmental phenomenon of phase transition in itself does not

imply a particular shape of the frequency distribution of XC. Thus, a statistical

model that assumes a mix of binomial distributions may be too restrictive in

several studies of phase transition. Whether this is true for a particular ability

is an empirical question, but if the BMM is rejected as an explanatory model

other, more flexible models may be called for.

Third, the assumption of a binomial distribution for XC implies that within

a class the J tasks have the same difficulty level. Between classes these task

difficulties may vary, so that classes may be ordered by means of these diffi-

culties. This ordering is the same for each task. Equal task difficulty within a

class is known as task-homogeneity (Formann, 2001, 2003). Task-homogeneity

may be realistic for the water-level task (although this may also be questioned;

see Thomas & Hettmansperger, 2001), but unrealistic for other task types and,

again, more flexible models may be useful.

Finally, the binomial mixture distribution implicitly assumes that a particular

distribution of number-correct scores XC was produced by just one strategy. For

this reason, Thomas et al. (1999, p. 1025) noted that the BMM “will likely find

fewer strategies in the population than in fact are represented”. They argued,

however, that for reasons of parsimony this “is not necessarily an unattrac-

tive shortcoming”. However, accepting a particular “distorted” outcome of data

analysis—a possibly incomplete representation of the strategies used—only be-

cause the statistical method used cannot reveal the correct outcome seems odd.

We argue next that the assumption that a particular number-correct score was

produced by just one strategy is unrealistic in many practical situations (see also

Formann, 2003).

Number-Correct Score Versus Individual Task Scores

Several researchers who used the BMM for studying the existence of phases

in cognitive developmental abilities assume that a particular distribution of the

number-correct score XC or only the mode of this distribution corresponds to a

developmental phase (Hosenfeld et al., 1997; Lohaus & Kessler, 1996; Lohaus,

Kessler, Thomas, & Gediga, 1994; Thomas, 1989, 1994; Thomas & Lohaus,

1993; Thomas et al., 1999; Thomas & Turner, 1991). This approach focusses
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464 BOUWMEESTER AND SIJTSMA

on the number-correct score, XC, as the statistic of interest, but ignores task

scores, Xj (j D 1; : : : ; J ), as sources of information about strategy use.

It is of interest to note that the number-correct score is a summary of a pattern

of task scores, and that knowledge of XC alone cannot reconstruct the original

pattern. Let X D .X1; : : : ; XJ / be the vector of the J task score variables and let

x D .x1; : : : ; xJ / be a realization of X. For example, for J D 4 let x D .1001/

be a possible pattern of task scores, with XC D 2; then, only knowing that

XC D 2 cannot reproduce vector x. Thus, a pattern of task scores contains more

information than a summary number-correct score XC.

Other researchers focussed on the pattern in X, and assumed that the use of

a particular strategy implies a correct answer to task j with a probability that is

typical of this strategy (e.g., Bouwmeester et al., 2004; Jansen & Van der Maas,

1997, 2002; Raijmakers et al., 2004; Van Maanen, Been, & Sijtsma, 1989). For

example, the use of Strategy S1 may imply a probability of 0.9 of having task

j correct, and the use of Strategy S2 a probability of 0.2. Then for Strategy S1

a score of 1 on task j is the most likely outcome and for Strategy S2 a score

of 0. When applied to each of the J tasks, this approach implies that Strategy

S1 is characterized by a most likely vector of J task scores, and Strategy S2 by

a different most likely vector. Obviously, such distinctive features for strategy

use may be lost when the summary score XC is the unit of analysis rather than

the pattern of task scores X.

The LCM has the pattern of task scores X as the unit of analysis, and identifies

strategy groups by means of these patterns rather than the aggregate score XC.

Not only is there more relevant information about strategy use in these patterns

and their probability structure, but the LCM also allows tasks to have varying

difficulty within a class. This greater flexibility of the LCM is expected to lead

to better fit results for our transitive reasoning data.

The Latent Class Model

The LCM is a mixture model (Lazarsfeld & Henry, 1968; see also Hagenaars

& McCutcheon, 2002; McCutcheon, 1987), which allows heterogeneity in both

individual performance and task difficulty (Formann, 2003). Classes have preva-

lence or class probabilities  u (
Pc

uD1  u D 1). Each class has class-specific

probabilities, ™1ju; : : : ; ™J ju, for correctly solving the tasks. For vector X and its

realization x the LCM is defined as:

f .X D x/ D

c
X

uD1

 u

J
Y

j D1

™
xj

j ju
.1 � ™j ju/1�xj : (2)

Thus, the LCM models the J task scores in vector X whereas the BMM models

the summary number-correct score XC based on vector X. For sample size N
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LATENT CLASS MODELING OF PHASES 465

and individuals indexed i (i D 1; : : : ; N ), the likelihood L of the LCM is

L D

N
Y

iD1

f .Xi D xi/: (3)

Thus, each unique task-score pattern is seen to contribute to L.

Note that if we would restrict the LCM task-probabilities to be equal for

all J tasks, that is, for j D 1; : : : ; J , let ™j ju D ™u, then the product on the

right-hand side in Equation 2 reduces to ™
xC
u .1 � ™u/J �xC , so that

f .X D x/ D

c
X

uD1

 u™
xC
u .1 � ™u/J �xC I (4)

also see Equation (1), right-hand side. This probability only depends on number-

correct score XC, not on the pattern of task scores in X. Thus, f .X D x/ has the

same value for all patterns of task scores, X, that contain the same number of 1

scores. For given XC D xC there are
�

J

xC

�

such patterns. Take the sum of these
�

J

xC

�

patterns across both sides of Equation (4). This yields P.XC D xCjJ; ™/

on the left-hand side and
�

J

xC

�

times the probability on the right-hand side in

Equation (4). The result is the BMM; see Equation (1). Let nxC
be the number

of individuals that have a number-correct score of xC; then the likelihood L0 of

the BMM can be written

L0 D

N
Y

iD1

f .XCi D xCi jJ; ™/ D

J
Y

xCD0

nxC

c
X

uD1

 uBin.XC D xCjJ; ™u/: (5)

Note that this likelihood depends only on number-correct score XC. For actual

maximum likelihood estimation one uses the log-likelihood functions. Obviously,

the log-likelihood functions of the BMM and the LCM with equal response prob-

abilities across tasks (or replications) are equal, except for a constant that does

not depend on the model parameters. Thus, for parameter estimation it does not

matter which log-likelihood function is used: both procedures are equally stable.

When data are sparse it is an advantage of the BMM that the log-likelihood is

computed over the collapsed contingency table.

The two approaches are different with respect to goodness-of-fit testing. For

the BMM the goodness-of-fit test is usually performed on the collapsed table

(i.e., the table with totals only). This is a check whether a BMM with c classes

can reproduce the observed distribution of the total number of successes. How-

ever, this goodness-of-fit test does not evaluate whether the BMM can describe

the distribution of the full response patterns; that is, whether the simultaneous
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466 BOUWMEESTER AND SIJTSMA

assumption of c classes and homogeneous success probabilities across tasks

holds. For that we need to use the restricted LCM approach.

A problem with the LCM is that the frequency table is sparse when there

are more than a few tasks (in this research, J D 15). Because of these sparse

frequency tables the asymptotic p-values associated with the ¦2 statistics often

cannot be trusted. A safe strategy is to test models relative to other models,

and this is what has been done in this study. Conditional on the number of

latent classes, we may compare nested LCMs with an unrestricted LCM using a

likelihood-ratio test, which yields a powerful test for the BMM “homogeneous

success probabilities” assumption. Also see Dayton (1998) for a comparison of

the BMM and the LCM.

So far the LCM has not been applied often to study phases in cognitive

development (for exceptions, see Formann, 2001, 2003; Jansen & Van der Maas,

2001, 2002). The results of an LCM analysis are more difficult to interpret than

those of a BMM analysis, mainly because of the varying success probabilities

of the tasks. However, Formann (2001, 2003) studied phases in the development

of performance on the water-level task, and showed that accepting a well-fitting

BMM may be misleading without having additionally evaluated the fit of LCMs.

Information processing theory posits the development of transitive reasoning

to be a continuous process of forming internal representations and remembering

them. The Rasch model (e.g., Glas & Verhelst, 1995) was fitted to the data in

an effort to investigate this possibility. A fitting model would lend credibility

to information processing theory in the sense that a continuous latent variable

would explain much of individual differences and leave less room for discrete

latent classes to be interpreted as distinctive phases in development.

HYPOTHESES

In this study, we investigated four hypotheses. Prior to investigating these hy-

potheses, artifactual phases due to the test’s distribution of task difficulty was

ruled out as an alternative explanation for developmental phases. This was done

by evaluating whether subsets of the proportions of correct solutions for the tasks

piled up so that the distribution of task difficulties might have caused “phases”

(i.e., method bias). The four hypotheses were:

1. The LCM leads to a better explanation of phases than the BMM. We

compared BMM results with LCM results to assess how much fit was lost

when restricting the item parameters to be equal within classes. Unlike

the BMM, the LCM is able to account for the relationship between task

difficulty and strategy use, and this enhances the opportunities for a better

explanation.
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LATENT CLASS MODELING OF PHASES 467

2. The development of transitive reasoning is characterized by different

phases. Different phases are reflected by the existence of two or more

different probability distributions for strategy use. This was investigated

by fitting several LCMs to the data to determine presence of phases and

if that was found, how many phases had to be distinguished.

3. In one phase verbatim trace information is used predominantly to solve

the tasks and in another phase gist trace information is used predomi-

nantly. In this latter phase children perform well, in particular, on tasks

in which the ordering of the objects is obvious. In a third phase, children

perform well on all tasks. We derived this hypothesis from fuzzy trace the-

ory. Latent classes were interpreted by means of verbal-explanation data

to determine whether fuzzy trace theory was suited for interpreting the

phases. Alternatively, information processing theory predicts continuous

development without distinct phases. This was investigated by means of

the Rasch model.

4. Strategy groups give a clearer description of phases than age groups. We

investigated the relationship between class membership and age expressed

in months by including age as a covariate in the LCM analysis. Within

age groups individual differences are expected in performance on transi-

tive reasoning tasks, and clear-cut age periods characterized by particular

performance cannot be distinguished.

METHOD

Sample

The pooled sample consisted of 615 children from Grade 2 through Grade 6

of six elementary schools in the Netherlands. Children were from middle class

social-economic status families. Table 1 gives the number of children in six age

groups, and in each age group the mean and standard deviation of age.

Material

Transitive reasoning ability was investigated by means of a computerized test

containing 16 transitive reasoning tasks (Bouwmeester & Aalbers, 2002). A

transitive reasoning task has the following structure. First, a pair of objects, say,

sticks A and B, is shown to the child on a computer screen, and the child is

asked to indicate and memorize which one is longer. Then, the pair (B, C) is

shown and the same question is asked. Based on this “premise” information the

child is then asked to infer the relationship between sticks A and C. A correct

explanation gives evidence of transitive reasoning ability. The tasks differed on
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468 BOUWMEESTER AND SIJTSMA

TABLE 1

Number of Children (N), Mean Age (M) and

Standard Deviation (SD) per Age Group

Age Groupa N M SD

�96 73 91.78 3.06

97–108 83 103.02 3.14

109–120 126 114.45 3.31

121–132 108 126.70 3.08

133–144 116 138.70 3.01

�145 59 149.46 3.46

aNumber of months.

three task characteristics (which are are summarized in Table 2). Bouwmeester

and Sijtsma (2004) and Bouwmeester et al. (2004) (see also Verweij, Sijtsma,

& Koops, 1999) showed that in particular the task characteristics “format” and

“presentation form” influenced the task’s difficulty level. The task characteristics

had 4, 2, and 2 levels, defining 4 � 2 � 2 D 16 tasks. See Figure 1 for examples

of the tasks.

Procedure

The transitive reasoning test was an individual test administered in a quiet room

in the school building. Before a child was confronted with the actual test tasks,

the experimenter explained the different kinds of objects and relationships that

were used in the tasks. The administration of the test took approximately half

TABLE 2

Description of the Transitive Reasoning Task Characteristics

Characteristic Level Description

Format YA > YB > YC

YA D YB D YC D YD

YA > YB > YC > YD > YE

YA D YB > YC D YD

Defines the logical relationships between the

objects involved, e.g., when the relationship

is length, YA > YB > YC means that

object A is longer than object B, which is

longer than object C

Presentation

Form

Simultaneous

Successive

Determines whether all objects are presented

simultaneously or in pairs during premise

presentation

Content of

Relationship

Physical

Verbal

Determines whether the relationships can be

perceived visually, or are told in words by

the experimenter
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LATENT CLASS MODELING OF PHASES 469

FIGURE 1 Eight examples of tasks used in the transitive reasoning test.

an hour, depending on the age of the child. For more details see Bouwmeester

and Sijtsma (2004).

Task Scoring

For each task the response was automatically recorded by the computer. A verbal

explanation of the response given by the child was recorded by the experimenter.

When the child explained the transitive relationship correctly by mentioning the

premises involved or the linear ordering of the objects, the explanation was

evaluated to be correct. All other explanations were considered incorrect. Previ-

ous research (Bouwmeester & Sijtsma, 2004) showed that the correct/incorrect-

explanation scores reflected primarily transitive reasoning ability, whereas the
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470 BOUWMEESTER AND SIJTSMA

more “common” correct/incorrect scores also reflected irrelevant skills and abil-

ities. Thus, the more valid correct/incorrect-explanation data served as input for

data analysis.

Categorization of Verbal Explanations

The correct/incorrect-explanation scores were a dichotomization of an original

categorical variable having 13 categories for different explanations. This original

variable can be seen as the variable reflecting actual use of strategies and served

to interpret the latent classes after it was recoded into four categories: (1) children

used all the premise information in their explanation (literal premise informa-

tion), or children gave a correct explanation of the ordering (reduced premise

information); (2) children used premise information, but incompletely or incor-

rectly; (3) children used visual information or irrelevant external information in

their explanation; and (4) children did not give an explanation.

RESULTS

Prior Analysis: Excluding Method Bias

The proportions correct (Table 3) showed much variation without obvious clus-

tering, meaning that no distinct subsets of task difficulties could be identified

which might explain the existence of phases. Thus, when phases are found in

TABLE 3

Proportion Correct of 15 Transitive Reasoning Tasks

Item # Format Presentation Content Pj

6 YA > YB > YC Successive Physical .05

15 YA > YB > YC > YD > YE Successive Physical .07

5 YA D YB > YC D YD Simultaneous Verbal .15

14 YA D YB > YC D YD Successive Verbal .19

8 YA > YB > YC > YD > YE Successive Verbal .21

11 YA D YB > YC D YD Simultaneous Physical .31

4 YA > YB > YC > YD > YE Simultaneous Physical .39

12 YA > YB > YC Successive Verbal .40

3 YA D YB D YC D YD Successive Verbal .45

10 YA > YB > YC > YD > YE Simultaneous Verbal .52

9 YA D YB D YC D YD Successive Physical .54

1 YA > YB > YC Simultaneous Verbal .56

13 YA > YB > YC Simultaneous Physical .57

7 YA D YB D YC D YD Simultaneous Physical .77

16 YA D YB D YC D YD Simultaneous Verbal .86
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LATENT CLASS MODELING OF PHASES 471

subsequent analysis these will be attributed to a developmental process. Because

one task (with the task characteristics: successive presentation, mixed format,

and physical content) was incorrectly answered by 99% of the children, it was

not used for further analysis.

Preliminary Information on BMM and LCM Analysis

The program Latent Gold 3.0 (Vermunt & Magidson, 2003) was used to estimate

the parameters of the BMM and the LCM and to evaluate the fit of several

models. The BMM was estimated as an LCM with equality restrictions on the

task parameters within latent class u: ™1ju D ™2ju D ::: D ™J ju D ™u. Then

the same model can be estimated as when using the number-correct score (as

outlined previously). The advantage was that the BMM and the LCM could be

compared directly. For the LCM, c � 1 parameters were estimated for the latent

class probabilities and c � 15 parameters for the task parameters within latent

classes, resulting in .c � 1/ C c � 15 parameters in total. For the BMM, c � 1

parameters were estimated for the latent class probabilities and c parameters for

the tasks (i.e., one for each class), resulting in .c � 1/ C c parameters in total.

The likelihood-ratio chi-squared statistic L2 gives an indication of model

fit, and the Bayesian Information Criterion, abbreviated as BIC [defined as

�2� loglikelihoodC#parameters� ln.N /], serves as a selection criterion within

the family of models fitted to the same data set. The BIC weights the fit and

the parsimony [#parameters� ln.N /] of a model: The lower the BIC , the better

the model in terms of parsimony and fit.

Investigating Hypotheses

Preliminary results. The Rasch model was estimated and its fit evaluated

by means of program Rasch Scaling Program (RSP; Glas & Ellis, 1994). This

program provides fine-grained diagnostic information about model (mis-)fit to a

degree that is not available from other software for the Rasch model (e.g., De

Koning, Sijtsma, & Hamers, 2002; Glas & Verhelst, 1995). It was found that, in

particular, local independence was violated (¦2 D 1671 and df D 520; based

on a test by Van den Wollenberg, 1982). This means that conditioning on the

sufficient statistic XC for the model’s latent trait is not enough to explain the

association between the J items; thus, some form of multidimensionality drove

the responses to the items (e.g., see Sijtsma & Junker, 2006, for an extensive

discussion of violation of the local independence assumption in item response

models).

Two extensions of the Rasch model were evaluated, the two-class and the

three-class mixed Rasch models (e.g., Rost & Von Davier, 1995). Like the BMM,

these extensions account for a composite population and like the LCM they do
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472 BOUWMEESTER AND SIJTSMA

this allowing the items to vary in difficulty. Unlike the LCM, they assume equal

discrimination power for all items, which again does not seem necessary a priori

in many applications to cognitive data. For the Rasch model, Latent Gold 3.0

provided L2 D 3350:49 and BIC D 10140:81; for the two-class mixed Rasch

model, L2 D 1933:55 and BIC D 8826:62; and for the three-class mixed

Rasch model, L2 D 1719:21 and BIC D 8715:03. Thus the mixed Rasch

models had better fit than the Rasch model. The misfitting Rasch model renders

the information processing theory interpretation of transitive reasoning unlikely,

while the better fit of the mixed models lends support to the fuzzy trace theory

interpretation in Hypothesis 3. This was further investigated by means of the

BMM and the LCM.

Model comparison and detection of phases. Table 4 shows the results

of the model fit for the one-class through six-class models for both the LCM

and the BMM. For both models, the decrease in L2 was largest in going from

the one-class model to the two-class model. The fit did not increase substantially

when the number of classes increased from three to six. For both the LCM and

the BMM, the BIC values show that the 3-class model was the most likely

candidate for further interpretation given the trade-off between parsimony and

fit. The L2 and BIC values of the BMMs were much higher than those of the

LCMs for all models, indicating that restricting the item parameters deteriorates

the fit and masks possible phases in the data structure. These results showed

that ignoring variation in task difficulties within a latent class was inappropriate

in the context of transitive reasoning. These results support Hypothesis 1.

The marginal probabilities (i.e., the  us) for the three classes were .25, .39,

and .36. For the LCM, for each of the three classes Figure 2 shows the success

probabilities, ™j ju, for the 15 tasks. To facilitate readability of the plot, the

order of the tasks is in accordance with their overall difficulty level, Pj (i.e.,

TABLE 4

LCM and BMM Fit Statistics

LCM BMM

#

Classes L2 BIC

#

Par

#

Classes L2 BIC

#

Par

1 3350.491 10140.814 15 1 5680.532 12380.953 1

2 1933.549 8826.618 31 2 4849.405 11562.669 3

3 1719.218 8715.033 47 3 4785.039 11511.145 5

4 1627.415 8725.976 63 4 4777.327 11516.277 7

5 1553.946 8755.253 79 5 4772.144 11523.937 9

6 1504.750 8808.803 95 6 4772.086 11536.722 11
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LATENT CLASS MODELING OF PHASES 473

FIGURE 2 Marginal success probabilities (™j ju) for tasks in each class. Notation along

horizontal axis: sim: simultaneous; suc: successive; 3: YA > YB > YC ; 5: YA > YB >

YC > YD > YE ; eq: YA D YB D YC D YD; mix: YA D YB > YC D YD ; verb:

verbal; phys: physical. Example: ‘suc, 3, phys’ means ‘successive presentation of premisses,

3 unequal objects, objects are compared on a physical property’ (here: length).

proportions correct; see Table 3). The plot shows that allowing the tasks to differ

in difficulty level resulted in highly varying success probabilities within latent

classes. The first latent class differs clearly from classes 2 and 3. In this first

latent class, except for the task denoted “sim, eq, verb” the success probabilities

for the other tasks are smaller than .5, suggesting a low performance phase. In

the second latent class, the probabilities are higher for several of the easier

“equality” tasks (format YA D YB D YC D YD) and “inequality” tasks (format

YA > YB > YC ). In the third latent class, the probabilities are higher for

most tasks except those which have a physical content and were successively

presented. For these tasks it was very difficult to recognize the ordering. This

result lends support to Hypothesis 2. Notice that consistent ordering results as

in Figure 2 do not provide proof of unidimensionality of measurement; see, for

example, Sijtsma and Meijer (2007).

Relationship with verbal explanation variables. Figure 3 shows the dis-

tribution of the four explanation categories in each of the three latent classes.

The first class is characterized by a relatively high percentage of explanations

using external and visual information (21%) and absence of explanation (27%).

Sometimes premise information was used, but often incorrectly. Children mostly
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474 BOUWMEESTER AND SIJTSMA

FIGURE 3 Distribution of the explanation categories for three classes.

used verbatim-trace information, but this information did not lead to a correct

inference of the transitive relationship.

Children in the second latent class used the premise information, but more

often incorrectly (44%) than correctly (35%). Moreover, the percentage of no

explanation (14%) was higher in the second class than in the third class. Often

use was made of gist-trace information but not for difficult tasks.

In the third latent class, premise information was used correctly in most cases

(65%). Thus, either the literal premise information or the ordering of the pre-

misses were used to infer a transitive relationship. For some tasks, children used

the premise information incorrectly or they used only part of this information

(incorrect premise use). The percentages of the categories “external/visual in-

formation” (2%) and “no explanation” (6%) were small, meaning that from the

perspective of fuzzy trace theory children mostly used gist-trace information

to solve the tasks and rarely verbatim trace information. These results support

Hypothesis 3 to a large extent.

Relationship with age. A three-class LCM including age as covariate was

compared with another three-class model without age as covariate. The task pa-

rameters (™j ju) of both models did not differ significantly. This means that the
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LATENT CLASS MODELING OF PHASES 475

TABLE 5

Relationship between Age and Class Membership

Expressed by Means of Latent Class Probabilities  u

Age in Months Class 1 Class 2 Class 3

83–109 .448 .159 .063

110–214 .265 .213 .135

215–317 .158 .230 .196

318–423 .084 .201 .291

424–525 .045 .198 .315

relationship between the latent classes and the task effects was not affected by

age. Therefore, it was inappropriate to use fixed age groups to describe develop-

ment. The parameter estimates for age were �0.042 (95% confidence interval:

�0.052–�0.032) for the first class; 0.007 (95% confidence interval: �0.001–

(0.022) for the second class; and 0.035 (95% confidence interval: 0.026–0.044)

for the third class. The negative parameter estimate for the first class indicates a

negative relationship between age and class membership probability. The positive

parameter estimate for the third class indicates a positive relationship. Because

the 95% confidence interval for the second class contains the value 0, there is

no significant relationship between age and class membership.

Table 5 shows the average probabilities of membership in one of the three

classes for five age groups of equal size (we did not use the grades to define

groups because of children who repeated a grade). The results support Hypoth-

esis 4 because the three latent classes did not form fixed age groups.

DISCUSSION

Often the term abruptness is used to indicate discontinuity in development, and

to emphasize that the change curve, which shows performance on a particular

cognitive task as a function of age, is expected to be jumpy in particular intervals.

For example, Flavell (1970) and Brainerd (1993) agreed that a change curve as

in Figure 4b is abrupt, showing discontinuity, and that a curve as in Figure 4a

reflects continuous change (but they disagreed on the validity of the method that

was used to determine continuous or discontinuous change). However, deciding

on whether or not discontinuity is present is hampered by four problems. First,

the slope of a curve depends on the unit of measurement—days, weeks, half-

year periods, and so on—and the larger the unit, the steeper the slope. Second,

although an observed change curve may show dramatic changes in steepness

the magnitude of the change needed to decide on discontinuity is arbitrary.

Third, development in particular aspects of behavior may be related to age but
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476 BOUWMEESTER AND SIJTSMA

FIGURE 4 Continuous (a) and discontinuous (b) change curve, based on Brainerd (1993).

other variables than age presumably have a more direct, causal relationship to

behavioral changes found with age (Wohlwill, 1973, p. 26). Finally, considerable

individual differences in rate of development prevent chronological age to be a

useful variable for studying behavioral development. That is, one four-year old

child may attain a particular level at some behavioral dimension that another

child may not reach until the age of six (Wohlwill, 1973, p. 26).

Taking these problems into account, we decided not to study discontinuity

as abruptness in a change curve but to look for different phases in the form

of multiple modes which reflect probability distributions of strategies. The re-

sults indicate that development can be described by three classes of low-ability,

intermediate-ability and high-ability children. In each of these classes, children

differ with respect to the probability of using a particular strategy to solve the

tasks. In the low-ability class, children perform poorly on all transitive reason-

ing tasks. In the intermediate-ability class, children perform well on tasks in

which the ordering of the objects is obvious, and worse on tasks in which this

ordering is not obvious. In the high-ability class, children perform well on most

transitive reasoning tasks. The results also showed that the performance on some
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LATENT CLASS MODELING OF PHASES 477

tasks was moderate, even in the high-ability class. These tasks had a physical

content and premises were successively presented. Note that one task with these

characteristics was not included in the analysis because 608 of the 615 children

gave an incorrect response. Apparently, the combination of physical content and

successive presentation made the recognition of the ordering extremely difficult.

The fit statistics (L2, BIC ) of the LCM help to select a most appropriate

model from a set of potentially useful models. The decision whether the latent

classes of this model indicate the existence of phases depends heavily on the

interpretation of the classes in terms of underlying substantive theory. Thus,

like BMM results LCM results should be interpreted with great care. Siegler

and Chen (2002) emphasized that an LCM analysis has many advantages for

distinguishing latent groups, but that the definition, use and interpretation of fit

statistics also rely on arbitrary conventions. They argued that, when possible, re-

sults of other assessment methods for distinguishing classes should be compared

with LCM results.

This study showed that children are characterized by a most likely phase

and, as a result, smaller probabilities of being in other phases. A relationship

between phases and fixed age periods was not detected. This result agrees with

Wohlwill (1973, pp. 25–27, and chap. 9), who recommended to use other vari-

ables than chronological age for describing behavioral change. According to his

approach fixed age-groups have no meaning because it is assumed that each

child’s development moves on its own, differential pace.

The latent classes could be interpreted well by means of the explanation chil-

dren gave after they had answered the task. Bouwmeester et al. (2004) used

a latent class regression model to investigate the relationships between these

explanations, and the influence of the task characteristics on performance. They

showed that task characteristics, which determined task difficulty, had an im-

portant influence on strategy use and that this influence varied between latent

classes. In the present study, the BMM was too restrictive because it could not

account for varying task difficulty level. Thus, ignoring varying task difficulty is

not appropriate when studying phases in the development of transitive reasoning.

Researchers who investigate phases in the development of a particular cogni-

tive ability are advised to first fit an unrestricted LCM to the data. Next, when

such an LCM fits, for reasons of parsimony the BMM may be fitted when equal

task difficulty within a class is expected to be realistic. Additionally, item re-

sponse models with continuous latent variables may be fitted to find out whether

a continuous dimension may explain individual differences in performance.
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