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Introduction

\Th<,11 I tell \'Ou that Ilir bl'otller'S Cat, Pooky. is older than liis dog. Bente.

and also that his goldfish. Bhib. is younger than his dog. I hope you imme-
cliately inferred that Pookv is older thaii Blub. Wlien you did. you used
,your ability of drawing a tralisitive inferetice, that is. yoll infei red all 1111-
known relationship (Pooky is olcler tlian Blizb) from known relationships
(Pooky  is  older  thaii  Bente. aIid Bente is older than  Blub).    Adults  are
drawiiig traiisitive inferences several tilnes a day. euid they do tliis auto-
matically and Ullconsciously. However. young children are not capable of

drawing szich inferences.
Formally, in a transitive reasoning task the unknown relationship. R.

between two elements, A and C. can be inferred from their known rela-
tionships with a third element. B: that is. (RAB. RBC) -, RAC· In this
example. the relationships RAB and RBC' are premises. When children are
capable of drawing a transitive inference from the premises. they are capa-
ble of tratisitive reasoning. Cognitive theories disagree aboiit what transi-
tive reasoning is about, which processes are involved, alid which kinds of
tasks should  be  used  to  measure  it.

Piaget's Theory

According to Piaget, cognition is constructed by the active, originally
sensori-motor. interaction between the child and the external world (Case.
1996; Chapman. 1988: Flavell, 1963). Diiring development the interac-
tion becomes more and more internalized ariel nieiital operations can be
performed without real interaction with the external environment (Piaget.

1949). Grozips of internalized actioils forni cognitive structures. During
development tliese cogiiitive structures become less concrete and domain-
specific, and more abstract. general and applicable to a broad domain.
Piaget constructed cognitive tasks. such as transitive reasoning tasks. to ill-
vestigate the developniental level of cognition in children (Chapman. 1988:
Flavell. 1963). Cognitive development. according to Piaget's theory aiid

1
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researcli. iii principle follows four discrete stages. tlie sensory motor stage.
tlie preoperational stage. the concrete operational ,stage. and the forinal op-
erational stage. This theoretical framework can be found iii anv textbook
on developmental psychology or cogiiitive development.

Children are capable of drawing traiisitive iiiferences wlien they iinder-
stand  the  necessity  of using logical rules.    For  example.   if  }'4  stands  for
the allimint object A (e.g.. a stick) has of property ¥' Ce.g.. length). then
13 > 3'8 and 17 > 12· together imply YA > Yc. When children know
how to use these rules of logic, they are able to solve any transitive rela-
tioiiship as long as they can reineniber the preniises. This understanding
is acqziired at the concrete operational stage. at about seven years of age

( Piaget. 1947). when the cognitive structure of children is for the first time
charactezized by the reversibility 1)rinciple (Piaget. 1942. 1947). A transi-
tive inference beautifully demonstrates this reversibility priiiciple: wheti A
is larger than B. B must be smaller than A. and when we know that A is
longer thaii B. and C is shorter thaii B. tlien we can iise the reversibility
priliciple to Conclude that A is longer than C. Children at the preoper-
ational stage. at two through seven years of age (Piaget. 1947). do not
understand the reversibilitv principle. Objects or characteristics of objects
are considered in a nominal way. that is. liot in relationship to other objects
(Piaget. 1942). Dite to this noiziinal thiiikiiig. or preoperational thinkilig
in Piagetian jargon. childreii are not capable of perforiziing internalized
operations 011 objects and they cio liot understaiid the iiecessitb· of using
logical 1111es. When a clie is pror·ided about the ordering of the objects iii
a task. an understanding of logical rizles may not be necessary to solve the
task. For example, the position of the objects call be used for inferritig
their miitiial relationshiI)s wheii all objects are presented simultaiieously
and ordered 011 the dimension on whicli they differ. This kind of reason-
iiig is (·alled ftiIictioiial reasoiting.  Functioiial reasoning is typical of tlie

preoperatiolial stage.

Piaget's theory was riot nieant to be a psychological theory. He was
interested in the general. biological deri'lopiiiezit of cognitive structures
of the huinan being iIi general or t.he individiial child iii particular with-
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out emphasizing task conclitiotis (Bidell & Fischer. 1992).  Iii accordatice
with research traditions of their tillie. Piaget aiid his colleagues preferrecl
a clinical inethod to investigate the development of intelligetice by USilig
interviews without standarclization and statistical data analysis (Flavell.
1963). The Neo-Piagetians maintained the constructivistic assliniptions of
the theori' but attenipted to operationalize the constructs empirically by
taking variations iii tasks aticl individuals into account (Case. 1992. pp.

166).

Reaction to Piaget

Iii the early 196Os, the age bozindaries of the developmental stages ac-
cordiiig to Piaget's theory were the first source of criticism of cognitive

psychologists. Braine ( 1959) showed that after the child had learned  the
premises, (s)he was able to draw transitive inferences at five years of age.

His finding evoked a thorough discussion. Braine (1959) argued that re-
membering the premises was the real problem for young children, not logical
reasoning. However, Smedslund (1963, 1965, 1969) argued that Braine's

results could be explained alternatively by a tabelling strategy, according
to which children use a nominal label of an object to solve the task.  For
exainple. during the premise presentation object A may be encocled as
'short' and object C as 'long: As a result, the answer that C is longer
than A can be inferred from the labels 'long' and 'short', without making
use of the relationships within the object pairs A, B and B, C. In their re-

search, Brainerd (1973) and Youniss and Denisson (1971) used Afuller-Lyer
illusion techniqzies to prevent cliildren from usizig this labelling strategv

Youniss and his colleagues (hlurray & Yoimiss, 1968; Yoiiniss & Furth.
1973: Youniss & Alurray. 1970) used mixed-format (Y.4 - P-/3 > YC - YD)
relationships. Iii this kind of tasks. the objects did not have a iziiique label
(object  C  is  both  smaller thaii object  B and equally  long as object  D).  so
the labelling strategy could  not  be used. However, Brainerd  ( 1973) argued

that illiision and mixed-format tasks confused children and interfered with

the reasoning process.
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Information Processing Theory

Bryant and Trabasso (1971) used five-objects inequality-format tasks (1.4 >
1'"13 > YC' > 3'I) > PE) ill wliicli labelling strategies could 11Ot be used to
solve the transitive relatiotiship RBD· They showed that after an ilitell-
sive training children were able to draw transitive inferences at the age of

five. Br\'ant and Trabasso (1971) and Riley and Trabasso ( 1974) explained
tlieir restilts by a linear ordering theory iii which children form a symbolic
iiiteriial representation of the 01,jects and the relationships between the
objects.   This  representation  is  tised to infer the answer.   Trabasso  ( 1977)
tised reaction time to sliow that the linear orderilig theory could explaii}
how aii internal representation was formed for drawing inferences without
tlie lise of logical rules.

The Neo-Piagetians were riot convinced by the resiilts of Traba:iso and
his  colleagizes.    Perner.   Steiner  atid  Staehelin  (1981 ). Perner  and  Mans-
bridge   (1983).   and  Perner  and  Aebi   (1985)   argued  that   the  visual  feed-
back. tlie presentation form. and the intensive training lead to specific task
conditions ill which a labelling strategy cotild be used to solve the tralisi-
tive relationship. Chapman (1988) and Chapinan and Linderil,erger (1992)
argued that the siniziltaneotis presetitation of the preniises provided a po-
sitional cue abozit the ordering of the objects.  By means of the intensive
traiiiing of the premises, cliildreii had learned the ordering atid drew infer-
eiices on the basis of this ordering. This kind of reasoning was ftinctional
instead of operational, because children did liot need the reversibility prin-
Ciple to solve the transitive relationship.

Altlioiigh the criticism of informatioii-processing theorists was directed
itiitially at the age bouitdaries of Piaget's theory. tieglect of individual
differences. poor experimental settitig. and neglect of enviroiiniental influ-
eiices. tlie most important difference appeared to be the epistemological

assumptions of both theoretical approaches. These assumptions led to
conflictiiig reqizirenients of specific task conditions. which explains the gap
of two years between the ages at which transitive reasoiiing first emerged
accorditig to the two theories.
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Fuzzy Trace Theory

Piaget and the Neo-Piagetians assumed that memory is a necessary but

not a sufficient condition for using logical rules. Information-processing
theorists assumed that memory of the premises is sufficient for drawing a

transitive inference. A strong argument for the hypothesis that memory of
the premises is not necessary for drawing a transitive inference is made by

fuzzy trace theory (Brainerd & Kingnia. 1984. 1985: Brainerd & Reyna,

1993, 2001).

Fuzzy trace theory assumes that human cognition is a parallel encod-

ing mechanism of information at different levels of abstraction (Brainerd
& Reyna,  1990. 1995, 2004). The level of exactness of encoded infornlation
varies along a continuum. One end is defined by fuzzy traces, which are

vague, degenerate representations that conserve only the sense of recently

encoded data in a degenerated, "fuzzy",way. The other end is defined by
verbatim traces, which are literal representations that preserve the con-

tent of recently encoded information with exactitude. Because retention of

vivid, verbatim traces requires much memory capacity, these traces usually

are not available. The information in a fuzzy trace, however, is reduced and

schematic, so longer retention is possible and the fuzzy trace is more easily

available. People prefer to reason fuzzy rather than verbatim, because the

degraded information from the fuzzy-trace is more easily accessible and

costs less memory capacity.
The characteristics of a task determine which level of the continuum

can be used to solve the transitive relationship. When a cue about the

ordering is provided, the fuzzier end of the continuum can be used, which

contains a degenerated representation of the objects, for example, "objects
get  smaller  to  the  left".    When  cues are absent,  it  is  difficult to reduce

information and the verbatim end of the continuum is used. This makes
the task more difficult because the literal premise information has to be
remembered. When the fuzzy end of the continuum can be used, memory
of the premises is not needed. Brainerd and Kingma (1984. 1985) showed

that transitive reasoning is primarily based OIl the schematic information
of fuzzy traces.
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The Neo-Piagetians Chapinan and Lindenberger (1992) argued that
ftizzv trace theory only applies to tasks in which a cue is provided about
the ordering of objects. that is. tasks which can be solved using functional
reasotiitig.   When such cues are not provided. niemory of the premises iS IleC-
essary for applying logical riiles. that is. to reason operationally. Braiiierd
and  Reviia (1992)  did not  distinguish operational and functional reasotiing
as separate abilities. They argued tliat redUCillg information is more diffi-
(,illt wheii ciies  about  an  ordering  are  absent.  and that people attenipt  to
ilse tlle filzziest trace possible.

Issues in Transitive Reasoning

Tlie  three  theories  have different ideas about  what  cognitive  developiIient
is a11(1 how chaiige in beharior shoul(11)e nieaszired. Piaget assu111ed a lii-

erarchical structitre in which chil(lreii are viewed as imperfect aclults whicli
have to pass the necessary stages to reac·11 fornial thinking.  The thinkitig of
chilciren iii different stages deviates cliialitatively due to the differetit fornis
of tlie cognitive structures.

According to inforillation processing theory. however. the chilil's tliink-
iiig cleviates from adult's thinking 011ly iii a qiiantitative way. Tlie process-
ilig of inforination is slower and less efficient  leading to incomplete.  inipov-
erished  iriternal  representations  of the  iiiforniation.   Developnient.  in  this
rcHI,ect.  is  redticed  to  accuimilative  learning of internal  stimulus-response
relatioits.

Flizz\' trace theory was cleveloped as a reaction to inforniatioti process-
itig theory's coinputer-based approach to cognitive development.  According
to ftizzy trace theory inforniation is processed siniziltaneously. autotiiati-
rally 2111(1 iinconsciously at a variety of levels wliich differ in the degree of
('xactiiess  of the  information.   Cognitive  development  is  assumed  to  be the
growitig capability to retrieve tlie appropriate level of informatioii giveii
the task requirements. Note that this level is not necessarily a complete or
detailed representation of the informatioii iiivolved as is assilinecl iii irifor-
iiiatioii processiiig theory.

The way the theories view developnient has important consequezices
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for the study of developineiit in transitive reasoning. We not only have to
define what development means but also what transitive reasoning is. Iii
this thesis I tried to disentangle the underlying response processes involved
in the development of transitive reasoning by taking individual differences

and task characteristics into account. I started bottom-up. that is. I did
not choose one of the theories as a framework for transitive reasoning but
evaluated the different theories by ineans of tlie latent structure iii empirical
data. In the last chapter a top-down approach was followed. Fuzzy trace

theory was used as a theoretical 1110del to describe the underlying respoiise

process at a detailed level.

Construction of a Scale for Transitive Reasoning

First I constructed a computerized test containing 16 transitive reasoning
tasks. Based on earlier research, these tasks were varied on three char-
acteristics which were found to influence the cognitive processes and the

accompanying performance. Two pseudo-transitive reasoning tasks were
included in the test. They resembled the transitive reasoning tasks, but
were different because a transitive relationship could not be inferred from
the premise information.  The test was administered to a sample of 615

elementary school students ranging from grade two to grade six stemming
from six schools in The Netherlands. Both the correct/incorrect answers

and the explanations of the answers given by the students were analyzed.

Chapter 1 reports the results of a Mokken (1971) scale analysis that was
applied to the 16 transitive reasoning tasks in an effort to determine the
quality of these tasks and the reliability of the ordering of the students by
means of their test score.

Abilities Involved in Transitive Reasoning

Piaget's theory, information processing theory. and fuzzy trace theory posit

different ideas about the underlying processes involved in transitive reason-

ing and the influence of task characteristics on the difficulty of a task. Ac-
cording to Piaget's theory and the Neo-Piagetians. two kinds of reasoning
have to be distinguished, functional and operational reasoning. representing
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qualitatively different abilities. The characteristics of the task determine
which type of reasoning is needed. Information processing theory, most
extensively elaborated by Trabasso and his colleagues, assumes one un-
derlying ability. Also, the theory assumes that the difficulty of a task is
determined by the ease by which the preniises are remenibered. Fuzzy trace
theory also assumes one underlying ability. which is the fuzzy trace ability,
but according to this theory task difficulty is determined by the ease by
which the ordering of the objects in a task is recognized. Chapter 2 reports
an empirical study on the number of abilities involved in transitive reason-
ing. Three methods are used for this purpose (represented in the coniputer

programs AISP, DETECT, and improved DIMTEST). Multiple regression
is used to determine the influence of task characteristics on the difficulty
level of the tasks. Moreover, the usefulness of both the correct/incorrect
scores aiid the correct./incorrect explanations is compared.

Continuous or Discontinuous Change?

Another, important topic is whether cognitive development is stage-like.
as assumed in Piaget's theory. or continuous without jumpy transitions
from one stage to another. When studying a single ability instead of COIIl-

plete cognitive structures, discontinuity can be defined as the existence of a
number of 1110des ordered along the developmental scale which correspond
with different rules or strategies that are used to solve particular tasks. Iii
chapter 3, I first discuss a number of research issues typical of the study of
developmental change and discontinuity. Then discontinuity is studied in
cross-sectional transitive reasoning data. Two statistical mixture models,
the binomial mixture illodel and the latent class factor model, are com-
pared. Unlike the binomial mixture model. the latent class model does
not assume binomial distributions, allows task difficulties to be different.
and uses the information in the individual's ite111-score patterns to estimate
class probabilities. Next. additional analysis are done to interpret the dis-
continuity. and this lends meaning to the classes that are distinguished on
the basis of the latent class analysis.
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Latent Cognitive Variables, Environmental Influences, Cog-
nitive Behavior and Age

In chapter 3 the emphasis is on determining discontinuity in transitive rea-
soning, aiid in chapter 4 on the detailed interpretation of latent cognitive
classes by means of manifest variables such as age, cognitive behavior, and
environmental influences. Again, developmental groups are distinguished
but at a more detailed level of sophistication.  In this chapter the usefulness
of the latent class regression model for studying cognitive developmental
phenomena is discussed. Using this model, the relationships between la-
tent and manifest variables can be explained by means of empirical data
without the need for strong a priori assumptions made by a cognitive devel-
opmental theory.  In the latent class regression model a number of classes
are distinguished which are characterized by particular cognitive behavior.
Task characteristics influence cognitive behavior and this influence varies
over different (developmental) classes.

Fuzzy Trace Theory as a Framework for Explaining Individ-
ual Differences

Fuzzy trace theory offers a detailed description of the performance on both
the memory of the premises and the inference of transitive relationships
in transitive reasoning tasks (see Brainerd & Kingma, 1984, 1985; Brain-
erd & Reyna,   1995). This opens the possibility  to test empirically  and
in great detail the application of the theory in the context of transitive
reasoning. In chapter 5 fuzzy trace theory is used as the theoretical frame-
work for modeling both individual differences in performance and task in-
Huences on performance on memory test-pairs and transitivity test-pairs.
A test is constructed containing four replications of each of three kinds of
tasks, each having four memory-of-the-premises items, and three transitive-
relationship items. The three task types differ in difficulty with respect to
the position of objects and the presentation of the premises.  Both the posi-
tion and the presentation call be ordered or disordered, but the combination
of disordered position and disordered presentation is not used because it
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would render tasks  too di fficult.   The  test  was  administered  to  a  new  sam-

ple of 409 students ranging in age from 5 to 13 years and stemming from
four elementary schools in The Netherlands. Per student 84 responses are
used to determine both the verbatim and fuzzy ability levels. Because the

retrieval of verbatim and fuzzy traces is dependent on the verbatim and
fuzzy ability levels. and the responses to the items of the tasks are depen-

dent on the verbatim and fuzzy traces used, a multilevel latent class model

(Vermunt, 2003) is used for data analysis.



Chapter 1

Constructing a Transitive
Reasoning Test for Six to
Thirteen Year Old Children

1.1   Introduction

The aim of this chapter is to report on the construction of a transitive
reasoning test for elementary school studeiits. Iii a transitive reasoning
task, the unknown relationship R between two elements A and C Can be
inferred from their known relationships with a third element B: that is.
(RAB, RBC) » RAC· In this example, the relationships RAB and RBC are
premises. When children are capable of drawing a transitive inference froill
the premises, they are capable of transitive reasoning.

1.1.1        Tasks   of  the   Test

Researchers used various kinds of tasks for studying the development of
transitive reasoning (see. e.g.. Bryant & Trabasso, 1971: Chapman & Lin-
denberger, 1988: Harris & Bassett. 1975: Kallio. 1982:

This chapter has been submitted for ptiblicatioti.

11
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Murray & Youniss, 1968, Perner  &  Alansbridge, 1983: Perner  et  al.,  1981:

Smedslund, 1963: Youniss & Murray. 1970: Verweij. Sijtsma, & Koops.

1999).    For  our  test (see Figure 2.1, chapter  2). we constructed 16 tasks.

Each task consisted of objects that had to be compared with respect to
a property, such as length. This property was denoted Y, and the value

of object A on Y was denoted YA. et cetera. Tasks differed with respect

to three task characteristics. These characteristics were frequently used

by researchers representative of different theoretical approaches (see, e.g.-
Brainerd & Kingma, 1984; Bryant & Trabasso. 1971; Chapman & Linden-

berger. 1988: Harris & Bassett, 1975: Murray & Youniss, 1968; Piaget.
1942; Youniss & Furth, 1973).

The task characteristic format determined the kind of transitive rela-

tionship. The four levels of format were: YA > YB > Yc; YA - YB - Yc -
YD; YA > YB > YC > YD > YE: and YA - YB > YC - YD· Although the
formats YA > YB > YC' and YA > YB > Yc > YD > YE differed only in
the number of objects involved. they were expected to differ in difficulty.

For example, in the 3-object task, object A was always large in comparison
with other objects and could therefore be labelled as large. In the 5-object
task, object B was small compared with object A and large compared with

object C, so that object B did not have a unique label. This difference was

expected to produce greater difficulty for 5-object tasks. The task char-
acteristic presentation determined whether the premises were presented
all together (simultaneously)   or one after the other (successively).     The

task characteristic content determined whether the objects that formed

the premises were sticks that could differ in length (physical type of con-

tent) or animals that could differ in age (verbal  type of content).   Each task
in the test was a unique combination of the three characteristics, such that
each of the 4 x 2 x 2 possibilities were represented. The difficulty level of
the tasks was determined by the combination of the task characteristics.

The test was administered by computer to 615 students sampled from
grade two through grade six in elenientary school. First. the students did
three exercises to get used to the program. the objects, and the relationships

involved. Then. they performed the 16 transitive reasoning tasks and two
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additional pseudo-transitive reasoning tasks. These latter two tasks resem-

bled the transitive reasoning tasks, but were different because a transitive
relationship could not be inferred from the premise information. The for-
mat of the two pseudo-transitive reasoning tasks was (YA > YB, YC > YD)
and  (YA  -  YB,YC  -  YD), in both cases leaving the relationship between B
and C unidentified.

Students were asked to click on the longest stick, the eldest animal,
or the equality button when they thought that the sticks/animals had the
same length/age. In each item, they had to choose one from three options.
Children received a 1-score when they correctly explained the transitive

relationship, and a 0-score when they gave an incorrect explanation or no
explanation at all. Verweij (1994) showed that students often gave non-
transitive explanations even when they had chosen the right option. The
computer registered the option chosen and the experimenter recorded the
verbal explanations.

1.2 Background Analyses

The P-values (sample proportions of correct explanationsi ) of the 16 tasks

ranged from 0.01 to 0.86. A within-subject ANOVA showed that all main
effects and interaction effects of the task characteristics and combinations of
task characteristics  were significantly  (p  < .001). Because  of the large sam-

ple size (N = 615) these significant results offered little information about
the importance of task characteristics or combinations of them. Partial
712  (Stevens,  1996,  p.   1772)  was  used  for expressing effect  size. The effect

sizes were large for the characteristics presentation (partial 712 - .65) and

format (partial 772 - 0.72). and for the interactions presentationxformat
(partial 112 - 0.21) and presentationxformatx content (partial 712 = 0.32).

The effect sizes were modest for the characteristic presentation (partial

'12 „ 0.1),  and the interactions presentationx content  (partial 712 = 0.13)

1 Correct explanations were preceded by correctly chosen options  96%  of the  time.
2Following Stevens (1996, p. 177: based on Cohen, 1977. pp. 284-288) Partial ,12 -

0.01 was interpreted as small. partial 712 = 0.06 as medhini, and partial 7,2 - 0.14 as

large.
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and formatx content (partial  7/2  - 0.12).   Successive presentation  was  more

difficult than simultaneous presentation. Physical content was more diffi-
cult than verbal content.   Post hoc analyses were performed to determine to
which difference the significant effects could be attributed. The 95% con-
fidence intervals (CIs) of the means are displayed in Figure 1.1 (standard
error of the mean based on N=615). Because the number of statistical
tests was 82. the significance level was adjusted to 0.05/82 (Bonferroni
adjustment).

Figure 1.la shows that format YA = YB = 11'7(-, = YD is significantly
easier than the other formats. Forniat YA = YB > YC - YD is the most
difficult, and the formats YA > YB > Yc' and YA > YB > YC > YD > YE
differ  the  least  but significantly. Figure 1.1b shows  that  for  each  format.
simultaneous presentation is easier than successive presentation, and that
the difference between the two kinds of presentation is smaller for the for-

Illat ¥4 - TE > 62'- YD thaii for the other forniats. Figure l.lc shows

that physical content is more difficult for the forniats Y.4 > YB > YC and
YA    >   YB    >   Yc'    >   YD    >   YE,   but that there is rio significant difference
for forniats Y.1 = YB = YC = Yn aIid 1'11 - YB > }'2. - YD· Figure 1.ld
shows that verbal and physical content do not differ significantly when pre-
sentation is siznultaneous. but that physical content is more difficult when

presentation is successive. Figure 1.le shows  that in particular the combi-
nation of successive presentation and physical content iliakes the task very

difficult for the forniats YA > YB > YC, YA > YB > YE' > YD > YE· and
Yi  =  163  >  YC'  -  YD·  but  not for format  YA  -  YB  -  Y(.  -  YD ·

Table 1.1 gives  for each grade the mean test score. the standard devia-
tion. and Cronbachs alpha. The Levene (1960) Test (W) showed that the
variances were not equal for the five grades [H'(4.610)  = 3.49. p <  .01].
A procedure for coniparing ineatis. which takes unequal variances into ac-
count (Welch. 1951), revealed   that tlie mean   test scores increased   with

grade level.  [F(4.610)  =  43.66.  p  <  .01].   The 95%  CI of the  post hoc
tests of adjacent grades (using Bonferroni adjustnient) showed that only
the mean test scores of Grade four and Grade five did riot differ signifi-
cantly (CI: -1.48 - 0.45). A comparison of the alplia coefficients (see Feldt,
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Figure 1.1: 95% Confidence Intervals (CIs) for the Item Means Combined
for Various Task Characteristics and Combinations of Task Characteristics
(3:  YA>  YB>  YC;  eq: YA ; YB=YC= YD;  5:  YA  >  YB  >  YC  >  YD  >
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Woodruff. & Salih. 1987) showed that none of the coefficients differed sig-

nificantly from any of the others.

Table 1.1: For Each Grade. Mean Test Score. Standard Deviation (SD)
and  Cronbachs  Alpha  Based  on  15  Tasks*

Grade n AI SD Alpha

2 108 3.29 2.74 .79

3 119 4.49 2.96 .77

4 122 6.40 3.67 .84

5 143 6.91 3.04 .76

6 123 7.98 3.06 .77

* Task 2 had zero variance iii 1Il<)St grades.

1.3 Mokken Scale Analyses
We applied Mokken (1971) scale analysis in an effort to find support for the
hypotheses that an increase in test score i Iziplies developmental progress.
and that the ordering of students by test score is reliable. Mokken scale
analysis is based on nonparametric item response theory (IRT: see Sijtsma
&  Molenaar. 2002). Nonparametric IRT defines  the relationship between
an observed item score and a latent trait by means of order restrictions,
whereas paranietric IRT 1110dels use a parametric function such as the 10-

gistic (Embretson  &  Reise.  2000).
The nonparametric IRT model that is the basis of a Mokken scale is

defined by three assumptions: unidimensionality. local independence and
monotonicity. Unidimensionality means that one latent trait parameter

8 suffices to explain the data structure. Local independence means that,
given a fixed 8 value. responses to different tasks are unrelated.  Monotonic-
ity means that the item response functions are monotone increasing iii B.
This implies an ordering of the students along the scale which. theoretically.
is invariant over items. These three assumptions constitute the monotone
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homogeneity model (AIHAI). The double monotonicity model (DAIAI) is a
more restrictive model iii which a fozirth asstimptioii of non-intersection of
the iteni response ftinction is added to the other three. Tliis assuniption is
identical to an invariatit iteni ordering (Sijtsnia & Alolenaar. 2002. chap.
6).   Several  researcliers  used  ilokken  scale  aiialysis  to Construct  scales  for

cogilitive abilities (e.g., De Koning. Sijtsma. & Hamers. 2003: Hosenfield.
Van den Booiii. & Resing. 1997). Verweij. Sijtsnia, and Koops ( 1996. 1999)
used AIokken scale analysis to construct a scale for transitive reasoning that
used only formal content tasks and iteni scoritig based on a more restricted
conceptualization of transitive reasoniiig

We used the program A·ISP (Alolenaar & Sijtsma. 2000) to analyze
the scalability of our transitive reasoning items.  Scalability coefficient H

(Alokken. 1971) was used to evahiate the scalability for the total test. and
item scalability coefilcient.   Hj,   was  used  to  evaluate separate items.    H
is a weighted mean of the Hjs and provides evidence about the degree to
which subjects can be ordered by means of the coniplete set of tasks. The
MHAI implies that O S H S l i a scale is considered weak if 0.3 S H< 0.4.

medium if 0.4 S H< 0.5, and strong if H 2 0.5 (Sijtsma & AIolenaar.
2002.  p.   60). For iii(lividual  items,  a AIokken scale analysis requires  that

Hj 20.3. for all j.
Task 2 was rejected from the analysis, becatise it had a negative covari-

ance witli both tasks 8 and 15 (negative covariances are in conflict with the
monotonicity assumption). For the reniaining 15 tasks, tlie task scalability
coefficients ranged from 0.37 to 0.66. The overall scalability coefficieiit H
was 0.45. thus indicating a mediuni scale.

Cronbach's alpha  was 0.83. Based  OIl  H  and  Hj,  and  other  analyses
(not  reported).  it was concluded that the 15 tasks formed a unidimensional
scale. Thiis, all tasks evalizated the sallie ability and all students could be
reliably ordered by tlieir ability level rising the number-correct score. based

on the number of correct explaiiations.
The assumptioti of non-intersection of item response functions was in-

vestigated by means of the H-coefficient of the transposed task-person ma-
trix, denoted HT (Sijtsma & Afeijer. 1992). To conclude that the items
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have an invariant item ordering, Sijtsnia and Aieijer (1992) recommended
that HT > .3 and the percentage of negative person HI must not exceed

10. The HT-coefficient for the total scale was 0.52. and the percentage
of  Iiegative  HoT-values for individuals  was 1.6. Together these results  sup-
port  the  assuinption  of non-intersecting  item  response  functions.  and  this
indicated that the tasks could be ordered itivariantly

Next. exploratory Alokken scale analysis was conducted for each grade
separately uiider the restriction that itenls were only admitted to a scale if
their Hj 2 0.3 relative to the other itenis iii that scale. Table 1.2 shows that
the scales for Grades two, three. aiicl five, cotitained nine itenis, iii Grade
four.  the scale contained 14 items ariel iii Grade six. the scale contained  11
iteiiis. Tlie items formed a weak scale iii Grade five. a medium scale in the
Grades three. four. and six. and a strong scale in Grade two. The HT values
were sufficiently high and the percentages of 11egative H,Ts siifficientlr low
to concliide that the items had ari iIivariant item ordering.

Table 1.2: For Each Grade, Number of Tasks in the Scale. Scalability
Coeilic.ieti.ts H  and HT .  and Percentage of Negative Ht S

Grade # tasks   H  HT  K neg.HI
2           9 .54 .57 1.1

3           9 .48 .60 1.0

4          14 .49 .53         .9

5    9 .37 .54 2.2

6         11 .45 .63         .0

Fiirthermore. we investigated the scalability of the correct-incorrect
task scores (these are the task scores that do not take the verbal expla.-

nations itito account). Based on the 16 tasks. Cronbach's alpha was 0.63,

indicatitig weak reliability. The task H.,s varied from 0.01 tlirough 0.25,
aiid the overall scalability coefficient H was 0.16. indicating that the tasks
did not form a practically ziseful scale.

The  format  of  the  two  pseudo-transitive  reasoning  tasks  was  (Y.4   >
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YB, YC> YD) and (YA -YB·YC- YD), in both cases leaving the relation-
ship between B and C unidentified. Thus, these tasks cannot be solved
by means of the strategy used to solve real transitive reasoning tasks and,

therefore, these tasks were not expected to fit into the transitive reasoning

scale.  A second Mokken scale analysis was conducted on the data of the
16 tasks and the two pseudo-transitive reasoning tasks to evaluate whether

the scale had discriminant validity. The Hjs of the two pseudo-transitive
reasoning tasks were 0.03 and 0.14. Both tasks had several negative co-

variances with transitive reasoning tasks and were therefore rejected from

the analysis.

1.4 Conclusion

We constructed a test for transitive reasoning containing 16 tasks which
were varied systematically with respect to three three task characteristics,
and found that in particular the presentation form and the task format in-
fluenced the task difficulty level.  15 of the 16 tasks formed a Mokken scale

on which the students could be ordered reliable. Also, evidence was col-
lected for an invariant item ordering; that is, an item ordering by means of
P-values that is the same for all students and, by implication, all subgroups

of students (e.g., grades). The finding that responses  to the theory-based
tasks were driven by one ability indicated convergent validity. The mis-
fit of the pseudo-transitive reasoning tasks indicated discriminant validity.

Together these convergent and discriminant validity results indicate con-
struct validity (Campbell & Fiske, 1959), but more research supporting
such a conclusion is needed. An analysis of the correct/incorrect scores
without verbal explanations showed showed that the tasks were not scal-
able.  Analyses of the data in separate grades showed a weak scale in one
grade, medium scales in three grades, and a strong scale in one grade.
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Chapter 2

Measuring the Ability of
7Itans itive Reasoning,
Using Product and Strategy
Information

Abstract*

Cognitive theories disagree about the processes and the number of abil-

ities involved in transitive reasoning. This led to controversies about the
influence of task characteristics on individuals' performance and the devel-

opment of transitive reasoning. In this study, both product and strategy

information were analyzed to measure the performance of 6 to 13 year old
children. Three methods (MSP, DETECT, and Improved DIMTEST) were
used to determine the number of abilities involved and to test the assump-

tions imposed on the data by item response models. Nonparametric IRT
models were used to construct a scale for transitive reasoning. Multiple
regression was used to determine the influence of task characteristics on

the difficulty level of the tasks. It was concluded that (1) the qualitatively
distinct abilities predicted by Piaget's theory could not be distinguished by
means of different dimensions in the data structure: (2) transitive reasoning
could be described by one ability. and some task characteristics influenced

21
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the difficulty of a task: and (3) strategy information provided a stronger
scale than product information.

' This chapter has been published as: Boziwnieester. S.- & Sijtsma. K. (2004)
Aleasuring the Ability of Transitive Reasonitig. Usilig Product and Strategy In-
formation. Psychometrika. 69. 12.9-146.

2.1    Introduction

2.1.1   Definition of Transitive Reasoning
Suppose an experimenter shows a child two sticks, A and B. which differ
in  length.  Y.  siich  that  YA  >  YB·   Next.  stick  B is compared witli another
stick C which differs in length. such that YB > YC. In this example the
length relationships Y.t > YB and YB > Yc. are the premises. When the
cliild is asked. without being given the opportunity to visually conipare this
pair of sticks. which is longer. stick A or stick C. (s)he lIlay Or 111ay not be

able to give the correct answer. When a child is able to infer the unknown
relationship (Y.i > Y-·) using the information of the premises (YA > YB
and ¥B > Yr·). (s)he is capable of transjtive reasoning.

2.1.2   Theories of Transitive Reasoning

Tliree general theories on transitive reasoning can be distinguished. They
are tlie developmental  theory of Piaget. itiforiziatioii processitig theory.  and
ftizzy trace theory. Tliese theories propose different definitiolls of the tran-
sitive reasoiiing ability and different operationalizations into transitive rea-
soizing tasks. Consequently. the theories led to contradictory conclusions
aboilt children's transitive reasoning ability.

Developmental Theory of Piaget

According to Piaget's theory (Piaget. Iiihelder. k Szeminska. 1948). chil-
dren acquire the cognitive operations to tlilderstand rules of logic at the
concrete operational stage. at about six or seven years of age.  This un-
derstanding implies that an object can have different relationships with
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other objects. For example. a stick can be longer than a second stick and

shorter than a third stick. This understanding is necessary to draw tran-
sitive inferences (Piaget & Inhelder. 1941; Piaget & Szeminska. 1941). At
the preoperational stage, before the concrete operational stage. childre11

think in a nominal way. This means that objects are understood in an

absolute form, but not in relationship to other objects. Consequently, at

this stage children are incapable of drawing a transitive inference.

Piaget distinguished two kinds of reasoning. To understand a transi-

tive inference, the formal rules of logic had to be acquired and applied to
the transitive reasoning problem. This kind of reasoning was called  'op-

erational reasoning". A child  is  able to reason  in an operational  way  at
the concrete operational stage. However, Piaget argued that operational

reasoning is not necessary in each kind of task. When some kind of spa-
tial  cue  in  the task gives information about the ordering of objects  (e.g..

when all objects are presented simultaneously), operational reasoning  is
not required because the information given by the spatial cue can be used

to infer the transitive relation: for example, objects become smaller from
right to left. In this case, no formal rules have to be understood. Piaget

called this kind of reasoning "functional reasoning".  Functional reasoning

is acquired at the preoperational stage. Piaget was in particular interested

in the development of logical comprehension, and therefore used transitive
reasoning tasks in which the preniises were successively presented to be

sure that children had to reason on an operational way. When a succes-

sive presentation of the premises is used, spatial cues about the ordering of

objects are not available (although other kinds of ordering cues might be
available).

Information Processing Theory

Although within information processing theory a broad diversity of ideas

about information processing exists, differently oriented researchers on
transitive reasoning do not make a distinction between functional and

operational reasoning.  An understanding of formal logical rules is not a
necessary condition for drawing transitive inferences in any version of in-
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formation processing theory. For example. in their linear ordering theory
Trabasso, Riley, and Wilson   (1975) and Trabasso  ( 1977) emphasized  the
linear ordering in which the premise information was encoded and iiiter-
nally represented. Linear ordering was the only ability involved in transi-
tive reasoning rendering it a one-dimensional construct. Task characteris-
ties like presentation form (simultaneous or successive), task format (e.g..

114  >  YB  >  Yc  and  YA  =  YB  =  YC  =  YD), and content  of  the  task  (phys-
ical. like length; or verbal. like happiness) might influence the difficulty
to form an internal representation, but the same ability is assumed for all
kinds of transitive reasoning tasks.

Sternberg (1980a, 198Ob) and Sternberg and Weil (1980) studied the
development of linear syllogistic reasoning, a special form of transitive rea-
soning in which the premise information is presented verbally. Sternberg
( 198Ob) showed  that a mixed model. which contains  both  a linguistic  com-
ponent and a spatial coinponent, could explain linear syllogistic test data
(for alternative models, see also Clark, 1969: DeSoto, London, & Handel,
1965; Huttenlocher, 1968; Huttenlocher & Higgens, 1971: Quinton & Fel-
lows,   1975: and Wright,   2001).     According  to  this  mixed model. both  a
verbal and a linear ordering ability are involved in solving linear syllogistic
reasoning tasks. Premise information is first encoded linguistically, and
then ordered spatially into an ordered internal representation.

Fuzzy Trace Theory

According to fuzzy trace theory (Brainerd & Kingma, 1985. 1984; Brainerd
&  Reyna. 1995.2004),the level of exactness of encoded information varies
along a continuum. One end is defined by fuzzy traces, which are vague,

degenerate representations that conserve only the sense of recently encoded
data in a schematic way. The other end is defined by verbatim traces. which

are literal representations that preserve the content of recently encoded
information with exactitude. These verbatim traces contain information
like:  there is a red object and a yellow object: the objects are vertical
bars; and the red bar is longer than the yellow bar.  At the other end of
the continuum. the information is stored in a degraded, schematic way:



2.1 Introduction                                                  25

for example objects get loiiger to the left (Brainerd & Kingma, 1985:
Brainerd  &  Reyna,   1995). The various levels  of the continuum process  in

parallel; that is, by encoding literal information from a task. at the same
time degraded fuzzy information is processed at several levels. Brainerd

and   Kingma  (1984,   1985),   and also Brainerd and Reyna (1995) showed
that the fuzzy end, containing degraded information about the ordering of
objects, was used to draw a transitive inference.

Fuzzy trace theory does not distinguish operational and functional rea-

soning (Brainerd & Reyna,  1992,  see also Chapman & Lindenberger,  1992).
It is assumed that task characteristics influence the level of the fuzzy trace
continuum that may be used and, consequently, determine the difficulty
level of a transitive reasoning task. No logical rules have to be applied and
one ability, which is the ability to form and use fuzzy traces, explains an in-
dividual's performance on different kinds of tasks, rendering the construct
of transitive reasoning a one-dimensional construct.

Comparison of Theories

Namber of Abilities Involved The most important point of disagree-

ment is what the ability to draw a transitive inference really is. Piaget
distinguished operational and functional reasoning, two forms of reasoning
that were qualitatively different, and acquired at different stages of cog-
nitive development. Trabasso's (1975) linear ordering theory assumes one

ability; that is, forming an internal representation of the objects is assumed
to be one ability. Sternberg, who studied linear syllogistic reasoning, as-
sumed a mixed model in which both a verbal and a spatial ability are
involved. They are assumed to function as two separate abilities. Fuzzy
trace theory also assumes one ability; that is, reasoning based on a fuzzy
continuum.

From the perspective of Piaget's theory, information processing theory
and fuzzy trace theory define transitive reasoning as a functional form of
reasoning only applicable to a limited set of transitive reasoning tasks in
which a linear ordering of the objects is given by a spatial cue. This func-
tional reasoning does not require an understanding of transitivity, which is
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only acquired when children are capable of operational reasoning (Chap-
man & Lindenberger.  1988).

Infuence of Task Characteristics on Dilliculty Although not all
theories make explicit predictions about the influence of task characteristics
on the difficulty  of a  taski,  implications with respect to difficulty  can  be

inferred from the theories' assumptions.

•  Piaget 's Theory. Firstly. because simultaneously presetited tasks can

be solved by functional reasoning wliile successively presented tasks

inust be solved by operational reasoning, froni Piaget's theory it Call
be inferred that simultaneous presentation of the preniises of a task

is easier than successive presentation. Secondly, becazise the sallie
logical rules are needed to solve equality, inequality or mixed equality-
inequality task formats. the format of the task (e.g.. YA > YB >
Yc,   or   YA   =   YB   - Yc') does not influence the difficulty of a task.

Thirdly, because content of the relationship does not influence the
application of logical rtiles. type of content does not iiifluence the

difficulty level of a task. However. Piaget first used length and theii
other concrete observable relationships to study transitive reasoning.

He called the acquisition of understanclitig of different types of tlie
same ability in different tilile periods horizontal ddcalage (Piaget.

1942). Therefore. as a fo,irth prediction it may be liypothesized that
inferring a transitive relationship in a physical type-of-content task
is easier than iii a non-physical type-of-coritent task.

• Information Processing Theory.  Firstly. the formation of a liiiear
ordering and the memory of the prentises are expected to be easier
when the pretilises are preseiited siIniiltalieously than wlieii they are
presented suecessively Secoiidly. because it is more clifficillt to form
a linear ordering of a mixed format task, it niay bc expected tliat
nlixed inequality-equality tasks are more clifficzilt than equality or

1 For exattiple. m Piaget's theory the influence (,f external conditic,ns  (like task c·liar-

acteristics) on perfc,rmance was hardly disc·iissed.
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inequality tasks. Although information processing theorists do not
use equality format tasks to study transitive reasoning, these tasks
may be expected to be easier than inequality-format tasks because the
internal representation of an equality task is easier than the internal
representation of an inequality task. Thirdly, according to the mixed
model of Sternberg (198Ob) both a verbal and a spatial ability are
needed to solve linear syllogisms. For verbally presented tasks both
abilities are required and for physical tasks only the spatial ability
is required. Thus, it may be hypothesized that verbal tasks (linear
syllogisms) are more difficult than physical tasks.

• Fuzzy Trace Theory. Firstly, because the retrieval of a fuzzy trace
is easier for simultaneously presented tasks (which contain a spatial-
order correlation) than for successively presented tasks (in which the
ordering  of the premises  is less obvious) (Brainerd & Reyna,   1992),
successive presentation is expected to be more difficult than simul-
taneous presentation. Secondly, because it is difficult to reduce the
pattern information of the mixed inequality-equality format into a
fuzzy trace, it can be hypothesized that the mixed inequality-equality
format   is   more  difficult   than the equality   or the inequality format.
Thirdly, when a fuzzy trace is used to infer the transitive relationship
only pattern information and no verbatim information (like type of
content of tasks) is involved.  Thus, different types of contents are
not expected to influence the difficulty level.

A summary of the influence of task characteristics on the difficulty level
according  to the theories is given in Table  2.1.

Responses

Cognitive theories not only disagree about the kinds of tasks that should
be used to measure transitive reasoning. but also about the types of re-
sponses that are required to verify that a child had really drawn a tran-
sitive inference. Piaget asked children to verbally explain their answers
to verify whether a child has really used operational reasoning to solve a
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Table 2.1: Comparison Of the Theories With Respect to the Number Of
Abilities and Influence of Task Characteristics on Di,Oiculty Level of Tasks

Theory Topic Predictions

Piaget NUMBER OF ABIL[TIES: two. functional and operational reasoning

PRESENTATION: successive more difficult than simultaneous
FORMAT: all formats sarne difficulty

CONTENT: verbal content more difficult than physical content

Information Nt:MBER OF ABILITIES: one (linear ordering), two (mixed model)
Processing PRESENTATION: successive more difficult than simultaneous

FORMAT: equality easier than other formats,

mixed more difficult than other formats
CONTENT: verbal content more difficult than physical content

Fuzzy NUMBER OF ABILITIES: One

Trace PRESENTATION: successive more difficult than simultaneous

FORMAT: equality easier than other formats,

mixed more difficult than other formats
CONTENT: physical cotitent and verbal content equally difficult

transitive reasoning task. According to Piaget, children were capable of

operational reasoning when they could mention aloud all the premises in-

volved (Piaget & Inhelder. 1941: Piaget et al., 1948; Piaget, 1961). Efore

recently Chapman and Lindenberger (1992) assumed a child to be able to
draw a transitive inference when (s)he was able to explain the judgements.

However, information processing theory hypothesized that the verbal ex-
planations interfered  with the cognitive processes  (see e.g., Brainerd,  1977).

Also, the internal representation was not assumed to be necessarily verbal.

Instead, cognitive processes were measured using reaction times (e.g; Tra-
basso et al., 1975) or using the performance of children on specific task

formats (e.g., Smedslund. 1963; Murray & Youniss, 1968).
When the aim of a study is to construct a transitive reasoning task

for determining the age of emergence as exact as possible, using either
the judgement or the judgement-plus-explanation may highly influence the
result. For example, although a fair comparison between studies using
different task formats could not be made, Bryant and Trabasso (1971) found
children of only four years of age to be able of transitive reasoning. but



2.1  Introduction                                                                                                                                     29

Chapman  and  Lilidenberger  (1992)  did  not find children  able of transitive
reasoning before the age of seven.

Iii fact.  the discrepancy of judgnient  and judginent-plus-explanation  ap-

proaches can be sumniarized as a choice between type I and type II errors
(Smedslund. 1969). Given the mill hypothesis that children do not have a
transitive reasoning ability. a judgment-only response is prone to evoke a
type  I error (false positive). assziming that a child  is able  to  draw a transi-
tive inference when in fact it is not. However, when a verbal explanation is
required. a type II error (false Iiegative) is likely to occur, by assuming that
a child is not able to draw a transitive inference when in fact it is. This in-
ference may be caused by the child's underdeveloped verbal ability. When
the aim of the study is to obtain an impression of the processes involved
in the development of transitive reasoning. the explanations given by the
child are useful, accepting the risk of a type II error and being somewhat
conservative about the age of emergence. USillg judgment-plus-explanation
data, Verweij et al. (1999) showed that several trarisitive and non-transitive
strategies were used to solve different kinds of transitive reasoning tasks.
For several task types. different strategies led to correct answers.

2.1.3   Goal of Present Study

The disagreement about the number of abilities involved in transitive rea-
soning. the type of responses to be recorded, and the influence of task
characteristics on task performance led to three hypotheses:

1. I:ici: Two qualitatively different abilities, functional and operational
reasollilig. explain the response patterns on various tasks containing
transitive relationships.

H.4: Otie ability explains  the response patterns on various transitive
reasotiing tasks. The tasks differ only in difficulty.

2. Ho: The response patterns based on strategy scores provide a better
scale than the respoiise patterns based oil product scores (see Section
2.2.6. for a description of strategy and product scores).
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HA: Response patterns containing strategy scores and response  pat-
terns containing product scores both provide good scales.

3. Ho: The difficulty of transitive reasoning tasks is not influenced by
task characteristics or combinations of task characteristics.
HA:   The  difficulty of transitive reasoning tasks  is  influenced  by  task
characteristics or combinations of task characteristics.

For determining the number of abilities involved in transitive reasoning

(first hypothesis), nonparametric item response theory (NIRT) methods

(Molenaar & Sijtsma, 2000: Stout, 1993, 1996) were used to investigate
the underlying dimensionality of a data set generated by means of a set
of tasks having different characteristics.  When one ability is involved, the
task scores can be explained by one underlying dimension. Then, the tran-
sitive reasoning tasks differ only in difficulty as predicted by linear ordering
theory (Trabasso  et  al.,   1975) and fuzzy trace theory   When  two  or  more
abilities are involved for S01Ving different kinds of tasks, multiple dimen-
sions are needed to describe the responses of children to a set of transitive
reasoning tasks.

To investigate which kind of response information gives the most useful
insights into transitive reasoning, two kinds of responses were compared

(second hypothesis). First, we collected the correct/incorrect judgments
children gave on a set of transitive reasoning tasks (quantified as product

Scores). Second. the verbal explanations children gave for the judgments

(quantified as strategy scores) were recorded. Before comparing the useful-
ness of both types of responses. the relationship between the two types was
investigated. IRT models were used to compare the quality of the product
scores and the strategy scores.

The predictions of the theories with respect to the difficulty level of
transitive reasoning tasks (Table 2.1) were studied by determining the in-
fluence of task characteristics on the difficulty level of the tasks (third
hypothesis).   For this purpose a multiple regression model  were  used.
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2.2 Method

2.2.1   Operationalization of the Construct

For constructing transitive reasoning tasks. three kinds of task charac-

teristics were used. The first characteristic was presentation form of the
pre,mises. According to Piaget's theory, qualitatively different reasoning
abilities are involved in successive or simultaneous presentation of the
prerikises, while information-processing theory and fuzzy trace theory as-
sume that one ability is involved in both presentation forms. The second

cliaracteristic was task format. Various task formats may have a different
influence on the formation of a linear ordering or the use of logical rules;.

The third characteristic was task content. This characteristic was chosen

to measure the influence of different kinds of content of the transitive re-

lationship on performance. According to Sternberg (198Ob, 198Oa), both
a spatial and a verbal representation are involved in solving tasks having
a verbal content (linear syllogism) whereas only a spatial representation is
involved when the content is physical. The performances on the tasks were

both measured by means of the correct/incorrect answers and the verbal
explanations of the answers.

2.2.2   Tasks

Three kinds of task characteristics, presentation form, task format, and
task content with 2,4, and 2 levels, respectively, were completely crossed,
forming 2 x 4 x 2=1 6 tasks. Figure  2.1  shows the tasks  of the transitive
reasoning test. Note that the sticks had the colors blue, green, orange,

purple, red, and yellow in the computer test. The task characteristics and
their levels are:

• Presentation form. The two levels are:

1. Simultaneous presentation (Figure 2.1, tasks 1. 4. 5, 7. 10. 11,
13,  and  16).   When  the premises were presented simultaneously,
all the objects were visible simultaneously during the whole task.
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According to Piaget's tlieory. this kincl of task Illay be solved

zisitig functional reasonitig.

2. Successive presentation (Figure 2.1, tasks 2. 3, 6.8.9. 12. 14,
aiicl  15).   Wheii tlie  I,reinises were preseiitecl  sticcessively,  iii eacli
step of the preseiitation one pair of objec.ts was visible but the
otlier  objects  use,(1  iii  the  task  were  not.   According to Piaget's
tlieory. this kind of task must be solved tising operational rea-
Sollillg

• Task format. The foiir levels are:

1.    1.,4    >   YB   > Yc.: tralisitive test pair YA,Yc' (Figure 2.1. tasks 1,
6, 12, and 13). Iii Figure 2.1, Task 1, the lion is assumed to be
older than the catilel. and the camel is assumed to be older tlian
tlie 11ippo.

2.  YA -YB = Yi' -YD: transitive test pair YA,Y-' (Figure 2.1.
tasks 3, 7, 9, and 16). Iii Figure 2.1, Task 7, all sticks have tlie

same  length.

3. Y.i > YB > YC > YD > YE: transitive test pair YB. Pb (Figure
2.1, tasks 4, 8. 10, and 15). In Figure 2.1. Task 4. the greezi
stick is longer thail thi red one. the red one is longer than the
purple one. the purple one is longer than the yellow one, and
the yellow one is loriger than the orange one.

4. YA-YB>Y('-YD, transitive test pair YA, Yc (Figure 2.1.
tasks 2, 5, 11, ancl 14). In Figure 2.1. Task 5. the hedgehog is
assumed to be the same age as the rabbit. tlie rabbit is asstimecl
to be older than the duck, and the duck is assuined to be the
sanie age as the chicken.

. Tyl)(: of content. The two levels are:

1. Physical content (Figrire 2.1, tasks 2,4,6,7.9, 11, 13. and
15).  When the content of the task was pliysical. the length
relationship betweezi the sticks could be ol,served visually duritig
the presentatiozi of tlie premises.
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2. Tmbal content (Figure 2.1. tasks 1. 3. 5. 8. 10. 12. 14. and 16).
\\'lien the content of the task was verbal. the experimenter told
the age relatioiiship between the animals to the cliild during the
presentation of the premises.

2.2.3 Instrurnent

The transitive reasoning coniputer program 'Tranred  (Bouwnieester &
Aalbers. 2002) was an individual test. constructed especially for this study.
This coniptiter program replaced tlie nornially used in 'vivo presentation
of tlie tasks. The advantage of a coinputerized test was that the admin-
istration of the test was highly standardized.  Aforeover. inovements and
sozinds cotild  be  impleniented  to enhance  the test's attractiveness  ancl  hold
the child's attention.  Finally, the registration of the test scores was dotie
niostly by tlie program during the test administration. The verbal expla-

11ation the chil(1 gave after (s)he had clicked on the preferred answer was

recorded iii writing by the experimenter. The tasks were presented in the
sanle fixed order for every subject   (see  Figure  2.1   for  the  task  orderitig).

Relatively clifficult tasks were alternated by easier tasks to keep the childreii
niotivated. A pilot study showed that the verbal explanatioils with respect
to the same objects appearing in different tasks were hardly ever confused.

Nevertheless. to avoid a clependence between the objects of different tasks.
tasks sharing the same objects or task characteristics were alternated as
ilitich as possible by tasks havilig different objects or task characteristics.

2.2.4 Procedure

The test was administrated in a quiet rooni iii the school building. The
experinieiiter started a little conversation witli the child to put him/her at
ease and introduce the task types. Then the child did soIne exercises to get
lised to the Tranred program.  Tlie buttons of the prograni were explaitied.

It was explaiiied that the colored sticks could liave different lengths, wliich

could only be observed when the doors of the box were opened (see Figure
2.1,  physical  content).   Also,  it  was  explained  that  the  aninials  cozild  have
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differeiit ages. btit that this was not 01>servable. After the itistructioiis wer<,
given. the test was started.

When the content of the relationship was physical, a box appemrd
011 the screen which either containecl all objects (Figure 2.1. .4·,muttaneous
presentation of physical content) ora pair of objects (Figiire 2.1. SUCCESS·it'e

presentation of physical content). The doors were openecl to show tlie

objects of the first preiziise pair, and the child was asked wliich stick was

1011ger or whether the sticks had the same length. When tlie sticks differed
in length, the difference could be observed clearly. Then the child clicked on
the longest stick, or on the equality button when both sticks had the same
length. The doors closed and the doors of the next premise pair opened.

The question was repeated for all premise pairs. During the test phase.
the doors were closed and the length of the sticks could not be conipared

visually.  The child was asked which of two sticks was longer or wliether
tlie sticks had the same length. After the child liad clicked on one of the
sticks or on the equality button, (s)he was asked to explain the answer.
The experimenter wrote down the explanation, the box disappeared from
the screen, and the next task started.

When the content of the relationship was verbal. all animals (Figure 2.1,
simultaneous presentation of verbal content) or a pair of animals (Figure
2.1, successive presentation of verbal content) walked onto the screen. For
each premise pair, the experimenter told the child which allimal was older
or that both aiiinials had the same age. The child was asked to click ori
the oldest anirlial or on the equality button wlien both aiiinials had the
same age. This was repeated for all premise pairs. In the test phase, the
cliild was asked which of two animals was older or whether both animals
had the same age. After the child had clicked on one of the animals or on
the equality button. the experimenter asked the child for an explanation
of tlie answer. The experimenter wrote down the explanatioii, the aniinals
walked off the screen, and the next task started.

The adnlillistration of the test took about half an hour. depending on
the age of the child. For young children the test took more time and for
elder children the test took less time.
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2.2.5 Sample

The transitive reasoning test was administered to 615 children ranging in
age from 6 to 13 years old. Children came from six elementary schools
iii the Netherlands. The children came from middle-class social-economic
status (SES) families. Table 2.2 gives an overview of the number of children
and their mean age within each grade.

Table 2.2: Number of Children. Mean Age (M) and Standard Deviation
(SD) bv Grade

grade number age

AIa SD

2 108 95.48 7.81

3 119 108.48 5.53

4 122 119.13 5.37

5 143 132.81 5.17

6 123 144.95 5.34

11111111)er of ]lioilths

2.2.6 Responses

Product Scores When children clicked on the correct object in the

test  phase, they received a score  of  1.   When they clicked  on  an  incorrect

object a score of 0 was registered.

Strategy Scores This study builds on previous research on scaling

transitive  reasoning by Verweij   ( 1994). He found satisfactory inter-rater
agreenient for two raters who independently coded the verbal explanatioiis
given by children who solved transitive reasoning tasks. Figure 2.2 gives
an overview of the transitive and non-transitive strategies children used in
this study to solve the 16 tasks. The first distinction was made between
explanations iii which the information of the premises was either used or
not. When children did not give an explanation they said that they had
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either guessed, did not know how they knew the answer, or could not
explain their answer. Whe11 children gave an explanation but the premise
information was not used, children used external information instead to
explain their answer  (e.g.. the parrot is older because parrots can live more

than   40  years):   or   they used visual aspects  of  the  task to explain their
answer   (e.g..   the   btue  st·ick  is   longer  because  I  can  see   that   when  I  look

close).

When the information of the premises was used correctly. children lit-
erally mentioned the premises or reduced the information of the premises.

When the premises were mentioned correctly, the child mentioned all the
premises involved (e.g. YA > YB > Yc: animal A is older than animal
C because animal A is older than  animal  B.   and  animal  B is older than

animal  C). This strategy is equivalent to operational reasoning in Piaget's
theory. When the information of the premises was reduced correctly, cliil-
dren used a reduction of the premise information, by using the position of
the objects (e.g., YA > YB > YC > YD > YE, simultaneous presentation; all
animals are ordered from left to right, the oldest animal fcrst, sO animal B is
older than animal C); the time sequence (e.g., YA > YB > YC > YD > YE,

successive presentation; the sticks are ordered in time, stick A was pre-
sented first and is the longest, object B was presented before object D,
so   object  B   is   longer) ; a total reduction (e.g., YA - YB - YC = YD:

all  animals  have   the  same  age).    When the premises were mentioned  iii-
correctly, children  used an incorrect interpretation  of the premises   (e.g..

YA  =  YB  >  YC  =  YD: all sticks are equally long, except for stick B, which
is  longer,  so  stick A and stick C are equally  long);  gave an incomplete  ex-

planation (e.g., YA > YB > YC: stick A is longer than stick C because stick
B   is  longer  than  stick  C); or confused the test-pair  with a premise-pair

(e.g.. YA > YB > YC: stick A is longer than stick C because I hatie just
seen that stick A is longer than stick C)2.

2 In  a  stiidy  by Bouwmeester. Sijtsma.  and  Vermunt (2004), chapter  4  of this thesis.

a nominal variable was used in which all strategies were distinguished to determine the

relationships between age, strategy use and task characteristics.
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Tlie strategies in which the preniise liiforinatioll was correctly ineii-
tioned literally or reduceci correctly, were called transitit,e masoning strate-

gies  atid received  a score of 1.  All other strategies received a score of 0.  Iii
0.16% of all cases. the explanatioii given by the child co,ild not lie classifiecl
in oiie of the strategy groups.  IIi those cases a missizig vallie was registerecl.

2.2.7 Item Response Theory

0111 t.hree hypotheses were invest.igated by izieans of IRT. Figure 2.3 gives

an overview of the successive steps that were followed in tliis stu(ly.  We
first mention these steps and provide a global description of the rationale
behind them. Then we explain tlie assutiiptions. nietliods ailcl niodels iii
some detail.

IRT models provide Inethods to assess tlie dimensionality of the data,
and thus can be used to determine the ritiniber of abilities involved iii
our  transitive  reasoning test.   The program DETECT (Stout, 1996). was

used to investigate dimensionality using the local independence assuniptioii
of IRT. and the prograin AISP (Alolenaar & Sijtsma, 2000) was used for
the sallie purpose using the monotonicity assumption of IRT. DETECT
and M SP are exploratory methods. In contrast. the program Improved
DIAITEST (Stout. 1993) was used to test the hypotheses about the dinien-
sionality resulting from DETECT, A·ISP, and the theories about transitive
reasoiiing. 0111 approach is more exploratory than confirmatory, and there
is a methodological and a theoretical reason for this. Alethodologically, the
exploratory niethods DETECT and kISP were used iIistead of a confirlila-
tory method like factor alialysis, because factor atialysis of dichotonioziN
item scores has problems due to the extreme discreteness of stich scores

(Naiidakumar, Yii. Li, & Stout, 1998: McDonald, 1985; Hattie, Krakowski,
Rogers. & Swaminathan, 1996). Van Abswoude, Van der Ark, aiid Sijtsiiia

(2004) argued that DETECT and AISP do ilot suffer froin tliese l,roblenis.
Theoretically, we cliose an explorative approach because Piaget's theory is
not explicit al,out the role of task characteristics witli respect to tlie kind of
ability (functional or operational) that is involved in transitive reasoning:
that is, precise hypotheses about the task loadings oil different factors or
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dimensions can not be posited. However, some less explicit expectations
may be derived from the literature. Improved DIMTEST was used to test
the expectation that successive tasks are solved by operational reasoning
while simultaneous tasks are solved by functional reasoning (Chapman,
1988:  Chapman  &  Lindenberger.  1992).

The results of MSP, DETECT, and Improved DIMTEST were com-
pared and the resulting conclusion answered the first hypothesis about the

number of abilities. This conclusion was used as the input for investigating
the second hypothesis. This was done by fitting two progressively more
restrictive IRT models to the data. First. we fitted the nonparametric
nionotone homogeneity model (MHM; Mokken. 1971, chap. 4; Sijtsma &
Afolenaar. 2002. chap. 2) to the two data sets. This model implies the
ordering of children with respect to ability level.  A more restrictive non-
parametric model is the double monotonicity model (DMM  Mokkell. 1971,
chap. 4; Sijtsma & Molenaar, 2002, chap. 6). When this model fits, both
the children and the transitive reasoning tasks can be ordered, but on sep-
arate scales. The li11ear logistic test model (LLTM, Fischer, 1973, 1995:
Scheiblechner, 1972) can be used to model the relationships between task
difficulty and task characteristics. However, since the LLTM is a special-
ization of the Rasch model it is highly restrictive. Because the Rasch model
did not fit our data. as an alternative multiple regression on P-values was

used (Green & Smith, 1987).



2.2 Method                                                                        41

IRT

./

3      1-J-1    |UP 1    |M I
=

2       1
DETECT MSP              2

38
                             . 1

DIMTEST                                           3.y

+            "m
Conclusion Dimensionality 63

i
Ino

IMHMI---
no scale

yes     -3

        DMM 2                                                .9
M

.                            E

Multiple Regression                    %
E  

ao

Figure 2.3:  Overview of the Successive Analyses



42                   Chapter 2. Aleasuring the Ability of Transitive Reasoning

Assumptions Common to the IRT Models Used in This Study

Local Independence Let the test ConSiSt of J dichotomously scored
tasks. atid let 8 denote the latent ability measured by the J tasks.  If the
tasks measure nwre than one ability. we assume lt' latent ability parameters
collected iii a vector 8 - (81.....811·)· Let Xj be the random variable for
the score on task j. with j  = 1. . . . .J:  and let .rj be the realization of
this variable.  with .rj  = 0.1.   The task score variables are collected in
X = (Xt. ... .XA). and the realizations in x = (.ri.... ..r.1). Finally. the
conditional probal,ility of a 1 score on task j is denoted pjce): this is the
it.eni respotise surface. For scalar 8. Pi (8) is the item response furictioii
(IRF). The assuniptioii of local independence (LI) is defined as

J
p(x =x l e) = 11 pj(e)4 [1 - pj (8)11-4. (2.1)

1 =1

LI means that  a subjects response to a task is not infliienced by his/her
re,spoiiKes to tlie othei tasks iii the test. LI ilriplies that the covariance of
two tasks. j alid k. given the la.tent trait composite, 0. is zero: that is,

Cot,(Xi· XA· 1 8) = 0. This zero coticlitiotial covariance is known as weak
local indepeiidence. which is ititportant for practical item selection (Stout
et al., 1996; Zliatig & Stozit, 1999a) to be discussed shortly.

UnidiTTiensionality The assziniption of zinidimensionality (UD) means
that the data structiire caii be explaiiied by a linidimeiisional lateiit trait. 0.
Wlien UD does ilot hold. one ability is not eiiough to explain the variatiori
iii the scores 011 differetit tasks. alid a second ability inay be necessary to
explain tlie variability. and perhaps a tliird. a fourth. and so on. Although
UD a11(1 LI are Iiiathetiiatically 11Ot the same. iii practice. the same methocls
are lised to er·alizate tliese assziniptionH.

Monotoiticity For 1111idiniexisioiial 19. we assuine that the IRFs are
monotolle noiidecreasing fuiictiotis. That is. for two arbitrarily chosen fixecl
vahies of 8. sar. Ba ariel Ob. we haipe that

Pt (19" ) 5 Pj(th,). wheziever Oe < 8„: j = 1......J. (2.2)

This is the 111011(,toilitity ( I) assitinption. Assumption AI also gives infor-
ination al)(,lit th(· cliriwiisionality of the task set. based on the variation iii
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the slopes of the IRFs. Suppose that the task set iS Inultidilliensional ill
the sense that sonie tasks measure 6Ii and otliers measure 82· Because tlie
slope of an IRF expresses the streiigth of the relationsliip of a task with
the lateiit ability or a lateiit ability composite. it may well be tliat tasks
measuring one ability have steeper IRFs thati tasks ineasuring a different.
ability.  Even if a unidizzlellSional IRT model is iiicorrectly hypotliesized toi
these multidimensional data. the slopes of tlie IRFs inay provide evidence
of this niziltidi Iiiensionality (Heniker et al.. 1995; Mokken. 1971: Sijtsnia

& Alolenaar. 2002. chap. 5: Van Abswoude et al.. 2004). Iii this study,
we investigated whether all the tasks measure the Sallie B and, in case of
multidimensionality, we tried to ideiitify unidiniensional subsets of tasks.

The Monotone Homogeneity Model The AIH I (Mokken. 1971,
chap. 4: Sijtsllia &6 Molenaar, 2002, chap. 2) is based on the assumptions

of LI, UD, and AI. The MHM is an NIRT model that orders subjects on the
8 scale using their number-correct score. defined as X+ = Z Xj (Grayson,
1988: Hemker. Sijtsma. Molenaar, & Junker, 1997). Theoretically. this
ordering of persons is the same for each task, and also for a sumscore.

14 = E Y., based on the task scores Yj from any subset of tasks selected
from the larger set of tasks that are driveii by 61 and agree with the A·IHM.
In practice, the number of tasks affects the accuracy of a persoii ordering
estimated  by means of the  number-correct score X+.

Methods to Assess the Dimensionality of the Data

We used three methods to assess the dimensionality structure of the two
dichotomous data sets. The first method was the item selection proce-
dure iii the computer program AISP ( lolenaar & Sijtsma. 2000: also, see
Sijtsnia and Afolenaar, 2002. chap. 5). This proceditre is used to select
the tasks on the basis of assumptioii NI. The second item selectioii inethocl
was DETECT (Zhang & Stout, 1999b). The third nietliod was Improved

DINITEST (Stoilt. Froelich. & Gao. 2001). This method was used to test
the   imll-hypothesis  of  UD   for the whole   task   set. Both DETECT aild
DIAITEST use the assumption of LI to assess UD.
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Program MSP. MSP (Afolenaar & Sijtsma, 2000) uses scalability coef-
ficient H (Alokken. 1971, pp. 157-169) to assess the discrimination power of
individual tasks (i.e.. the slopes of the IRFs) and the whole test.  The item
coefficient Hj is an index of the slope of the IRF relative to the spread of
the number-correct score X+ in the group under consideration. The higher
Hj, the better task j discriminates between different X+ scores. The H
coefficient for the whole test of J tasks summarizes the slope information

contained  in  all  J  item  coefficients  Hj.
Mokken, Lewis. and Sijtsma (1986) argued that higher positive H values

reflect higher discrimination of the whole set of tasks and, thus, a more
accurate ordering of subjects. In practical test construction, to have at
least reasonable discrimination. a lower bound value for Hj and H of 0.3
is recommended (Mokken. 1971 p. 184). Other guidelines (Sijtsma &
Molenaar. 2002, p.  60) for the interpretation of H are: 0.3 S H< 0.4
is a weak scale; 0.4 S H< 0.5 is a medium scale; and 0.5 S H< 1.0 is
a strong scale. The MSP item selection procedure has been described in
detail by Mokken (1971, pp. 190-194; also see Molenaar & Sijtsma, 2000;
and Sijtsma & Molenaar, 2002, chap.  5).  It is a bottom-up procedure, that
starts by selecting the two items with the highest significantly positive Hjk
that  is at least  c  (c  > 0: user-specified).    Then the procedure adds tasks

one by one, iii each step maximizing the total H of the selected items, such
that Hj 2 c for all selected items (for possible exceptions, see Sijtsma &
Molenaar,  2002.  p. 79). After having selected the first scale, the procedure
continues by selecting from the unselected items a second scale, a third
scale, and so on. Van Abswoude et al. (2004) found that MSP was able to
exactly retrieve the true dimensionality from simulated data when latent
traits  did not correlate highly  (say.  higher  than  0.4).   Hemker  et  al.   (1995:
see also Sijtsma & Molenaar, 2002, p.  81; Van Abswoude et al., 2004)
recommended using a range of c values from c = 0.00 to c = 0.55 with
increments of 0.05, and described sequences of outcomes for increasing c
values typical of multidimensionality and unidimensionality.
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Program DETECT. The computer program DETECT (Zhang &

Stout. 1999a, 1999b: Roussos. Stout. & AIarden. 1998) contains aii item
selection algorithin that tries to find the partitioning P for which the de-
gree to whicli LI is satisfied is maximal. given all possible partitions of
the task set. In contrast to AISP. where assumption AI is the basis of the
item selection, weak LI is the basis of DETECT. DETECT works best
when all individual tasks load on one 8 (but not necessarily the same 0 ior

all tasks). This is called approximate  simple  stnicture   (Zhang & Stout,
1999a). Whell individual tasks load on different Os. approximate simple
structure does not hold and no best partitioning can be determined. Un-
der the assumption of approximate simple structtire. the DETECT index
is maximal when the underlying structure is correctly represented by the
number and the composition of the clusters. When the DETECT value is
zero, no best partitioning is possible and the task set is unidimensional.
As a rule of the thumb (Zhang & Stout, 1999b). a task set is considered
unidimensional  when the DETECT valiie  is  smaller  than  0.1. To evalu-
ate whether approxima.te simple structure exists. Zhang and Stout ( 1999b)
proposed that index R 2 0.8. When approximate simple structure does
not exist. it is difficult to decide how many dimensions are involved. Van
Abswoude et al. (2004) recommended to lise AISP and DETECT together
for analyzing one's data.

Program Improued DIMTEST. DIAITEST is a procedure that tests
the null hypothesis that a set of items is dimensionally siniilar to another
set of itenis. Because the DIAITEST procedure does not work for short test,
we  used tlie improved  DIMTEST  procedure  (Nandakuniar &  Stout,  1993).

This procedure generates a unidimensional data set using a nonparanietric
bootstrap method to correct for bias in parameter estimates and to increase
the power of the DIAITEST statistic (Stout et al.. 2001). The hypothesis
is tested that the generated data set has the same dimensionality as the
real data set. For exaniple. we tested the hypothesis that the responses
to the successively presented tasks are dimensionally distinct froni those
to the Sinlultaneousl>' presented tasks. We considered the simultaneously



46                  Chapter 2. Aleasuring the Ability of Transitive Reasoning

presented tasks to be the Assessment Test (AT: see Nandakumar & Stout,
1993) and the successively presented tasks to be the Partition Test (PT:
see Nandakumar & Stout, 1993). The items in AT were hypothesized to
measure one dominant trait. An asymptotic test statistic denoted T. was
used to test whether the items in AT and PT measure the same 8.

IRT Models and Assessment of Fit.

Monotone Homogeneity Model After the dimensionality of the
transitive reasoning data was investigated, the computer program A'ISP

(Afolenaar & Sijtsnia. 2000) was used to investigate the fit of the MHM
to the two data sets. To evaluate whether the IRFs of the J tasks were
all nondecreasing. subjects were partitioned into J restscore groups on the
basis of their restscore. RC_ j )=X+-Xj. The restscore  R<_j )  is an ordinal

estimator  of 19  (Junker.  1993). To enhance power, small adjacent restscore

groups were joined using recommendations given by Molenaar and Sijtsma
(2000,  p.   100).   For each restscore group  r the probability of giving  a  cor-
rect answer. P(Xj =1 1 RC-i) = r). was estimated, and the hypothesis was
tested that these probabilities are nondecreasing in Rt-jj

Double Monotonicity Model The DMM adds a fourth assumption
to the AIHM, which states that the IRFs do not intersect. This fourth
assumption equals invariant item ordering', that is, the ordering property
of the J tasks is the same for different subgroups of subjects (except for
possible ties), including individual Os. In particular, for two tasks j and k.
if we know for one Bo that Pi(00) < PA. (80), then it follows that for any 8.
we have tliat P,(8) 5 Pk·(e) This ordering can be extended to all tasks.

AISP was used to investigate whether the IRFs intersected. The scala-

bility coefficient HT (Sijtsma & AIeijer. 1992) for the J tasks in the test and
the person coefficient H,T were used to evaluate intersection of the IRFs.
As a rule of thunib. if HT 2 0.3 and the percentage of negative Il  val-
ues < 10. then the IRFs do not intersect. Three additional methods were
used to investigate the nonintersection of IRFs for pairs of tasks. These

methods are th restscore method. the restsplit method. and the inspection
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of the P-matrices. P(-, -) aiid P(t. t) (Sijtsma & AIolenaar. 2002. cliap.
6). These illethods are l,ased 011 the saizie rationale. but use different sub-
groupings of respondents for estiinating the IRFs.  The three Iilethods differ
in accuracy to estimate the IRFs and iii power to detect intersections.

Linear Regression Using P-values Iii the nizilt.iple regressi011 inodel
the proportioiis correct are regressed on the task characteristics. Because
the proportions c.orrected are boutided between  0  and   1, a logistic trails-

forniation of the P-values was used.

2.3    Results

2.3.1 Relation Between Product Scores and Strategy Scores

Table 2.3 shows the proportions of strategy lise and the proportions of cor-
rect answers given strategy use. The two "correct" strategies (literal and
reduced premise information) almost always led to correct answers. The
three strategies iii which no premise information is used (visual informa-
tion,  external  information,  and  no explanation) have proportions of correct
answers close to chance level. Test/premise pair confusion relatively often
led to a correct answer, although it is an incorrect strategy. Table 2.3 shows
that incorrect strategies often led to correct answers that were produced

by chance.

2.3.2  Hypothesis 1: Assessing Dimensionality
Analysis of Product Scores

12 cases were rejected from the analysis because of missing vahies on one
or more tasks. The restilting sample consisted of 603 siibjects.

MSP Analysis. Table 2.4 shows the sequence of outcomes of the AISP

aiialysis with increasing c-values. Task 2 was immediately rejected because
of negative covariances with other tasks. For lowerbound c - 0, two scales
were formed containing six and nine tasks. respectively. which suggests that



48                   Chapter 2. Afeasuring the Ability of Transitive Reasoning

Table 2.3: Strategy Use and Proportion of Correct Answers
STRATEGY Proportion Proportion

strategy use correct answers
LITERAL COMPLETE PREMISE INFORMAT1ON .16 .94

REDUCED PREAIISE INFORAIATION .21 .97

INCORRECT PREMISE INFORMATION .19 .23

INCOMPLETE PREMISE INFORMATION .10 .48

TEST/PREMISE PAIR CONFUSION .10 .58

VISUAL INFORMATION .06 .35

EXTERNAL INFORAl ATION .03 .36

NO EXPLANATION .16 .37

the test measures at least two latent abilities. For increasing c-values. Task
3 and Task 6 were also rejected, and a third and a fourth scale were formed.
both containing two tasks. For c-values of 0.40 and higher, almost all tasks
were rejected and no scale was formed containing more than two tasks. For
c = 0.55 no scale was formed.  On the basis of the guidelines of Hemker

et al. (1995), it was concluded that at least two abilities were involved in
answering the tasks. One scale contained the tasks  7,  9 and  16  (H  =  0.44),
which all have the format YA - YB - Yc - YD, and another, rather weak

(H = 0.25) scale contained the tasks 1,4,5,8, 10, 11. 12, 13, 14, and 15,
which have the formats YA > YB > YC: YA > YB > YC > YD > YE: and
YA-YB>YC-YD·

DETECT Analysis. A random half of the sample was used for the

DETECT procedure. The second half of the sample was used for cross-
validation. The R index for assessing simple structure was 0.74. This is
smaller than the value of at least 0.8 that Zhang et al. (1999b) proposed

for approximate simple structure. The maximum DETECT value Idenoted
Do(P*)} was 0.88, which was higher than 0.1. indicating that the task
set was not unidimensional. The partitioning with this value had three
clusters.  For the second half of the sample. using the same partitioning
that was found  to be optimal  for the first  data  set,  we  found  Do (P* )  =
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Table 2.4:  Item Selection for Increasing c- Values. for Analysis Using Prod-

uct Scores

c      scale 1 scale 2 scale 3 scale 4 # tasks
rejected

.00 1.3.4,7.9.16 5,6,8,10.11,12.13,14,15                                         1

.05 1.3.4,7.9,16 5.6,8.10.11,12,13.14,15                                         1

.10 1,3,4.7.9.16 5.6.8,10.11,12.13.14.15                                             1

.15 3,4,7.9,16 1.5.8,10,11,12.13,14,15                                         2

.20 7,9.16 1,4.5.8,10.11,12.13,14,15                                         3

.25 7,9.16 5,14,10,8,1 4,13 11,15        4

.30 7,9,16 5,10,8,1 4,13 7

.35 7,9,16 5,10,1 4,13                           8

.40 9,16 10,1 4,13                          10

.45 9.16 10,1 4,13                 10

.50 9,16 10.1 4,13                 12

.55                                                           16

0.48 and R = 0.43.  To gain more insight into the dimensionality of the
data, 20 random samples of approximately 50% of the subjects were drawn
from the original sample and the DETECT value was calculated for each
sample. Figure 2.5 shows the number of times that two tasks were in
the same cluster. Three (overlapping) clusters can be diStinguished. One
contained the tasks 3, 7, 9, and 16 (all with format YA - YB - Yc - YD),
which were almost always in the same cluster. A second cluster contained

the tasks 1, 5, 8, 10, 11, and 14, and a third cluster contained the tasks 2,
4, 12, and 13.  Task 6 did not fit well in any of the clusters and Task 15
might belong to either the second or the third cluster.

Improved DIMTEST Analusis Three hypotheses were tested.
First, it was tested whether the tasks that were simultaneously presented

measured the same ability as the tasks that were successively presented (Pi-
aget's theory). Second,  it was tested whether the tasks  that  had a verbal
content measured the same ability as the tasks that had a physical content
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Table 2.5: DETECT Partitioning i.n Clusters for 20 Rari.doln Samples,
Product Scores

379 16 6 1 5 8 10 11 14 15 2 4 12 13

3     09  04  00  00  00  00  00  01  01  06  00  04

7////// ·10 04 00 00 00 00 00 00 00 05 00 03

9      110  04  00  00  00  00  00  00  00  05  00  03
16        10  04  00   00  00  00   00  00  00  05  00  02
6  09 10 30« 10   06 05 05 05 03 03 02 00 00 03 00
1    04  04   04   04  06    r15:     .11,09j  02  00  01   02  01
5    00   00   00  00   05   15      ;151    05   01   00   02  00
8 00 00 00 00 05 ...   -15   05  01  00  02  00

0    00  00  00  00  05         13   05  01  00  02  00
11        00     00     00     00     03     11   ' 15     15     15·        09     02     00     00     00

14   00  00  00  00  03  09  13  13  12  14   11  05  02  04  02
15    01   00  00  00  02  02  05  05  05  09     11  07  08  09
2   01  00  00  00  00  00  01  01  01  02  05  11   ·12  13  09
4   06  05  05  05  00  01  00  00  00  00  02 07 12   13  

12         00      00     00      00     03      02     02      02      02     00      04     08      13      13      · 15

13         04      03     03      02     00      01      00      00     00     00      02     09     09     09      15    

0 1 1    5 tili«.  E 6  -t) till:  O Ict 15 tifnes im 16 - 20 times

(Sternbergs mixed model).  Thircl. it  was tested whether the tasks with ali
eqziality format (Y-4 - Ph - Yc' - YD) measured a different ability thaii
tlie otlier tasks. which was the result of AISP and DETECT. The restilts
H"ere:

• Hypothesis 1.· Statistic T was 1.24 (p > 0.05). sO We Call not conclude
that simultaneously and sticcessively presented tasks require different
abilities.

• Hypothesis 2: Statistic T was 2.51 (p < 0.05). so the tasks havitig a
verbal content may measure a different ability than the tasks having

a physical content.
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• Hypothesis 3: Statistic T was 2.85 (p < 0.05). so the equality tasks

may measure a different ability than the tasks having an inequality

or mixed inequality/equality format.

Conclusion About Dimensionality Of Product Scores. AISP. DE-

TECT and improved DIATTEST results converged to the conclusion that
the structure of the product scores is not unidimensional. MSP distin-
guished at least two dimensions, one defined by tasks with the equality

format and the other by the other tasks. DETECT found three partly
overlapping clusters, one of which contained the tasks having the equality

format. The Improved DIMTEST procedure supported the hypothesis that
the tasks having an equality format were dimensionally distinct from the
other tasks, and that the tasks having a verbal content were dimensionally

distinct from the tasks having a physical content. None of the three meth-

ods showed that the successively and simultaneously presented tasks were

dimensionally distinct.

Analysis of Strategy Scores

15 subjects were rejected from the analysis because of missing values on

one or more tasks. The resulting sample consisted of 600 subjects. Because

only six children gave a transitive reasoning explanation for Task 2, this
task was rejected from further analysis.

MSP Analysis. Table 2.6 shows the sequence of item selection out-

comes with increasing c-values. For c = 0, all tasks were selected into the
same scale. For higher c-values, all tasks were selected into the sallie scale

until a c-value of 0.40, when Task 12 was rejected from the scale. For c =

0.45, a second scale was formed containing the tasks 3, 9, and 14. Consid-
ering this sequence of outcomes, it could be concluded that the structure
of the strategy scores was unidimensional.

DETECT Analysis. The R ratio on the first half of the sample was

0.68, indicating that there was no approximate simple structure. The max-
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Table 2.6: Item  Selection  for  Increasing  c-Values.  for  Analysis  Usilig  Strat-
egy Score.s

c               scale 1 scale 2 # tasks rejectecl

00 1.3.4.5.6.7.8.9.10.11.12.13.14.15.16

.05 1.3.4.5.6.7.8.9.10.11.12.13.14.15.16

.10 1.3.4.5.6.7.8.9.10.11.12.13.14.15.16

.15 1.3.4.5.6.7,8.9.10.11.12.13.14,15.16

.20 1.3.4.5.6.7,8.9.10.11,12.13.14.15.16

.25 1.3.4.5.6.7.8.9.10.11.12.13.14.15.16

.3(} 1.3.4.5.6.7.8.9.10.11.12.13.14.15.16
3.5 1.3.4.5,6.7,8.9.10.11.12,13.14.15.16

.4() 1.3.4.5.6.7.8,9.10.11.13.14,15.16                     1

.45 1.4.6.7.8.10.13.15.16 3.9.14                            3

.5t) 2.6.7.9.11.16                                           6

.55 4.6.8.10.13.16 7.11                        5

i 11111 n i DETECT value [D„(P*)1 was 0.57. indicating that the task set was
not uilidinietisional. The partitioiiing with maximum DETECT valtie had
two clusters.  For the cross-validation sample we found that Dc, (P*)  = 0.24
atid R = 0.32.  Again. 20 samples of approximately 50% of the original sarn-
ple size were drawn at random froin the original saniple and the DETECT
values were calculated for each sample. Figiire 2.7 shows two overlapping
chisters. otie clzister contaiiilitg tlic tasks 3.7.9, aiid 16. which were alniost
alwa)'s iii the sanie cluster. alid 0119 cllister containing the other tasks. It
coulci not be decided to which chister the tasks 4 and 6 belong.

Irnproved DIMTEST Analysis. The same three hypotheses were
tested as was done using the prodtict scores. The results were:

.   Hupoth.esis 1: Statistic T was 0.70 (p > 0.05). so we could riot Con-
clude that simultaneously and successively presented tasks requirecl
different abilities.
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Table 2.7: DETECT Pailitioning in Clusters for 20 Random Samples.
Str tegy Scores

1 5 8 1 0 1 1 1 2 1 4 1 5 1 3 4  6  3  7  9  16

1     515      11  :13,   114'  07  06  02  01  01   01   01
5   613,   LUL  .14· :13.     06  03   04  00  00  00  00
8     [15     '10       09   07   02   00   01   00   00

10 .... Cl.2  14:  144 08  05  03  00  00  00  00

11      ®  Iii(;  {141  fliffi     06   ifil  !13    05     03     08     03     03     03     04
12   1131 :131   ,]1,4, 06   11*i fl33 612-  07  06  00  00  00  00
14 ../.li 131 4*   Effil 06  .03:  03  00  00  00  00

15   114; - I 44· .1-3,1 iI©il !151 I Iii.  07  04  00   00  00  00
13    07  06   09  08   05   12,  06  till    ;11   02   03  03  03
4    06  03  07  05   03  07  03  07      Ri  07  08  08  08
6   02  04  02  03  08  06  03  04 310 111   08  08  09  09
3   01  00  00  00  03  00  00  00  02  07 08 ....
7   01  00  01  00  03  00  00  00  03 08 08     
9   01  00  00  00  03  00  00  00  03  08 09 ....
16  01 00 00 00 04 00 00 00 03 08 09 ....

  0-5 'inies 0 6 9 times O 10
- 15 times   16 20 times

. Hypothesis 2: Statistic T was 2.26 (p < 0.05). so the tasks having a
verbal content may ineasure a different ability than the tasks having
a physical content.

• Hypothesis 3: Statistic T was 2.30 (p < 0.05). so the equality tasks
may measure a different ability than the tasks having an inequality

or mixed inequality/equality format.

Conclusion About Dimensionality of Strategy Scores. Different

methods led to differeIit conclusions about the diniensionality of the data.

MSP indicated unidimensionality. Improved DIMTEST suggested distinct
abilities for both the equality tasks and tasks having a verbal content.
DETECT resulted in two dimensions. One cluster contained the tasks
with the equality format and the other cluster contained the other tasks.
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The tasks having a verbal content did not form a distinct cluster.

2.3.3  Hypothesis 2: Fitting the NIRT Models

The product scores did not form a unidimensional scale. Therefore. the
NIRT models were only fitted to tlie strategy scores.

Analysis of Strategy Scores

AISP, DETECT and Improved DIAITEST led to different Conclusions about
the dimensionality structure of the strategy scores.  In particular t.he equal-
ity tasks formed a distinct cluster. In the following analyses, 15 transitive
reasoniiig tasks (except Task 2) were lised.

MHM Analusis. The H-value of the scale was 0.45. inclicating
ineclinin strength scale.  All Hts were between 0.38 (Task 12) and 0.66
(Task 16).  Table 2.8 gives an overview of the Pj-values and the Hj-values.
The item-restscore regressions were increasing or non-significantly locally
clecreasiIig for each of the 15 tasks. Thiis the hIHM fitted the 15 tasks.

DMM Analysis. The HT valiie was 0.52, and the percentage of neg-
ative HT values was 1.4. According to the assessment of intersection via
restscore groups. tasks 3 and 10, and tasks 9 and 10 intersected signifi-
c·atitly (z.3.to = 1.81: -9,10 = 3.05).  Investigating the intersection via rest-
split groups. tasks 9 and 10. and tasks 4 and 12 intersected significaiitly
for two (lichotomizations (viel<ling ig. 10 vallies of 2.04 and 3.12: aiid 21.12
vahies of 1.66  and  1.67.   The bivariate  proportions in  the  P(t. t)  matrix
showed 811 intersectioii of the tasks 9 aiid 10.

Suminarizing the results of the four lilethods. the task pair (9.10) had
tlie most serious intersections. but the violations were small. It was con-
cliided that the DAIM fitted the strategy data and that an invariant itc'Iii
ordering held for the 15 tasks.
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Table  2.8:   Pj - Value  and Hj- Value  of the  Itents.  Based  on  Strategy  Scores

Item # Presentation Forniat Content PJ      H 1

6 successive 1 -4    >   YB    >   1 2 physical .05 .46
15 successive 34 > 39 > Yc' > 31, > Y/·   physical   .07   .47

5 sinlultaneous 3 -1 - 3 'B > 3'2 ' = p'n verbal .15  .40

14 successive ¥3.1 = 3'B > P'(' = 32) verbal .19 .42

8 successive T·1   >   > b>   1 2 '   >   1 1,>   i i verbal .21 .48

11 simultaneous Y.1  -YH>  32 ' - ¥ 'D pliysical .31 .40
4  simultaneous  YA > YB > 19· > 4, > YA·   physical   .39   .46

12 successive 3 11   >   ¥13   > Yc· verbal .40 .38

3 successive Y,1  =  YB  =  P'('  = YI) verbal .45 .41

10 simultaneous Y.4   >   4   >  1.'P     >   3 'D   > 32 verbal .52 .51

9 successive Y,1 -39 = Pp' -, I) physical .54 .40
1   simultaneous   YA >YH > K. verbal .56 .46

13 siniultaneous YA > YB > 4 physical .57 .50
7   simultaneous   YA = YB = YC' - 1·1, physical .77 .55

16      simultaneous      YA  -  YB  =  Y'  - YJ verbal .86 .66

2.3.4   Hypothesis 3: The Influence of Task Characteristics
on Difliculty

Multiple Regression

A multiple regression analysis was performed 011 the 15 tasks to which the
DAIAL fitted. The dependent variable was the logit transforniation of the
proportion correct of each task. The three task characteristics were the
predictor variables. Because the task cliaracteristics were nominal they
were transfornied to dummy variables. A significant F-value was found:
Fi.14 = 6.77 (p = 0.01). The adjusted R2 was 0.71. ineaning that the model
explained 715t of the variance of the difficulty levels of the 15 tasks. Two
regression weights (Table 2.9) significantly deviated from 0. The format
YA = YB - Yc' = YD had a positive effect 011 the easiness of a task.

Siniz.iltatieous presentation was easier tliall sitccessive presentatioii.
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Table 2.9: Estimated Weights of the Multiple Regression Model

Cliaracteristic B SE 3 p-value

(Constant) -1.980 .740 .028

YA> YB>YC .273 .698 .096 .706

Y.1 -YB - 11" - YD 1.797 .698 .632 .033

1':4 > YB > YC'> YD > YE .221 .611 .078 .727

YA=YB>YC=YD -.957 .631 -.305 .168

Presentation 1.504 .367 .597 .003

Content .333 .393 .132 .420

Simultaneous  presetitation  forin  was  coded   1. Successive presentation fc,r m

was (·c,deci  0,  Verbal type of content was coded 1, Physical type of contetit

was ccided 0.

2.4 Discussion

Theories stemming from different epistemological backgrounds used differ-
ent definitions. operationalizations and methods to study transitive rea-
soning. This led to disagreement about the number of abilities involved iii
transitive reasoning, the kind of responses to be collected, and the influence
of task characteristics on performance. In this chapter, we first evaluated
the hypothesis that different abilities are involved in solving tasks by inves-
tigating the dimensionality striicture of a task set with various task char-
acteristics. Both the prodzict scores and the strategy scores were analyzed
and the resiilts compared. Second, a scale was constructed which measured
individual differences in transitive reasoning. Third. the influence of task
characteristics on the difficulty level of tasks was determined.

The results of AISP. DETECT and Improved DIMTEST for the product
data and the strategy data showed that the dimensionality of successively

and simultaneously presented tasks did not differ. Thus. there is no evi-
dence to distinguish between functional and operational reasoning. This
result does not support Piaget's theory. With respect to Sternbergs mixed
model. it appeared that Improved DIMTEST suggested different abilities
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for tasks having a verbal content and tasks having a physical Colltent. Al-
though MSP and DETECT clid not support this finding. a tentative con-
clusion might be that there is some evidence that the tasks having a verbal
coiltent require an ad(litional verbal ability. A possible explanation for
finding the distinct abilities only by means of DIAITEST may be tliat the
verbal content tasks were relatively easy linear syllogisills with respect to
tlie verbal ability coniponent (withozit negations or marked adjectives: see
Sternberg. 198Ob). In terms of Sternberg's niixed model this would mean
tliat verbal content tasks require a weak verbal component in addition to
the spatial ordering coniponeiit whereas physical content. tasks only require
a spatial ordering  coniponent.

Iri contrast to the results of the past four decades of research on cogni-
tive developnient (see e.g., Brainerd, 1977: Murray & Youniss, 1968; Smed-
slund. 1963), we found that the strategy scores produced more straightfor-
ward and useful findings than the product scores. The data structure of
the strategy scores cotild be explained by one dimension according to MSP,
but at least three dimensions were needed to explain the data structure of
the product scores. The results of the three methods did not converge to
one interpretation. The multidimensionality in the product scores might
best be explained by the difference in accuracy and meaning of the two
types of responses. A product score of 1 means that the child had clicked
on the correct object. A 1 score may therefore not represent true transitive
reasoning ability, but instead may be due to additional unimportant skills
or tricks.  The data structure of the product scores is expected to be fuzzier
than the data structure of the strategy scores, for which the meaning of
a 0 or 1 score is clearer. This may explain why the product data were
multidimensional and the strategy data were unidimensional.

Our population consisted of children of six years and older, which were
well capable of explaining their thoughts afterwards. This population was
chosen because our aim was to describe the development of transitive rea-
soning. but not to determine the age of emergence of transitive reason-
ing. This often was the aim of researchers studying transitive reasoning by

young children (Braine, 1959: Smedslund, 1963: Alurray & Youniss. 1968;



58                   Chapter 2.  Afeasuring the Ability of Transitive Reasoning

Bryant & Trabasso.  1971).   When younger children are studied. the require-
ment of verbal explanation may cause many false negatives due to verbal
incapacity. Then. product scores are expected to be niore useful.

For the strategy scores. DETECT found that the equality-format tasks
(}'4 - YB - YC' - YD) formed a distinct cluster. AISP and Improved
DI ITEST did not find a distinct dimension for the equality-format tasks.
The equality-format tasks were easy. and they discriminated well between
children with low ability levels. and worse between children with higher
ability levels. Although the equality-format tasks may not be entirely di-
mensionally equal to the other tasks. they are useful froin a practical point
of view because they discriminate well at B levels not covered by the other
tasks but desirable for a transitive reasoniIig scale.

AISP, DETECT and Improved DIMTEST evaluate dimensionality froni
different perspectives on the data. The three methods differ in several ways

and each has merits and drawbacks. Van Abswoiide et al. (2004) concluded
that DETECT is the best nietliod to assess true dimensionality. However,
the simple structure assumption is a strong assumption which may not
be realistic iii many psychological settings. AISP is susceptible to locally
optimal solutions beca.use it uses a sequential clustering procedure. Fur-
ther. AISP often does 11Ot accurately distinguish highly correlated abilities

(> .4), but DETECT does. However. by forcing tasks into clusters of
highly correlating traits. DETECT is vulnerable to chance capitalization.

Also. Van Abswozide et al. (2004) found that. DETECT does not reflect well
diniensioiiality wlieii abilities are 111easured 1,>' 1111eqiial nuinbers of tasks.

Iniprored DIATTEST does not reflect true diniensionality well when abili-
ties are measured by unequal numbers of tasks and these task subsets have
equal average discrimination. DETECT and Iinproved DINITEST both
need large sample sizes. and Improved DIAITEST has low power for short
tests. Nevertheless. when the methods are used next to each other. they
can competisate each other's shortcomings aiid offer a detailed description
of the underlying dimensioiiality.  In future research it would be interesting
to sample new data and use the results from the present stiidy for confir-
matory analysis. Alriltidimensional IRT models might be appropriate for
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this purpose (see e.g.- Kelderman & Rijkes. 1994.and Reckase. 1997).
It is important to point out that statistical methods give iriatheinatical

definitions of dimensions. and that these diniensions are not equivalent to
psychological abilities. The interpretation of the (litnensionality of the data
is depetident 011 the operatioiialization of the construct of transitive rea-
soniIig, bitt Ilot directly on tlie construct itself. While ustially 110 eXpliCit
distinctioii is inade betweeii tlie operationalizatioii of the constrtict aIid the
construct itself when interpreting the restilts. the distinctioii shozil(1 ilot be
ignored.  Iii our study. we used a broad operationalizatioii of transitive
reasoniiig by using different kinds of task characteristics.  Using this opera-

tionalization, we could explain the structure of the strategy data by Illealls

of one diniension.  When we would have used a narrower operationalization
based only on the theory of Piaget (e.g.. see Verweij. Sijtsnia & Koops.

1999). we probably would  have  found a different dimensionality  structure
leading to a different interpretation.

Multiple regression was zised to deterInine the influence of task charac-
teristics on the tasks difficulty level. With respect to preseiitation forni
each of the cognitive theories predicted that simultaneous presentation
was easier tlian successive presentation. This was indeed what was found.
With respect to the task forniat. the equality format appeared to be easier
than the otlier formats. This result was correctly predicted by iiiforniation
processing theory and ftizzy trace theory but not  by Piaget's tlieory. Verbal
and physical content hardly inflitenced difficulty level. and this was only
predicted correctly by ftizzy trace theory.

This stzidy showed that IRT techniques are tiot only useftil tools to
construct tests but also offer a set of methods to investigate psychologi-
cal theories. iIi particular the dimensionality of a psychological construct.
Now that we know that traiisitive reasoning can be explained by one di-
mensioii. further research should be clone to ititerpret this ability in niore
detail. In our current researcli. Bouwmeester et al. (2004) tised a latent
class regression  model  (see  chapter 4).  and  found that several latent classes

could be distinguished in whicli children used different patterns of correct
and incorrect strategies and the influence of task characteristics on perfor-
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mance was different. From a developmental perspective, it is important to
determine whether the development along the ability found in this study
is  continuous or discontinuous    see e.g Hosenfield.  Van  der  Maas.  &  Van

den  Boom  (1997).  and Thomas. Lohaus, & Kessler  (1999), for studies  on
discontinuity in other Piagetian tasks].



Chapter 3

Detecting Discontinuity in
the Development of
Transitive Reasoning: a
Comparison of Two Models

Abstract

Since Piaget. the issue of the existence of multiple stages in develop-

ment is an important topic. In cognitive developmelital research, the bino-
mial mixture model is often used to identify discontinuity from empirical
data. The binomial distributions that are hypothesized to correspond to
the stages are estimated by means of the Iiunilier of correctly solved tasks

in the developmental test. In doing this. the binomial mixture model as-
Sumes that all tasks in the test have the same difficulty level. However,
the assumption of equal task diffictilty may be unduly restrictive for Niore

complicated task types. and the use of the nilinber-correct score ignores

valuable information in the pattern of iteni scores.
Unlike the binomial mixture model. the latent ClaSS model does not as-

stinie binomial distributions of number-correct scores. allows task difficul-
ties to vary. and uses the information in the individual's item-score pattern

to estimate class membership probabilities and iteni success probabilities

61
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conditional on class nienibership.  In this study. the binomial mixture model
and the late'lit class model were compared at the theoretical level. and ap-
plied to data obtained by means of a test for transitive reasoning from a
sample of 615 children ranging in age from 6 to 13 years of age. Because

the biiioiiiial mixture 1110(lel is nested within the latent ClaSS Iliodel. the
fit of both models could be compared directly. It was conchided that the
more general latent class 1110(lel is more appropriate for identifying multiple
stages when tasks differ iii difficulty level.

This c·hai)t(•r lias been subinittecl for publication.

3.1 Introduction

Since Piaget formulated his developmental stage theory. the concept of

discontinuit>· iii cognitive dn'eloplned has beconie ali important topic iii

episteniological. psychological and methodological studies. Discontinuity
has been studied for several cognitive developmental abilities (Brainerd.
1978. 1993: Dolan, Jansen. & Van der Alaas. 2004: Flavell. 1970: Formann.
2003: Vaii Geert. 1998: Jaiisen & Van cler Alaas. 1997: Thoriias. 1989:
Thonias & Lohaus. 1993: Tliomas et al.. 1999: Hosenfield et al.. 1997). In
this study. the focus was oii the detection of cliscontimiity as reflected by
multiple 1110(les ill the development of transitive reasoning ability.

In cognitive developmental psychology. discontinuity is used to describe
the rather abrupt transition from one mode to another niode. Following
Piaget.  a  inode  may  be  defliied  as  a general cognitive structure or devel-

opmental stage (e.g.. Chapnian, 1988: Flavell. 1985: Piaget. 1947). Alter-
natively, it niay be conceived of as a specific rule or strategy. which is part
of a partic·zilar ability (e.g.. Hosenfield et al.. 1997: Thomas et al.. 1999:
Van der Alaas & iIolenaar. 1992). Piaget distinguished different stages iii
cognitive development by means of the ass,imption that knowledge acqui-

sition clevelops via cognitive structures which differ qualitatively (see. e.g..
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Case. 1992: Flarell. 1963).  The transition of a cognitive structure into a
differeiit cognitive structure explains the cliscontinuity iii the developtilelit
of knowledge.  It was difficiilt. or even impossible. to translate sucll general.

abstract stages itito an ciiipirical setting ancl investigate thein systemati-
cally (e.g.. Braitierd, 1978: Flavell, 1970. 1985). Commenting on Brainercl

(1978), Flavell (1970. p. 187) advised -to give up 011 graiid aticl sweepiiig
developmental periods that try to find a single. uniform 'deep structure
description of the thinkiiig the cliild does at a given age . He encouragecl
to coiitinue studying steps or levels within a single coriceptual domaiii or
subdomaiti. Wheii 1110cles are Ilo longer taken as broad, developmental
stages but defined as rules or strategies iii a particular domain or subdo-
main. tlie transition from one nlode to a different mode can be interpretecl

as discontinuity in the development of the specific ability under study.
Often the term abruptness is used to indicate discontinuity, meaning

that the change curve is expected to be junipy iii a particular time interva.1.

For exainple. Flavell  (1970)  and  Braiiierd (1993) agreed that  a cliange curve

as iii Figure 3.lb is abrupt, showing discontinuity. while a curve as in Figure
3. la reflects ContiilUOUS change (they actually disagreed about the validity
of the method that was used to determine continuous or discontinuous
change) However, deciding on whether  or  not  discontinuity  is  present  is
hampered by four problems. First. tlie slope of a curve depends oIl the Unit

of measurement - days, weeks, half-year periods, and so on - and the
larger the unit. the steeper tlie slope. Second, although an observed change

curve may show dramatic changes in steepness. the magnitude of the change
in steepness needed to decide on discontinuity is arbitrary. Third, aspects
of behavior lilay be related to age. but other variables have presumably a
more direct. cazisal relationship to the behavioral changes found with age

(Wohlwill.   1973,  p. 26). Firially, chronological  age  is  not a useful variable
to study development of behavior. since there are cotisiderable individual
diffei ences iii rates of developmetit. that is. one child at four years of age
may attain a level at some given behavioral dimension which another child
Illay not reach till the age of six (libhlwill. 1973. p. 26)

Researchers used botli cross-sec·tional aiid longitiidiiial desigii,  in study-
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ing discontinuity in the development of Piagetian concepts.  A cross-
sectional design  (see  e.g..   Hosenfield  et  al..   1997)   describes  discontinuity
by nieans of the existence of niultiple modes in the general development of
an ability. These modes result from the use of a particular rule or strat-
egy.  Because a test measuring the ability of interest usually is administered
only once, information about the transition from one mode to a different
111ode is not available and therefore hypotheses concerning this transition
can not be tested. In fact. this approach agrees with Piaget's initial aim to
develop a kind of encyclopedia of human cognition in which it is described
which cognitive tasks a child is able to solve within a particular age range.

Longitudinal  designs  (see.  e.g..  Van  Geert.  1998) are appropriate when  the
aim is to describe the transition from one mode or stage to a subsequent
mode or stage. The development of a child can be determined by means
of repeated ineasurenients during a particular time interval. Alarkov chain
models (e.g.. Brainerd. 1979) and catastrophe illodels (Van der Alaas &
Molenaar, 1992) were 11sed to study multiniodality in longitudinal designs.

The choice of a cross-sectional design or a longitudinal design depends on
the hypotheses to be tested and the resources available.

In general, it is assumed that an observed discontinuity in the change
curve reflects discontinuity in the development of the ability of the child.
However, particular properties of the items used to measure the ability
may cause an artificial discontinuity in the change curve. For example.
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when a test coritains tasks at two inarkedly different difficulty levels. the

change curve shows discontinuity which actiially reflects discoiitinuity in
task diffictilty. but not necessarily developmetital discontinuity

The problenis of determillilig the definition. the operatioiialization. and
the ineastirenietit of discontimiity may be of concern. in partictilar. when
relating research resiilts to the discussion about discontinuity iii general

cognitive developitient. igzioring (1) accountiiig for the appropriate level of
sophisticatioii at which discozitimiity is studied: (2) irnplicit ideas about the
size of the change iii perforrilailce; (3) restrictions of the research design:
and (4) properties of the ziieastirenient instrunients. However. when these

issues are coiisidered carefully, conclusions about the developizieiit of a
particular ability may be well founded. From a pragmatic point of view,
well-founded modes offer the possibility to differentiate between groups of
children tliat share relevant cognitive behavior.

3.1.1   Aim of This Study

Several researchers studied discontinuity in Piagetian tasks. For example.

Thomas (1989) and Raijniakers. Jansen. and Van der AIaas (2004) studied
multimodality iii classification performance:   Thomas  and  Turner   (1991).
Thomas  and   Lohaus   (1993),   Thomas  et   al.   (1999)   and Formanii (2003)
studied nlultilnodality in performance on the water-level task; Hosenfield
et al. (1997) studied multiniodality in analogical reasoning: and Van der
Maas (1998). aiid Jansen and Van der Maas (2002) studied multimodal-
ity in performance on balance scale tasks. The aim of this cross-sectional
study was to determine whether discontinuity reflected by lililltiniodality
exists in the development of transitive reasoning ability.  In our research on
transitive  reasoning  (Bouwnieester  &  Sijtsma,   2004:   Bouwmeester  et   al..

2004). expectations   about  differeiit   modes  iIi clevelopnient arose because

of different kinds of explatiatiotis children of different ages gave after they
had solved transitive reasoning problems. We defined discontiniiity as the
existence of different strategy groups and liot as a particzilar change in
steepness of the developniental growth curve. That is. we expect a rela-
tionship betweeti age and strategy use. but we do not expect fixed age
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periods to define discontinuity.
Fuzz  trace theory (Brainerd & Kingma. 1984: Brainerd & Reyna, 1995.

2001,2004) predicts that different modes may be expected in performance
on transitive reasoning tasks. Fuzzy trace theory assumes a verbatim con-
t.inutim and a fuzzy continuum. Young children use verbatim information
to solve problems (e.g., literal observable information), while older  chil-
dren use progressively niore fuzzy information (i.e.. degraded, pattern-like
information. only holding   the gist). Although the underlying verbatim
continuum and fuzzy continuum are assumed to be continuous, the per-
formance variable is expected to show at least two groups of children that
are characterized by different kinds of strategies reflecting the use of either
verbal or fuzzy information.

Several transitive reasoning studies showed that different kinds of
strategies were used to solve transitive reasoning tasks. Verweij et al.
( 1999) showed  that  children  between  seven  and  12  years  of age  used  differ-

ent strategies. and Bouwmeester et al. (2004) distinguished seveii categories
of explanations that children gave to justify their answers to different kinds
of transitive reasoiiiiig problenis.

3.1.2 The Binomial Mixture Model

Thomas  and  Lohaus ( 1993), ThomaS  and  Turner   (1991),  Thomas  et  al.
(1999) and Thomas and Hettmansperger (2001) used the Binomial lfixture
Alodel (BAIAI) to model discontinuity in performance on the water-level
task. In the water-level task children have to draw the water-level in a
glass which has a particular angle with the horizontal axis. The tasks
differ in the angle of the glass but can be assumed to have equal difficulty
(Thomas & Hettinansperger, 2001). Hosenfield et al. (1997) used the BAIAI
to niodel discontinuity in analogical reasoning.

Assume that a test consists of J tasks, which are scored correct (score
1)  or incorrect (score  0). Random variables  Xj   (j  =  1..... J) denote these
iteni scores  (Xj   =  0.1).    The  BMAI  assumes  that   the freqziency distrib-
ution of a number-correct score on a test. X+ = Z.i=,Xi consists of a
mixture of binomial distributions. Further. assume c classes each of which
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is  characterized  by a  biiioinial  distributioii  for  X+. Let Bin (X+:.1. eu)  be

a binoniial  distribution  for X+.  1)ased on J trials each with  a success  prob-

ability 8„ (0 < 8„ < 1). Let irt, be tlie tiiarginal probal,ility of belonging
to a particular binomial distribution class or Coillponelit u  (U  =  1..... c)

with 0 5  sru  5  1. and E 71'u  =  1.  Then. the c·-classes bitiomial niixture
distribution is defined as

f(x+: J) = 317ruBill<X+Z J.01). (3.1)

u-1

Although the BA·I f is the model most commonly used to detect discoli-
tinuity iii cross-sectional data. it has SOille serious drawbacks. Tliese are
discussed below.

First. Hosenfield et al. (1997) used the BAIAI to detect niultimodality

but argued that its fit does not necessarily imply bimodality or multi-
modality. According to Hosenfield  et  al.    (1997,  p.   532)   "the  presence  of
bi- (or multi-) inodality can only be concluded if the model plot (i.e.. the
estimated overall frequency distribution of the nziniber-correct score: the
authors) displays two clearly separable peaks." We think that this conclu-
sion is not tenable in general. A gap between two peaks niay be difficult
to observe in real data unless the binonlial proportions differ markedly in
location or the test contains a large number of tasks and, as a result, the
peaks of closely located binomial distribiitions are clearly discernable.

Different kitids of cogriitive strategies may lead to a niixture of overlap-
ping distributions which do not clearly show gaps or peaks in the estimated
overall frequency distribution. It mab' be t.rize that multiniodality is present
when two or more peaks or gaps can be distinguished. but a distribution
having ozie peak may in fact coiisist of several overlappiiig distributionf
(Thomas & Lohaus. 1993). Alternatively. when discontinllity is assunied
to be revealed by the existence of niultiple rules or strategies, it is not neces-
sary to restrict the Colicept of discontinuity or niziltiple Iiiocles to obser\·able
peaks aIid gaps iii the overall frequency distribution.

Second.   the  detection  of  discontinuity  does  not   reqizire  a  part icular
shape of the frequency distribution. However. the B.1111 asstinies a niix of
binomial distribzitions and this may unnecessarily restrict the data.
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Third. tlie BiINI assunies that the binomial probabilities (i.e.. the 8's)
are constaiit aitiong different tasks for all individuals belonging to the sallie
coinponent. u: this is known as task-homogeneity (Formann. 2001. 2003).
The assumption of equal task difficulty may be true for the water-level task
(although  this is also questionable:  see  Thonias k  Hettniansperger.  2001).
btit unrealistic for nially other task types. Aforeover. when item difficulty
itifluences the strategy tliat is used. it is inappropriate to assume that the
spread in itei11 difficulty is due to error.

FiliallI'. 1,>· 11sing a l,irionlial illixtilie disti ibiition it is assumed that a
pal'ticular  illimber-correct  score  X+  was produced by just one strategy.  For

this reasoii. Thomas et al. (1999. p 1025) callecl the BAIA! conservatircp:

-It  will likelv find fewer strategies iii the poplilation thai} in fact are rep-
resented- Tliey argued, however.  that for reasons  of parsimony this  -is
Tiot  necessarilL·  an  uiiattractive sliortcoming However. deciding  on  the
existence of sonie strategies becaiise others can not be revealed by the sta-
tistic·al  niethod  seems ocld.  We argue next  that  assuming that  a particular
111111iber-correct score was produced by just one strategy is 111irealistic iii
111ain' practical situations (see also Formanii. 2003).

Binomial Mixture Model and Item Response Theory

lIaiir researchers (Hosenfield et al.. 1997: Lohaus & Kessler. 1996: Lo-
hatis. Kessler. Thomas. 62 Gediga. 1994: Tliotiias. 1989,1994: Thoinas
et al.. 1999: Thomas & Loliaus. 1993: Thonias & Turner. 1991) who used
tlie BAIXI for studying cliscontitiuity iii cogiiitive clevelopnieiital constriicts
assilille that a particular clistribution of the 1111niber-correct score X+ or
jii, t the ino le of this distril),itioii corresponds to a developlizental stage 01·
lilocle.  By studying a (listilict ability. the niode is interpreted as correspoticl-
big to a particular strateg>· or rule Er·hich characterizes the development of
tlie ability. This approacli focusses on the nuniber-correct score as the
statistic of interest. bzit not 011 the inclividiial item scores.

Other researchers   (e.g..   Bouwnieester   et   al.,   2004:   .Jansen  &  Vaii  cler

Alaas, 1997. 2002: Railmakers et al.. 2004: and Van Alaanen. Beeii. &
Sijtsma, 1989) focussed at the itelil scores. and asstimed that the lise of a
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particzilar strategy implies a correct answer to item j with a probability
that is typical of this strategy. For example. the use of Strategy A may
imply a probability of 0.9 of having iteill j correct, and the use of Strategy

B a probability of 0.2.  Then for Strategy A a score of 1 on item j is the
most likely outcome and for Strategy B a score of 0. When applied to
each of the J items, this probabilistic approach implies that Strategy A is

characterized by a most likely vector of J item scores, and Strategy B by a
different vector. However, because the approach is probabilistic. with each

strategy each of the 21 possible item-score vectors has positive probability.
This implies that. with each of the strategies. each X+ score (which is the
Sum of the item-scores iii an item-score vector) occurs with a particular

probability. Thus, strategies are characterized by particular distributions

of  X+,  but  the  question is whether X+ provides  unequivocal  information
about strategies.

The idea of the BAIM is to identify these X+ distributions and associate

them with strategies. Different strategies may lead to highly distinct 111Ost-

likely iteni-score vectors which, however.  have the same X+. For example.

assume that J = 4, Strategy A's Illost likely vector is (1.1.0,0) and Strat-
egy B's most likely vector is (0,0,1.1):  then for both strategies X+ = 2.
Here the BALAI approach is likely to fail ill identifying different strategies.

An approach that focuses on item scores and identifies item-score vectors

may be Iiiore successful.
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Additional evidence supporting the ilse of item-score vectors coizies from
inodern item respoii„e theory (IRT: e.g.. Eizibretson k Reise. 2000: Van der
Linden k Hanibletoil. 1 997). Using the conceptual framework of IRT. we
demonstrate  that  ( 1)  IRT models predict  that  for each individual taking a
test. each iteiii-score I·ector has positive prol)ability. (2) under 0112 rather
restrictive IRT 1110(lel iii particular, for each individual. giveri a fixed X+
value. one iteizi-score rector clearly has greater probability than the other
vectors: (3) for otlier. more f]exible IRT nlodels. for each individual. given
a fixed X+ value. several iteni-score vectors tiiar have relatively higli prob-

abilities: aiid (4) iticlivicliials with differetit ability levels but the sanie X+
value may have clifferent item-score vectors witli almost the sanie prob-
abilities. Together these results support  the use of item-score vectors to
identify strategies rather than the aggregated X+ score.

1. IRT Tnodets. mT 11-iodels ass11111(, a c·ozitiiiuous latellt variable. here

deiioted 4. insteacl of (liscrete coniponents, u.  For person s with latent
variable locatioii CY. tlie probability of a correct answer to iteiIi j is clenoted
P,(4.,). and the probal)ility of an incorrect score by Qj(6) =1- Pj(48).
Usiiig the tb'pical IRT assumption of local iticlependence (Eiiibretson k
R.eise.  2000,  p.   48).  tlie  probability  of aii iteiii-score vector  is  tlie  product
of probabilities P,(4.:) and Qj (<.). For example. for J = 4 the probability
of ite111-score vector (1.1.0.1) is

PI(l. 1.0.1)14.1 - PiC<.,),82(4..)0.3(4.,)P4(4:)· (3.2)

Arbitrarily ass111110 that for person s the four probabilities of a correct

aiiswer are (0.8.0.7. 0.8. 0.6). Then. according to Equation 3.2 the observed
itc'iii-score patt(,rii (1.1,0,1) has prol,ability 0.8 x 0.7 x 0.2 x 0.6 - 0.0672.

Also consider the other tliree iteni-score vectors which result iii X+ = 3 Ii.e.-
(1.1.1.0). (1.0.1.1).:111(l (0.1.1.1)]. For person s with 6. the probabilities
are 0.1792. 0.1152. a11(1 0.0672. respectivel>·.  Thus. in general IRT lilodels
iiiiply that all it(,111-score vectors liave positive probabilitb:

2. Rasch model. I.et dj deiiote the cliffictilty paranieter of itelil.j.  Under
tlie Rascli 1110(lel iteiIis elicit perforinatice accorcliiig to respoiise functioii

Pi(<)
= (3.3)

exp(< - dj)
1  + exp(<  - 4)
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For J = 4. Figure 3.2a displays the respoiise functioiis for realistic item
paraiizeters iii·  =  -1.4.-0.4.0.4.1.4  Isee Thisseti and Wainer (1982)  for a
reasoiiable  range of locatioii  paraineters].   For  these  85.  Table  3.1  shows the
prol,abilities of tlie 21 - 16 item-score vectors for five realistic values of
6 (of which the distribution tistially is liorilled to have a mean equal to 0
atid a variaiice eqiial to 1: see. e.g.. Hoijtink & Booinsma. 1995). Given a

fixed 4 value. it call be verified t hat for each X+ score one item-score vector
lias tlie greatest probability. aiid other vectors liave smaller but 1ion-zero
probabilities. This seenis to support the -one X+ value. one strategy-
assuniptiozi to sonle extent.

Table 3.1: Probabilities of Itc.Trt-SCOT'e Vectors Using the Rasch Model. (in.d

the Two-Pararneter Logistic AIodet

Ve(·tor \'rcti,r    .\'4                                       4
No.     -2 -1 0 1 2 -2 -1 0 1 2

Rasch Two-par. logistic
1 /1,)/)/) 0 .48   19 .04 .()(} .00 .38 .13 00 .00 .00

2 (}001 1 .26 28 . 16 .()4 .01 .08 06 .00 .00 .00

3      0010 1 .10   11 .06 .01 .()() .05 .13 .01 .00 .00

4             01 00 1 .04 ()5 .03 .01 .1)0 .00 .04 .03 .00 .00

5 11)00 1    .02 02 01 .(JO .00 .:$·1 .13 .00 .00 .00

6      0011 2 .05   16 .23 .1 (, .05 .01 .06 .01 00 .00

7         ()111] 2 .()2 ()7 .10 .£)7 .()2 .00 .02 .03 .01 .00

8          1001 2 .()1 03 04 .()3 01 .()7 .06 .00 .00 .0()

9 0110 2 .01 03    .0 1 .()3 .01 .00 .04 .20 .14 .08

10      1010 2 .(m   01 .01 .(}1 .(m .()5 .13 .()1 .00 .00

11 1100 2 .00 (jo .01 .0() .()0 .00 .04 .03 .0() .()0

12      0111 3 01  04 .16 .28 .26 00 .02 .21 .33  .40

13      1011 3 00    01 .mi .11 .10 .01 .06 .01 .00 .00

1 4                    1  1 0 1 3 .(jo 01 .0:J .05 .04 .()(} .02 .()3 01 .()0

15 1110 3 .()() 011 01 .()2 .02 .00 .04 .20 .15 .09

16 1111 4 .00 IN) .()4 .19 .48 .()0 .1)2 .21 .35 .44

1)()1(lf:1(·e: it(,Ill-Sc·(,rf' 5·('(·t(ir prc)1,al,ility whic·li is (·liw' tc, aiic,th*,r iteIii-sc·ore vi'(·tor prob-
al,ility f'(ir ite,11-,sc·(,rE, vi,c·t<,rs with th(' Sallie X+

3.  Two-parameter logistic model. Next. consider the 111ore flexible.
Illuch lisecl two-parameter logistic model (Embretson & Reise. 2000: p.
70). Compared to the Rasch niodel. this niodel adds a slope parameter.
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denoted aj. which is comparable to the regression parameter iii the logistic

regression model (e.g.. Agresti. 1990. pp. 85-87). The response function is
defitied as

pj(<) I. (3.4)
exp[aj (4 - dj)]

1 + exp[nj (4 - dj)]
Figure 3.2b displays four response functions based on dj = 0.0.0.7. 1.0.0.05
(j  =  1. . . . .4)  and  aj  = 0.05.4.0.2.0.0.8, respectively. This variatiori  in

slope parameters reflects variation in strength of relationship of the items
with the latetit variable. and is assumed to be due to variation in item prop-
erties. Different. properties niay be related to different strategies. Table 3.1
shows the probal,ilities corresponding to the 16 itent-score vectors, Using

the  same  <  values  as  used  for  the Rascli 111odel calculations.    For  4  - -1
arid X+ = 1. the item-score vectors 3 and 5 have the highest probabili-
ties. which are close (rounded values of 0.13 and 0.13, respectively).  For

4 - 0 and X+ = 3. for the item-score vectors 12 and 15 a siInilar result
is obtained (0.21 and 0.20. respectively). Thus. the two-parameter logistic
model accommodates the situation that a particular strategy leads to two
or tiiore ''most-likely" item-score vectors for a particular X+ score.

4.   Dilferent 4.   same X+. People with markedly different 4 values who
prodticed the sanie X+ score may have differeiit iterli-score vectors. giving
evidence of different  strategies; see Table 3.1. two-parameter logistic model.

X+ =2.4= -1 with vector ( 1.0.1,0) and ( =1 with vector (0.1.1.0), and
vector probabilities of 0.14 and 0.13. respectively. Based on the same X+
value it would be coiicluded tliat both respondents used the sanie strategy.

Based on the item-score vectors and given estimates of the lateiit variable

valties for both respondents. and assriming that use of different strategies is
related to proficienc, level. it would be coiichided that different strategies
had been used.

Several other examples could be constructed showing that using the
aggregate number-correct X+ score for identifying strategies leads to a loss
of iriformation. and that the lise of the finer-grained item-score vector is
better suited for this purpose.
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3.1.3 The Latent Class Model

The  BMM  is a restrictive Latent  Class  Model  (LCNI).  In  an LCM, unidi-
mensionality is not assumed and within a latent class the item parameters
are not restricted to be equal. The LCM is a mixture model (Lazerfield
& Henry, 1968; see also Hagenaars & McCutcheon. 2002; McCutcheon,
1987).  which allows heterogeneity  in both individual performance and  task
difficulty (Formann,  2003).   In  fact,  the binomial model  and  the  BMM  are
special cases of the LCM with some additional restrictions on the number
of classes and the parameters. Classes have prevalence or class probabilities
Tu (0 5 7["u 5 1, #Ec=1 Au = 1). Each class has class-specific parameters,

Bllu,····, GJItt, related to tasks 1,..., J, respectively.  Let the vector X contain
the item-score variables  [X  =  (Xi, ·· ·, X./)1' then the LCM is defined as:

el

f (x, = E 71-(U) 11 p(Ojill) (3.5)

U=1    j=1

Unlike  the BMM, which  uses the number-correct score  X+,  the  LCM
uses the vector of scores on the J tasks in the test, X. This difference
has important consequences. First, the BMM assumes that the difficulty
level of the tasks is equal for individuals in the same component.  When the
item-score vectors are used, the difficulty level may vary across tasks within
a latent class. Second, the same number-correct scores may be based on
correct responses to different subsets of tasks. Therefore, different item-
score vectors with the same number-correct score may have been produced

by different strategies. These strategies are not distinguished by the BMM.
So far the LCM was applied rarely to study discontinuity in cognitive

development (for exceptions, see Formann, 2001,2003; and Jansen & Van

der Maas, 2002). The results of an LCM analysis are more difficult to
interpret than those of a BMM analysis, mainly because of the varying
success probabilities of the tasks. However, Formann (2001, 2003) studied
discontinuity in the development of performance on the water-level task,
and showed that accepting a well-fitting BMM may be misleading without
having additionally evaluated the fit of LCMs.

LCAl   analysis   is not without problems.      Van   der   Maas   ( 1998)   and
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Raijmakers   et   al. (2004) argued   that   an   LC I   analysis   with   more   than
six classes is not feasible using the available techniques. Large sample sizes

are needed to prevent sparse frequency tables and p-values associated with
the asyniptotic X2 statistics which can not be trusted.  To handle this
problem. Forniann (2001) used bootstrap procedures to estimate a p-value.
A bootstrap procedure is also implemented in the Latent Gold program

(Vermunt & AIagidson. 2003) which can estimate and fit a large nuinber of
LCAls.

3.1.4 Hypotheses

In this study the purposes were to detect discontinuity in transitive rea-
soning, to determine the relationship of discontinuity and age: and to give
a substaiitive interpretation of the strategy groups. Further. the fit of the
BAINI and the LCAI to transitive reasoning data was evaluated. Before

hypotheses about discontinuity could be tested. it had to be determined
that the discontinuity iIi the data could not be attributed to discontinuity
by the instiument. The following hypotheses cover these purposes:

1 The development of transitive reasoning is discontintio'us.  This is

reflected   by   ordered   strategy   groups.

2 When tasks difer in difficulty. the LCM gives a s·ubstantively better

e.:rptagzation of thr. discontintiltv than the BALM. because   the   L CM

accou'nts for the relationship between task dificutty and strategy used.

3 hidititdital diferences in performance on transitive reasoning tasks

proditce discon.tin.ui.ty within age groups. Clearly defined age periods
cannot be dbtingitished. Piaget distinguished broad developmental
stages which were deliitiited by age periods. We hypotliesized that
strategy groups give a clearer descriptiori of the discontinuity than

age groups because we expect large individual differences in task per-
forniance.

4 Fuzzy trace theory ofers an interpretation of the discontinuity. Fuzzy

trace theory offers a framework for interpreting the discontimiity in

".
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transitive reasoning by distinguishing verbati111 and fuzzy trace abil-
ities. It was hypothesized that one particular strategy group uses
verbatim trace information to solve the tasks and another strategy
group uses fuzzy traces.

To determine discontinuity in cross-sectional transitive reasoning data
both the BMAI and the LCAI were fitted to the data. First. to rule out
as much as possible the use of different strategies leading to the same
nuniber-correct score, the diniensionality of the data collected by ineans
of a transitive reasoning test was determined using a nonparanietric ver
sion of the Rasch model. This is the double monotonicity model [DMAL
Mokken, 1971, pp. 174-176; Sijtsma & Molenaar, 2002, chap. 6: also see
this  reference  for  an  introduction into nonparametric IRT]. Second,   the
proportions correct of the items were calculated to deterniine whether the
instrument causes discontinuity, thus inducing method bias. Third, LCAB
were fitted to the data to determine whether there was discontinuity and
if so,  how  many  classes  had  to be distinguished (Hypothesis  1).   Data from
separate age groups were analyzed because important age differences might
be masked in a pooled data set (Hypothesis 3). Fourth, the BMM was fit-
ted to the data and compared with the LCM results to assess how much fit
was lost when restricting the item parameters to be equal between classes

(Hypothesis 2). Fifth, the latent classes were interpreted  by  means  of ver-
bal explanation data iii order to determine whether fuzzy trace theory was
suited for interpreting discontinuity  (Hypothesis  4).

3.2 Method

3.2.1 Sample

The pooled sample consisted of 615 children steniming from Grade two

through Grade six of six elementary schools in the Netherlands. Children
were from middle class social-economic status families. Table 3.2 gives an
overview of the number of children of six age groups, and the mean and
the standard deviation of age.
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Table 3.2: Number of Children (n), Mean Age CM) and Standard Deviation

(S D)  per  Age  Group

Age  Groupa          n              M          SD

< 96   73 91.78 3.057

97--108 83 103.02 3.138

109--120 126 114.45 3.305

121--132 108 126.70 3.084

133--144 116 138.70 3.005

>145 59 149.46 3.464

a number of months

3.2.2  Material

Transitive reasoning ability was investigated by means of a computerized
test containing 16 transitive reasoning tasks (Bouwmeester & Aalbers,

2002). The tasks differed on three task characteristics. The task char-
acteristics had 4,2, and 2 levels, defining 4 x 2 x 2=1 6 tasks. The task
characteristics are summarized in Table  3.3. See Figure 2.1. chapter  2  for
an overview of the tasks.

Table 3.3: Description of the Transitive Reasoning Task Characteristics

CHAR.ACTERISTIC Level Description
FORMAT YA>YB>YC' Defines the logical relationships be-

r.4 = YB = YC = YD tween the objects involved. e.g.. when

)'A>YB> YC'>YD>YE the relationship is length, Y.4 > ¥'B >

YA= YB>YC = YD P'c' means that object A is longer than
object B, which is longer than object                        
C.                                             '

PRESENTATION Simultaneous Determines whether all objects are
FORM Successive presented simultaneously or in pairs

during premise presentation.
CONTENT OF Physical Determines whether the relationships

RELATIONSHIP Verbal can be perceived visually. or are told
iii words by the experimenter.
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3.2.3 Procedure

The transitive reasoning test was an individual test administered in a quiet
room in the school building. Before the child was confronted with the
actual test tasks. the experimenter explained the different kinds of objects
and relationships that were used in the tasks. The administration of the
test took approximately half an hour, depending on the age of the child.
For more details see chapter 2.

3.2.4  Scoring

For each task the answer was automatically recorded by the computer. A
verbal explanation of the answer given by the child was recorded by the ex-
perimenter. When the child explained the transitive relationship correctly

by mentioning the premises involved or the linear ordering of the objects,
the explanation was evaluated to be correct. All other explanations were
incorrect. The correct/incorrect explanations were used in the analyses

because previous research showed that the explanations were more valid
indicators of the underlying ability than the correct/incorrect judgements

(Bouwmeester & Sijtsma,  2004; see chapter  2  of this thesis).

3.2.5 Verbal explanation

The correct/incorrect strategy scores were a dichotomization of an origi-
nal explanation variable having 13 categories. This explanation variable
was used to interpret the latent classes. For this purpose we recoded the
variable into four categories: (1) children used all the premise information
in their explanation (literal premise information). or children  give  a  cor-

rect explanation of the ordering (reduced premise information); (2) children
used premise information, but incompletely or incorrectly; (3) children used
visual information or irrelevant external information in their explanation:
and (4) children did not give an explanation (See Figure 2.2, chapter 2).
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3.3 Results

3.3.1 Double Monotonicity Model

Because one task was correctly answered by only seven children. it was
considered not to be suited for further analysis. The DAIM fitted the
reniaining 15 tasks.1 Because response functions did not intersect. it was
likely that a fixed number-correct score was driven mainly by one strategy
(Bouwmeester & Sijtsma, 2004). see chapter 2. Therefore. multiple modes
or strategies found by the BMM or the LCAI were expected to be ordered

along a unidimensional scale.

Table 3.4: Proportion Correct of the 7,·ansitive Reasoning Tasks

item # Format Presentation Content Pj
6  YA>YB>Ye successive physical .05

15  YA > YB > YE > YD > YE successive physical .07
5 YA =YB>YC=YD simultaneous verbal .15

14   1'.4 -YB> YC -P  successive verbal .19

8  Y.4 > YB > YC > YD > YE successive verbal .21

11   YA = YB > YC = YD simultaneous physical .31
4  YA > YB > Yc > YD > YE simultaneous physical   .39

12   YA > YB > YC successive verbal .40

3   Y# -YB-YC=YD successive verbal .45

10  YA > YB > YC > YD > YE simultaneous verbal .52

9 YA=YB=YC=YD successive physical .54
1 YA>YB>YC simultaneous verbal .56

13  YA > YB > YC simultaneous physical .57
7   YA=YB - YC' - YD simultaneou  physical .77

16 YA-YB-YC-YD simultaneous verbal .86

The proportions correct (Table 3.4) differed widely. Thus, no distinct

1The H-value of the scale was 0.45. and the HT-valiie of the scale was 0.52 (see
Sijtsma &  NIolenaar.  2002)
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subgrotips of items cozild be distinguished which might Cause discontillu-
ity. It was concluded that the instrullient illay be ruled mit as a cause
of discontitiziity.  When (liscotitiiiuity is fo1111(1. we will attribitte it to a
clevelopnierital process.

3.3.2 Latent Class Model Analysis

The program Latent Gold :3.0 (Vermiint & Alagidson. 2003) was used
to estimate the parameters and conipute the evaluation statistics of the
BAIAI and the LCAI. Two evahiation statistics were computed. First. the
likelihood-ratio chi-squared statistic L2 gives ati indicatioii of the fit of the
model to the data. The bootstrap p-value, cleiloted Pboot, was iised to de-
termine  wliether  the  results  were  significant  (lising  a  = .05). Second,  the
Bayesian Information Criterion  Idefined as -2LL + #pat'anleters x in (N)].
denoted BIC, served as a selection criterion within the family of models fit-
ted to the same data set. The BIC weights the fit (LL) and the parsimony

I#parameters x ln(N)] of a model: The lower the BIC, the better the
model in teriIis of parsimony

Because the DAIAl fitted the data. latent class one-factor models were
fitted iIi which the latent classes were ordered on one dimension. Iii latent
class duster models, the latent classes have a iiominal measurement level.

iii latent class factor models the latent classes have an interval measurement

level. We first fitted latent class factor models having one. two, and three

latent classes for each age group. The results of the model fit are shown in
Table 3.5. Because two tasks had zero score-variance in the first age group.
only 13 tasks were fitted in this group. The most important result in all age
groups was the difference iii fit of the 1110dels having one and two classes.

The decrease in L2 and BIC was large indicatitig discontinuity in transitive
reasoiiizig Therefore. Hypothesis 1 was accepted. The bootstrap p-values

showed that the two-class moclels could not be rejected iii any of the age-
groups. A remarkable result was the p-vahie indicating that the one-class
model could not be rejected iii age group 13.3-144. and in age group 2 144.
The decrease of the L2 and BIC suggested that the two-class model fitted
niuch better. The difference in fit between tlie two-class and tliree-class
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models was unequal between the different age groups. In particular in the
first and last age-groups (5 96 months. 2 145 months) the gain in fit of the
three-class model was small. For the other age-groups the decrease in L2
and BIC from the two-class model to the three-class model was somewhat

larger.

Table 3.5 also shows the fit of the BMM. The BMM was estimated as
an LCM with restrictions: restrict the task paranieters to be equal within
a latent class (Oj=l.u - Gj-2.u -··· - ej=J.u), an(1 the same Inodel can

be estimated as when using the number-correct score. The advantage was
that the BMM and the LCAI could be compared directly.

On the basis of the fit of several BNIMs it was difficult to decide whether
there was discontinuity in the transitive reasoning data. The one-class
model was rejected iii all age-groups and the two-class models and the
three-class models were also rejected in age-groups  109 - 120 and 121 - 132.
However. the p-values of the models in the other age-groups were rather
small   (<   .09).     More   important.   the   L2   and BIC values   of the BMAIs
were much higher than those of the LCMs in all age groups and for all
niodels, indicating that restricting the item parameters deteriorates the fit
and masks possible discontinuity in the data structure.

These results showed that ignoring variation ill task difficulties within
a lateIit class was inappropriate in the context of transitive reasoning. The
estimated success probabilities of the LCM's confirmed this result (see Fig-
ure 3.3). Therefore.  Hypothesis  2 was accepted.

For the latent class factor model and for each age group, Figure 3.3
shows the success probabilities of the 15 tasks (13 tasks for age group  6  96)
given class membership. To facilitate the readability of the plots, the order
of the tasks  is  in  accordance with their difficulty level (see Table  3.4).   The
plots show that allowing the tasks to differ in difficulty level resulted in
highly varying success probabilities.  The marginal success probabilities
of being in a particular latent class (printed below panels in Figure 3.3)

increased over age groups for the high ability class and decreased over age

groups for the low ability class. With respect to the first age group (5 96
months), the success probabilities  of the two-class model were plotted.
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This age group did not liave a high ability ciirve as the other age groups.
For the last age group (2 145 nionths). also tlie two-class Inodel probabil-
ities were plotted. This age groiip did not have a low ability ezirve as
found iii t he otlier age groups. Figure 3.3 shows tliat different perforniance
groups could be distinguishecl within age groups. nieaning that clearly dis-
cernable age periods were inappropriate. This restilt led to the acceptation

of Hypothesis 3.

3.3.3   Interpretation of Discontinuity

Table 3.6 shows the percezitages of the explaiiatioti categories for tlie two or
three latent factor classes of each age group.  Note that in rows percentages
sum to 100.  The most iniportant result is that the interpretation of the
latent classes is the same for all age groups. The two classes of tlie first
age  group  (5  96  months)  can be interpreted  as  the  low- and iiiterniediate
ability latent classes.  The two classes of the last group (2 145 months) can
be interpreted as the interzriediate and high ability latent classes. Figure
3.3 shows that the marginal probabilities of being in a latent class differ
between age groups (printed below panels iii  Figure 3.3).

The percentages showed that in the third latent Class niost children
used correct premise information. That is, they rised the literal premise

information to infer the transitive relationship or they used the ordering
of the premises.  For some tasks. childreii Tised the preniise inforniation,
but incorrectly or inconipletely.  The percentages of the categories exter-

nal/visual information and no explanation were very small nieaning that,
in terms of fuzzy trace theory. children mostly used fuzzy trace information
to solve the tasks and rarely verbatim trace information.

Children in the second latent class used the premise information. but
more often incorrectly than correctly. Aloreover, the percentage of no ex-
planation is higher in the second class than iii the third class. Ill terms
of fuzzy trace tlieory. children iii the second latent class often used fuzzy
trace inforniation but not always the correct trace.

The first class is characterized by a relatively high percetitage of external
and visual information and no explanation.  Children in the first latent class
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Table 3.6: Average Percentage of the E.rplanation Tvpe that is Used. Per
Class and Per Age Group

Age grciup class correct ill ('01 rect external Il{)

prt,Inise use prernise use or vi+iial explariatioi 1
1               9             27         22            41

< 96          2             41            35          5            10

1             12            37         28           24

97- 108       2             35            42          5            17

3              58            35          2             4

1              9            52         21            18

109 120     2            36           43         8           12

3             68            22          2             7

1 16            50         13           21

121- 1:12    2          41         41        6         12
3             68            23          2             7

1             18            49         13           21

13:1-1.1.1                2                                    ·15                                42                           :i                               1 0

3             71            23          1             4

> 115       2          32         55        5          8
3             65            29          1             5

sometinies also tised the premise information, but iiicorrectly in most cases.
hi  terms of fuzzy  trace  theory.  childreii  iIi the first latent Class  mostly  used

verbatini trace information but this inforination does not lead to a correct

inference of the transitive relationship.

3.4 Discussion

This study showed that there is discorititiuity in the development of transi-
tive reasoniiig wliich is reflecte(1 by strategy groups. Tlie results of model
fitting indicate that developinent can be described by three ordered classes

of low-ability. intermediate-ability atid high-ability levels. in which chil-
dren differ in tlie kind of information they use to solve the tasks.  The
classes could be ititerpreted well by the explanation children gave after
tliey had answered the task.  III terms of ftizzv trace theory the classes could

be called verbatiin-trace class. verbatim/fuzzy-trace class. and fuzzy-trace
class. Bouwnieester et al. (2004) used a latent class regression model to
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investigate the relationships betweeii the explaiiations children used wheii
aiisweriiig the tasks. the influence of tlie task characteristics on perfor-
inance. aild age. They showed that task characteristics (determiniiig item
difficulty) had an important influence on strategy use (see chapter 4). A
longitudinal study would be better suited to investigate the transition from
one Inode to another.

Tliis stzidy also showed that the BMAI did not result in a useful de-
scription of the discontinuity iii terms of strategy groups. Although the
results of the BAIAI for age groul,s led to the conclusion that there was

discontinuity, it was difficult to decide how maily strategy groups had to
be distinguished. Because the transitive reasoning tasks clearly varied in
difficulty level, the BMAI was too restrictive. Aloreover, Bouwineester et

al. (2004. see also chapter 4) showed that, due to task characteristics, the

difficulty of tasks influenced the strategy that was used. indicating an inter-
action between strategy and task characteristics. Thus, ignoring the task

difficulty level is not appropriate when studying discontinuity of a cognitive

ability that is measured by means of tasks which vary in difficulty.
Fixed age periods that matched useful developmental stages in transi-

tive reasoning could not be identified. Discontinuity is observable in par-
ticular in the different strategies that are used. Children of a particular

age have a most likely strategy and smaller probabilities of using other
strategies. Discontinuity, in this sense, can be interpreted as a probabilis-

tic concept. This result agrees with Wohlwill (1973, pp. 25-27, and chap.

9) who recommends to use other variables than chronological age when

describing change in behavior and approaches behavioral change from a
differential approach in which fixed age-groups have no meaning.

Our suggestion for future researchers who investigate discontinuity in
the development of a particular cognitive ability is to first fit an unrestricted

LCAl to the data. Next, when an LCAI fits and also the DAIM model (or the
Rasch model) fits. the BMAI may be attempted for reasons of parsiniony
when equal difficulty levels within a class are hypothesized to be realistic.
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Chapter 4

Latent Class Regression
Analysis for Describing
Cognitive Developmental
Phenomena: an Application
to Tbansitive Reasoning

Abstract*

The aim of cognitive developiziental research is to explain laterit cog-
Ilitive processes or structiires l,y means of inanifest variables such as age,
cognitive behavior, and environiziental infliieiices. Iii this paper the useful-
ness of the latent class regression model is discussed for studying cognitive
developmental phenoinena. Using this 1110(lel, the relationships between
latent and nianifest variables can be explairied by means of empirical data
witliout tlie need of stroiig a priori assuniptiotis made by a cognitive devel-
opmental theory. In the latent class regression 1Ilodel a number of classes
are distiiiguislied which Illay be characterized by particular cognitive be-
havior. Environmental infitiences on cognitive behavior may vary for dif-
ferent (developmental) classes. An application is given of the latent class

87
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regression model to transitive reasoning data. The results showed that a
five-class model best fitted the data and that the latent classes differ with
respect to age, strategy use (cognitive behavior) and the influence of task
characteristics  on the strategy use (environmental influences).    The  flexi-
bility of the niodel in terms of mixed measurement levels and treatment of
different cognitive variables offers a broad application to several cognitive
developmental phenomena.

*Tliis chapter has been published as: Bouwmeester. S.. Sijtsma. K., & Vermunt,
J.K..  (2004)  Latent  class  regression analysis to describe cogiiitive  developmental
phenomena: An application to transitive reasoning. European Joiwnal of De·uel-
opinentat Psychology.  1,  67 -86.

4.1 Introduction

The general aim of cognitive developmental research is the uncovering of
relationships between cognitive processes, environmental influences and age
(see e.g.. Flavell, 1985: Siegler, 1991). Because cognitive processes can not
be observed directly but only inferred from observable variables. observable
cognitive behavior is assumed to indicate the latent cognitive processes. In
Figure 4.1, a general model is displayed of the relationships between ob-
served and latent variables in the domain of cognitive development.  The
definition and operationalization of the different aspects and relationships
in Figure 4.1 varies for different cognitive developmental theories and the
epistemological assumptions about the acquisition of knowledge.  More-
over. cognitive developmental theories have different perspectives on the
importance of the aspects (Figure  4.1)  and  how they should be measured.

For example. in the theory of Piaget (see e.g. Flavell. 1963: Chap-
man, 1988; Bidell & Fischer, 1992), cognitive abilities are assumed to de-
velop in stages which are characterized by a particular kind of knowledge
structures.  One of the most important purposes of Piaget was to give a
broad description of the developing structures. Therefore his theory was
domain-general without paying much attention to the influence of external
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Latent t,ar·iables
Manifest variables Manifest variable
Environmental ,( Cognitive 1, Age

Influences
< Processes  

Influences

Cognitive
Behaviour

Manifest variables

Figure 4.1:  A General Model for the Relationship Between Manifest and
Latent Variables in the Domain of Cognitive Development

conditions  (Case,   1992).    In information processing theory  (see  e.g.    Kail

&  Bisanz, 1992), however, development is defined as cumulative learning
without qualitative change. External experiences make it possible to ac-
quire knowledge, that is, to learn and develop cognitively.

Dependent on the theoretical perspective, assumptions are made about
the unobservable (latent) processes and how these processes should be mea-
sured using observable variables. Given the assumptions, relationships be-
tween observable variables such as age, task conditions and cognitive behav-
ior, and unobservable variables, such as cognitive processes, are modeled.

By studying the observable variables empirically or by means of computer
simulation, one wants to reveal the latent cognitive processes and the rela-
tionships between these cognitive processes, environmental influences and
age.

However, it is difficult to test a model empirically in which both the
observed and the unobserved variables are represented, that is, to estimate
and test relationships between observable and unobservable variables with-
out the need of strong cognitive theoretical assumptions. Nevertheless,
statistical models in which latent variables can be defined using manifest
variables do exist and can be used to study relationships between age, envi-
ronmental influences and cognitive processes (Embretson, 1985, 1991: Fis-
cher. 1995; Kelderman & Rijkes, 1994: Mislevy & Verhelst. 1990; Sijtsma
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& Verweij. 1999).
In modern test theory. for example. the observed responses to a num-

ber of tasks (e.g., arithmetic problems), which measure  a particular ability
(e.g.  arithnietic ability) are used to determine the number of latent abilities
needed for explaining the observable data structure. and the strength of
the relationships between the item scores and these latent abilities. Thus,
modern test models, also known as item item response theory (IRT) models

(see. e.g., Hambleton & Swaminathan. 1985: Sijtsma & Afolenaar, 2002),
inake it possible to reveal and statistically test a latent structure for ex-
plaining the data without the need to posit an a priori theoretical structure

stipulated by cognitive theory.
In IRT models the latent variable is continuous. whereas latent class

models (e.g.. Hagenaars  &  AlcCutcheon,   2002) assume latent abilities  to
be discrete consisting of two or more nominal or ordered classes.  hi par-

ticular when studying cognitive development these latent class models are

useful to distinguish groups of children 011 a developniental scale which are

characterized by a pattern of specific cognitive behavior. The cognitive
behavior in a specific latent class lilay differ. in a particular aspect. from
the cognitive behavior in other latent classes. Latent class models allow

the estimation of the classes of the latent variable from the data instead

of assuming them OIl the basis of a cognitive theory. However. latent class

models can also be used in a confirmatory way by testing the latent class

structure assumed by a cognitive theory (chapter 5).
In the domain of cognitive developmental theory, age is hypothesized to

have influence on the formation of the latent classes.  One may expect that a

particular latent class. which is characterized by specific cognitive behavior,

may fit better for children of a particular age range than for children outside

this range. Latent class analysis makes it possible to empirically determine
the infizience of age (as a covariate) on the formation of the latent classes.

A division into classes does not necessarily imply a cognitive stage tlie-

orr.  Iii contrast. the cogiiitive behavior typical of a latent class may be

an expression of the same underlying ability continuum. The classes mav

be ordered and it depends on the level of description of the observed vari-
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ables whether the interpretation of the latent classes differs quantitatively
or qualitatively. For example, Bouwmeester and Sijtsma (2004) fozind that
the response patterns of children on a set of transitive reasoning tasks could
be explained by one ability. but that a broad variety of explanations were
used to motivate the responses. Possibly, on a more detailed level. the
transitive reasoning ability can be divided into a number of classes which
are characterized by a specific pattern of cognitive behavior.

The power of the latent class model is that specific behavior patterns
can be distinguished and the influence of age determined without a priori
cognitive theoretical assumptions. However, it is possible to test a cog-
nitive stage theory using latent class models. Jansen and Van der Maas
(1997) used a latent class model to empirically study the different stages
of reasoning on the balance scale task (Inhelder & Piaget, 1958. Siegler,

1976) and found that the theoretical stages were, together with some others
classes, represented by the latent classes.

An additional possibility of latent class models is to describe the classes
in more detail by assessing the influence of certain external conditions on
cognitive behavior in a particular class and conipare classes with respect
to the influence of external conditions on cognitive behavior in a set of
classes. For this purpose, we used a latent class regression model (Wedel
& DeSarbo, 1994; Vermunt & Magidson, 2000) in which a multiple regres-
sion function is estimated for a number of classes. The formation of the
latent classes is influenced by the covariate age. For every latent class,
the influence of external conditions on the cognitive behavior can be de-
termined. This latent class regression model is a very general and flexible
model which can be applied to a broad range of cognitive developmental
phenomena. Examples are the development of reasoning OIl the balance

scale task (see e.g.. Jansen & Van der Alaas, 1997), transitive reasoning
(see e.g.. Verweij, 1994), inductive reasoning (see e.g.. De Koning. 2000),
and analogical reasoning  (see  e.g.,  Hosenfield,  2003).

Both the covariate. the dependent and the predictor variables can have
different measurement levels. For example. instead of age in months. grade
level can be used as a covariate or other child characteristics like gender,
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cultural background or social economic status. Cognitive behavior may be

operationalized as correct/incorrect responses. strategy information. verbal

explanations, or reaction times. Predictors may be all kinds of external

conditions. For example, tasks may vary in specific task characteristics, or
the experiment may take place on different locations or at different times.
In the next section an application of the latent class regression model is

given in the context of transitive reasoning development.

4.2  An Application

In a transitive relationship, the unknown relationship R between two ele-

ments A and C can be inferred from their known relationships with a tliird

element Bl that is (RAB, RBC )  » RAC· In this example, the relation-
ships RAE and RBC' are premises. In the research on transitive reasoning

a number of different task characteristics are used to study the ability
of transitive reasoning. Different kinds of transitive and non-transitive
strategies appeared to be used to draw transitive inferences in tasks having

different  task  characteristics  (Perner  &  Mansbridge, 1983: Verweij.   1994:

Bouwmeester & Sijtsma, 2004).   In  the last decades a discussion  has  been

taken place about which kinds of cognitive behavior are really expressions

of transitive reasoning: which kinds of tasks should be used to measure

transitive reasoning: and what really develops when studying transitive

reasoning (see, e.g., Smedslund, 1969; Trabasso, 1977; Brainerd & Reyna,

1992:  Chapman & Lindenberger, 1992). Therefore.  it is important to reveal

the relationships between age. cognitive behavior. and external conditions,
when studying the development of this cognitive developinental phenom-

enon.

4.3 Method

4.3.1 Instrurnents

Bouwmeester and Sijtsma (2004) investigated transitive reasoning by con-

structing a computer test containing 16 transitive reasoning tasks.  The
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tasks differed on three important external conditions, called task cliaracter-
istics. The task characteristics had 4.2, and 2 levels defining 4 x 2 x 2=1 6
tasks. A description of the task characteristics is given in Table 4.1.  (See
also Figure 2.1. chapter 2.)

Table 4.1: Description of the Transitive Reasoning Task Characteristics

CH.ARAC'TERISTIC Level Des(·ription
F()R IA'I YA> YB> YC' Defines the Ic,gic'al relationships be-

3.4   =  3B   =  3 2,   =   ) 'I) tweell the objec·ts irivcilved, e.g., when
i'.4 > AB > )2' > Yi) > ¥'E tlie relaticitisliip is length, Y:i > YB >
4 = YB> ¥6= YD P c meatis tliat object A is longer than

object B. which is lotiger thari objec·t
C.

PRESEN'rATION Simultaneous Deterinines whether all <,bjects are
FORM Successive presented simultaiieciusly or in pairs

during premise presentation.
CONTENT OF Physical Determines whether the relatioriships

RELA'TION,SHIP Verbal (·ati be perceived visually. or are told
iii words I,y th(, experimenter.

4.3.2 Strategies

For each task both the correct/incorrect responses and the verbal expla-
nations were recorded. The verbal explanations associatecl with the cor-

rect/incorrect responses showed that children used a broad variety of expla-
nations but that this differentiation could not be discovered by considering
only the correct/incorrect responses. Aloreover, Bouwmeester and Sijtsma

(2004) showed that correct/izicorrect responses to the tasks of the transi-
tive reasoning test did not form one reliable ability scale. Thus. we used
the verbal explariatioiis data in this study. These verbal explanations were

categorized into seven strategies. which are displayed iii Table 4.2.

4.3.3 Sample

The sample consisted of 615 children steinming from Grade two through
Grade six. Children came from six elenientary schools iii the Netlierlands.
They  were from middle class social-economic  status  (SES) families. Table
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Table 4.2:
Description of the Seven Strategies Used to Solve the Transiti.ve Reasoning
Tasks.

Name Description Example
L I 'I'E R A I. All necessary premise informa- Object A is longer than object C be-

tion is used to explairi the tran- cause object .4 is lotiger than object B
sitive relationship. and object B is longer than object C.

REDI'('ED The premise information is Animals get older to the right, so the
used  in  a  redticed form. horse is older  than  the  cow  becatise   it

is positioned before the cow.
INCORRE('T Preniise information is in- The  lion is older than the Calnel be-

correctly tised. or iticorrect cause the. hippo and the lion have the
premise information is used. same age.

INCO\!PLETE Premise iriforniation is used the  blue stick is longer than the red

correctly but incompletely. stick because the blue stick is longer
than the green stick.

F.11.St. NIEMORY The test pair is confused with I've just seen that the blue stick is
a premise pair. longer tlian the red stick, so that will

still be the case.
EX-I-ERNA I. &   Visual or external information The parrot is older than the duck be-
\3SUAL is used to explain the transitive Cause parrots can become very old:

relationship. no premise infor- When I look very well. I cari see that
niation is tised. the blue stick is loiiger thaii the red

stick.
NO EXPLAX 1- No explanation is given. I guessed. I just don't know.

TION

4.3 gives an overview of the number of children per grade. and the mean
age and the standard deviation of age witliin each gracie.

4.3.4 Data

A representation of the input data file for the latent class regression analysis

is shown iii Table 4.4. Each of the 615 children performed 16 tasks (in the
table indicated  as  replications).   Each task  was  defined by  a combination  of

three task characteristics. For example, Task 1 had format YA > YB > YC.
simultaneous presentation form, and verbal type of content. Each child
used one of the seven strategies. and the same child could use different
strategies for different tasks.
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Table 4.3: Number of Children. Alean Age (AI) and Standard Del,i.ation
(SD) pei Grude

Grade n  Age
AI'l SD

2 108 95.48 7.81

3 119 108.48 5.53

4     122 119.13 5.37

5 143 132.81 5.17

6 123 144.95 5.34

a number of m(,lithS

Table 4.4: Input Data File for the Late.nt Class Regression Analysis: 16

Lines per Case, Each Line Representing a Transitive Reasoning Task

Replication. Case Id Grade Foririat * Presentation* Content *         Strategy

1 1 2 1   1 1 3
2 1 2 2   1 1 2
3       1      2       3           1        1       6

1                  2

1                2

15        1       2         3             2          2         5

16        1       2         1              2          2         3

1 2 3 1   1 1 5
2                2             °                 °                          1                   1                  10                                -

16        2       3         4              2          2         6

1      615       6         1              1          1         4

615

615

16      615       6         4              2          2         3
* Fortitat. Presentation. aiid (12,titelit wer·(, tlip three task characteristics:

fc,r a detailed description see Bc,ziwiric,<,ster aitd Sijts,ria (2004). chapter 2



96  Chapter 4. A Tool for Studying Cognitive Developmental Phenomena

4.4 Analysis

4.4.1 Parts of the Model

It was expected that the strategy responses of the children on the 16 tran-
sitive reasoning tasks could be divided into a nuniber of classes that were
ordered along a developmental scale and differed with respect to specific

strategy use for different kinds of transitive reasoning tasks. The formation
of the latent classes was expected to be influenced by age.

The first part of the latent class regression model is defined by the
probability (7[') of being in a particular latent class (realization ir of latent
variable X) . given grade level (realization   ze, of covariate Z' (where  c
stands  for covariate), tliat  is.

lt"(I|Zc). (4.1)

These marginal probabilities of being in a specific class given a value on
the covariate. add to 1 over the latent classes x:

 71 (13|Ze) - 1. (4.2)
r

In the second part of the model, the probabilities are estimated of us-
ing a particular cognitive behavior given the latent class and the value(s)
on one or more external conditions.  In this application the dependent

variable "cognitive behavior" is the discrete variable "strategy" (Y. with
realizations v) that has seven categories. The predictor variables "external
conditions" are tliree "task characteristics"  ,Zf, Zf, Z. , with realizations

Zi, 15. ZI (where P stands for predictor) having also a discrete nieasurement

level:
f C y I.r. zf. :  . zm ) (4.3)

For each task (which consists of a combination of the three task charac-

teristics) a multinomial probability function is estiinated for the use of a

strategy in a latent class. and this is done for each combination of a strat-

egy and a latent class. In a fixed latent class. these probabilities add to 1
over  strategies  (V)·  that  is,

E f C v l.r. zf · : . 15) == 1. (4.4)
y
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Becatise there are 16 tasks. there are 16 of these probability functions for
each latent class.

Tlien. Eqiiations 4.1 and 4.3 combine into the latent class regression

111odel.  The model is defined 1,y the prodlict of a summation over latent
classes of the marginal probability of being in a latent class. given the gracie
level and the product of multillonlial probabilities for each task (deziotecl

t,   16  combinations  of task  characteristics):

f (ylze, zi, z , zf ) = E ,r(.rl:") II f (mlz. zit, 2£. Z<,). (4.5)
i                                t

Because there are 16 observations per case. the dependent variable Y is a
rector contaiiiing the 16 st.rat.egy responses and the predictor varial,les Zp

are also vectors containing the levels of the task characteristics.

4.4.2 Parameters

To calculate the multinomial probabilities of being in a latent class given

grade level (7r(Lize) in Equatioii 4.5), two kinds of parameters have to be

0estimated. denoted by 72 and 761,1·· Paraineters 71· are the intercepts for
the latent class variable and parameters 7 ig are the covariate effects on
the latent class variable. The first part of Equation 4.5 is modeled by a
multinomial probability. which is defined as a logistic regression ftinctiori:

e.rp(,Lr z,·)
lr(.Tlze) =                                  (4.6)r.re..rp(11$1:«)

The liiiear term 4X ZI equals

Tir.1z,· = 7,11 + 7 rz· (4.7)

To estiniate the multinomial probability function of using a particular
strategy given the latent class and a combination of task characteristics
(i.e.. f (BIZ. zi't, 2 1' zg,), in Equation 4.5). again two kinds of parameters

have to be estimated. denoted by .1, and
'3/.P. Parameters 314 are theit

class-specific intercepts. For all strategies in every latent class tliere is
a jity parameter. Parameters , -p are the class-specific regression coefli-

-tt

cietits.  For all levels of the task characteristics there is a paranieter for
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Table 4.5: Number of Parameters to be Estimated

Classes     iu         - 1          .31,/                     72...P Total
It

1 1-1=0 1-1=0 (7-1) *1=6 (7 -1)x i(4 -1) + (2-1 3+ (2- 1)1 x 1=3 0 36

2 2-1=1 2-1-1    1 7-1 1 x 2=1 2 (7-1) / 1(4-1) + (2-1) + (2-1) ] x 2=6 0 74

3 3-1=2 3-1==2 (7 -13 x .3 =18 17 - 11 x [14 - 11+ (2 - 1) +(2 - 1)} x 3=90      112
4                         41 =.3 -1-1=3 {7-1144=24 (7 -1)x ,(4 -1) + (2-1) + (2- 1)I x 4= 120 150
5 5-1=4 5-1-4    17 -l l x 5=3 0 (7 - 1) x [(4 - 1) + (2 - 11 + (2 - 1 Jl x 5 = 150 188

6                     6-1=5 6-1=5 1 7  -1)  x  6 = 36 (7 -l>x 5(4 -1) + (2-1) + (2-1)1 x 6- 180 226

7                     7- 1=6 7-1=6 1-1)x 7=4 2 (7-1)xi(4 -1 3+ (2-1 3+ (2-1) ] x7=210 264

all strategies in every latent class. The multinomial probability function is
again a logistic regression function:

        -        -         _           e.rp ('ly'r,zf''.z2'.zft )
(4.8)

f (uily, zlt '*2i,-3tf - Ev exp(Tlylsr.zft·zp,t.zl ,)
The linear term Ilvt.r.z"  p  p equals

11·22t·z:lt

14,2 r,zff,zgt.zft = 13'ry -1- 13#92.ry, t 0: 1·v t /'yzi t.rv·                 (4.9)

The number of parameters to be estimated increases rapidly with an in-
creasing nuniber of latent classes. Table 4.5 shows tlie nurnber of paranie-
ters to be estimated for models with one through seveli latent classes.

4.4.3   Fit of the model

The prograni Latent Gold (Vermunt & Magidson. 2003) was used to esti-
mate the paranieters and calculate the fit of the model. The program gives
evaluation st.atistics, estimates of the parameters and the accompanying
standard errors and z-values.

Iii the program Lateiit Gold a number of evaluation statistics are pro-
vided to choose a plausible niodel. First. the log-likelihood statistics are
calculated which express the fit for models with a user-specified number of
latent classes. The alliount of reduction of the log-likelihood statistic for
models with an increasing number of classes can be considered to choose
the best fitting model. Because of sparse frequency tables. the asymp-
totic p-values associated with the x2 statistics often can not be trusted.
Therefore, a p-value can be estimated by nieans of bootstrappiiig (Efron
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& Tibshirani. 1993) which is implemented in the program. The bootstrap

L2 procedure involves generating a certain number of replication sainples
from the maximum likelihood solution and re-estimating the model with
each replication sample. L2 is a test statistic or fit measure. The boot-
strap p-value is the proportion of replication samples with higher L2 thaii
in the original sample. For example, when 40% of the replication samples
has a L2 value higher than the L2 value of the original sample, the boot-

strap p-value is 0.40. However, a conditional bootstrap procedure, in which
the fit of models with different classes can be compared has not yet been
implemented in the Latent Gold program.

Secondly. the BIC values are calculated. The lower the BIC value the
more   parsimonious  the   model   (McLachlan   &   Peel,   2000).     Thirdly.   the

proportions of classification errors are provided. This proportion indicates
how well the model can predict latent class membership given the value on

the  covariate  and the dependent variable (Andrews & Currim, 2003).   This

proportion is not a fit measure, but it is an important measure to evaluate

the distinctiveness of different classes.

Fourth, the class sizes and interpretation of the classes were used to
choose a model. Although the evaluation statistics calculated by the pro-
gram provided useful guidelines to choose the best-fitting model, the final
decision was based on the interpretableiiess of the classes and the class-size.

4.5 Results

Analysis of variance with Iiumber-correct score on all 16 tasks as dependent

variable and school and grade as independent variables showed no signif-

icant effects for the same grades of different schools. Therefore, it was
concluded tentatively that school had no influence on a child's transitive

reasoning ability.

4.5.1   Model Fit and Number of Classes

Seven models were fitted with an increasing number of classes ranging from

one to seven. Table 4.6 shows the evaluation statistics which were used to
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choose a final model.

Although a number of fit-statistics which evaluate different aspects of
the model can be used to choose a plausible model, the choice of a final
model also depends on substantive considerations. previous research re-

sults, considerations of parsimony. and so on. This can be compared with
factor analysis. where the choice of the final factor solution also depends
on considerations other than statistical ones. It remains diflicult. maybe
practically impossible to determine the exact number of latent classes.

The log-likelihood statistics showed a reduction of at least 37% in mag-
nitude from the log-likelihood statistics from the one-class model to the
five-class model. The reduction of the log-likelihood statistic from the five-
Class model to the six-class model was only 12%.  On the basis of the
log-likelihood statistics the five-class model would be chosen.

The six-class model was the most parsimonious model in terms of BIC
values. The proportion of classification errors first increases from the one-
class model through the four-class model. This can be explained by the fact
that correct classifying is more difficult with a higher number of classes.

The result that the proportion of classification errors decreases with the
five-class model and then increases again iiidicates that the five-class model
may be preferred above the six-class model.

On the basis of the evaluation statistics provided by the program, the
five- and six-class models are most plausible. For this application, the
bootstrap procedure was not informative to choose the best fitting nlodel.
On the basis of the class sizes and the interpretation of the classes, the five-
class model was chosen as the final model. The six-class model had three
relative small classes (marginal probability  < 0.10). Aloreover,  the smallest
class did hardly differ from another class with respect to the interpretation.

4.5.2   The 7 Parameters: Class Size and Influence of Grade

Table 4.7 shows the 7 parameters. The 70 paranieters are intercept para-
meters which were used to calculate class size. The -111, parameters were

all  significant  (z  >  1.96).   This  meaiis  that the covariate grade  had  a  sig-
nificant influence in all classes. When these 7 parameters are inserted in
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Table 4.6: Model Fit Statistics for Six Latent Class Models

Number of         £2 BIC Number of Proportion of
Classes Value Value* Parameters Classification Errors
1 25338.59 31320.69                  36                                .00
2 22867.01 29093.12                  74                                .03
3 21824.83 28294.97 112 .05

4 21176.73 27890.43 150 .05

5 20777.86 27736.04 188 .05

6 20430.21 27632.41 226 .06

7 20204.84 27651.06 264 .06

*:   BIC-value = -21og-likelihood  + # parameters  *  ln(N)

Equations 4.7 and 4.6, respectively, the marginal probabilities (class size,
see Table 4.7) and the probability distribution of grade given the latent
class can be calculated. Figure 4.2 shows the probabilities of grade for
each class. In particular in class two Grade six had high probability. Also
in classes one and three, higher grades had higher probability than lower

grades. For the classes four and five, lower Grades two and three had higher
probability than higher Grades four, five and six.

Table 4.7: 7-Parameter Estimates and Class  Size for the Five- Class  Model

Class 7Ii   712,   Class Size
1 -.251 .220 .381

2 -4.386 .796 .266

3 -1.866 .325 .146

4 3.957 -.812 .106

5 2.545 -.530 .101
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4.5.3     The 3 Parameters: Strategy Use and Influence of Task
Characteristics

Table 4.8 shows the class-specific intercepts. the Bi/parameters. A non-
significant gy parameter estimate does not significantly deviate front zero.
which means that there is no effect for this strategy iii the particular class.

The B ,-parameters can be used to calculate the probability distribiition
e.rp( dj.   )of using a strategy given the la.tent class 71 (1/11') (71 (VII)  =  EV e.rp.( ty) )

Figure 4.3 shows tlie probabilities of using a particular strategy for each
Class.

Table 4.8: The Bill-Parameter Estimates for the Fit,e-Class Model

Strategy Class 1 Class 2 Class 3 Class 4 Class 5

LITERAL .705 2.260 .788 -1.137 -.910

REDUCED -1.421 -.026 -.871 -2.320 -2.351

INCORRECT 1.098 1.900 1.707 .433 .038

INCOMPLETE -.704 .392 2.559 -. 770 -.651

FALSE MEMORY -.273 -2.367 .409 .440 .887

EXTERNAL & VISUAL -.236 -.926 ·410 .726 2.040

NO EXPLANATION .831 -1.232 -5.001 2.629 .946

Italics: effect is not significant.(p > .05)

Children in class one iii particular USe INCORRECT premise information,
LITERAL premise information and NO EXPLANATION. Children in class two
are characterized by the use of LITERAL premise information and INCOR-

RECT premise information. Children in class three are characterized by the
use of INCOMPLETE premise inforniation and INCORRECT prenlise informa-
tion. Children in class four in particular do NOT give an EXPLAN.ATION or

use EXTERNAL & VISUAL information. Children in class five are character-
ized by the use of EXTERNAL & VISUAL information, FALSE MEMORY and

NO EXPLANATION.

There are 280 class-specific regression coeflicient parameters
(,12'ft ).

that is. one foreacli strategy (7) ineacli class (5). forevery level of the task
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Figure 4.3: Probability Distrib·ution of Strategy by Latent Class

characteristics  (4+2+2).  It is beyond the scope of this chapter to interpret
t.hese parameters in detail, but we will give a global interpretation of the
influence of the task characteristics on the strategy use iIi the latent classes

by describing the size of the effect of the parameters. Table 4.9 gives the
interpretation of the strength of the influences.  TASK FORMAT has some
influence on strategy use in the Classes one and two but hardly in the
classes three, four and five. PRESENTATION FORM has a strong effect on

strategy use in all classes except class three. CONTENT of the relationship

has a strong effect on strategy use in the classes one and two, Sonle effect
in the classes three and four and hardly any effect in class five.

4.6 Discussion

When studying cognitive development of transitive reasoning using a latent
class regression model we found that a number of classes can be distin-
guished which differ with respect to cognitive behavior. Using the grade

level distribution over the classes. an ordering of the classes became visible.
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Table 4.9: Size of the Esect of Influence of the Task Characteristics on
St'rategy Use

Characteristic Class 1 Class 2 Class 3 Class 4 Class 5

TASK FoRMAT some Some hardly hardly hardly

PRESENTATION FoRM strong strong hardly strong strong

CONTENT strong strong sonie Sonle hardly

Classes Four and Five which contained in particular lower-grade children
were characterized by superficial cognitive behavior using almost no task
information but rather directly observable task characteristics or unimpor-
tant information from the external world. Several times, children gave no
explanation at all. In the classes one and three, in which children from al]
grades were represented but in particular from Grade three, four, and five,
children often knew that they had to use the task information but they
did not have a complete or correct representation of the task space. Class
two contained in particular higher-grade children which were able to use
the task information, understood the underlying pattern and were able to
form a complete internal representation of the task space in most cases.

By treating age as a covariate which influenced the formation of the
classes, the developmental ordering of the classes was not assumed to be
known a priori. The results showed that there is a developmental ordering,
but that children from the highest grade are (marginally) represented in
lower-ability classes, while children from lower grades are represented in
the higher-ability class. The model thus gives opportunities to diagnose
children which deviate from the age-related criterion and to interpret the
deviation in detail.

An interesting finding of this application, which is difficult to reveal
when no latent classes are distinguished, is the differential influence of task
characteristics on strategy use in a latent class. In addition to a general
overview of the strategy use in a particular latent class, the latent class
regression model makes it possible to explain or predict the influence of
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external conditions at a detailed level, or even the influezice of interactions
of external conditions (which  was  not  done  in  this  application).

In interesting product of this method is that specific cognitive behavior

can be better interpreted in relation to other cognitive behavior. For ex-
ample. it is difficult to interpret the NO EXPLANATION strategy when tliere
is no further information. When children do not give an explanation, they
may simply not know how to solve the problem: they may know that the
premises information has to be used. but they do not know how: or they
may simply not know how to explain their answer to other people. The
distribution of the strategies over the classes gives information on how to in-
terpret this NO EXPLANATION strategy. hi class one and class four children

often used NO EXPLANATION. but children in class one used some more-
proficient strategies besides the NO EXPLANATION strategy. while children

in class four in particular used low-proficiency strategies. It appears that
children in class four had absolutely rio idea how to solve the tasks, while

children iii class one understood that they had to use the premises but did
not know how to ilse them.

The analysis of this application was explorative. We did not assume a
particular cognitive theory which was tested. However. it is also possil le

to test a cognitive theory in terms of the latent class regression model. that
is, to perform a confirmative analysis. Assuming Piaget's theory. we could
have tested whether empirica.1 data. fitted in the cognitive developmental
stages Piaget assumed. Then. it should be tested whether tlie data could
be explained by a iininber of latent classes which represented the cogmtive

developineiital stages. Using the latent class regression model. it is also
possible to model a priori hypotheses about developmental stages. It niay
be expected from a developmental theory that a particular condition has
no effect in one particular latent class. or an equal effect in two or more
different classes. By imposing restrictions on the model. effects can be set

to zero, or can be set equal for different classes.
It has to be emphasized that we used data from a cross-sectional design.

that is, children of different ages were tested once.  This design 111akes it

possible to interpret development iii terms of differential classes. but we



4.6 Discussion 107

can only speculate about an individual child's transition from one class to
another. A longitudinal study is necessary to study this transition. The
latent class regression model can also be used to study such a 101igitudinal

design.
In this chapter we introduced the latent class regression model for

studying cognitive developmental phenomena. The most important value
of the model is the possibility to empirically test the presence or absence of
latent classes without the need of strong cognitive theoretical assumptions
about the latent variable(s). In the application of the model to transitive
reasoning data, a very large number of parameters had to be estimated,
making the nlodel relative complex. The large number of paralneters was

caused by a nominal dependent variable, having seven categories, and nom-
inal independent variables. Models with other types of dependent and
independent variables will contain substantially fewer parameters.

The flexibility of the model in terms of mixed measurement levels and
treatment of different cognitive variables further offers a broad application
to a number of cognitive developmental phenomena, such as conservation,
symbolic analogies, verbal analogies, inductive reasoning, reading conipre-
hension, or problem solving.
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Chapter 5

Development and Individual
DifFerences in Transitive
Reasoning: a Fuzzy Trace
Theory Approach

Abstract

Individual differences in transitive reasoning were investigated in 4 to
13 year-old children.  The performance on three kinds of tasks whicli mainly
differed with respect to their presentatioii ordering and position orderilig
was studied in an effort to determine the use of fuzzy trace theory (BraiIi-
erd & Kingma, 1984) as a framework for explaining the development of
traIisitive reasoning. The results from a saniple of 409 children ranging iii
age from 64 to 159 months showed that the two-dimensional classification
of performance patterns agreed with the expected distinction of perfor-
mance groups according to fuzzy trace theory. Task format had a stronger
effect on performance on transitivity test-pairs than on memory test-pairs.
Furthermore. the developmental effects showed more improvement in fuzzy
ability than in verbatini ability.

This cliapter has been subinitted for pliblicatioii.

109
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5.1 Introduction

A transitive reasoning task requires the itiference of an unknown relation-
ship between two objects from the known relationships between each of
these objects and a tliird object.  For exaniple. let three sticks. A. B.
and C. differ in length. denoted Y. such that YA > YB > YC· then given

Yi > PA mid YB > PP the relationship between A and C can be inferred
froizi these two relationships. Togetlier. the given relationships are the

preniises.

A transitive reasoning task consists of a presentation stage and a test
stage. At the presentation stage. the premise pairs, A and B and B and
C. are presented. and the child is giveii the opportunity to memorize the
preiiiises. 1'4 > 11 and TH > PC·

During the test stage. the child has to reproduce the preniises. At this
stage. becalise the premises are reprodiiced. the premise pairs are callecl

memory test-pairs. The object pair of which the relationship has to be
inferred from the memory test-pairs. here (A.C). is called the transitivity
test-pair. because it tests the ability to infer a transitive relationship froni
the available preniise inforiiiation.

Iii Piaget's theory. transitive-reasoning tasks are used to study the un-
derstanding of operational reasoning (Piaget, 1942: Piaget et al.. 1948).
Classical Piagetian theory assumes that children are capable of transi-
tive reasoiiing at the concrete operational stage (from approxiniately seven
through 13 years) in which they have acquired the ability to infer logicall.z

aii 111ikiiown relationship frorii two or more premises. Ii-hen childreii do
11(,t ilse the preniise inforinatic,11 fc}r tlieir explanation. they are assunied to
reason ftinctioiially. Functional reasotiing is characteristic of the preopera-
tional  stage  (from  approximately  two  through  seven  years).

Bryant and Trabasso (1971: see also Breslow, 1981: Riley & Trabasso.
1974: Thayer & Collver. 1978: Trabasso. 1977: Trabasso et al.. 1975) hy-
pothesized that not the utiderstanding of logical rules. but memory of the
preziiises is crucial iIi transitive reasoning. They trained foiir ancl five year-
old children and showed that they were able of transitive reasoning and that
tlieir traiisitivity test-pairs perforinatice could be explained conipletely by
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their performance on the memory test-pairs. Therefore, these researchers
concluded that understanding of logical rules was not required azid izieniory
of the preniises was sufficieitt to infer the zillkiiown relationsliip.

A few years later Braitierd and Kingma ( 1984) showed that nor an
understanding of logical rtiles nor nieniory of the premises was liecessary
to infer transit.ive relatioitships. They used fuzzy trace theory to explain
their results (Brainerd & Reyna. 1992. 1990, 1995, 2001. 2004; Reyna, 1992.

1996: see also Chapman & Lindenberger. 1992).
Fuzzy trace theory assumes that inconiing itiformation is processed si-

multaneously in different traces. These traces contain different features of
the incoming information. The traces steni froin an underlying continuum.
On the one hand there is a fuzzy continuum contanihig vague, pattern-like
information in a degenerated form at different fuzzy trace-levels, only hold-
ing the gist of information. The fuzzier the trace, the more reduced and
vague the information. On the other hand there is a verbatini continuum
containing literal and detailed information ill different traces about, for ex-
ample, color, shape or size. The more verbatim the trace, the more details
it contains about the information.

According to fuzzy trace theory. information is encoded and processed

in a number of traces, simultaneously and automatically. The kind of task
deterniines which trace is the most appropriate to retrieve. For example,

when a cognitive task requires nieHiory of color, shape, or size of previously
presented information. a verbatim trace is required which contains this
detailed information. However. when the task requires inferences between
objects. a fuzzy trace is required which coiitains pattern-like information.
Because the ,structure of verbatim traces is niore complex than the pattern-
like structure of fuzzy traces, the verbatini traces are only available for a
liniited amount of time. while the fuzzy traces can be retrieved much longer

(Reyna & Brainerd, 1990: Brainerd & Kingma. 1984: Brainerd & Reyna,
2004).

Brainerd and Kingma (1984) showed that the application of fuzzy trace
theory to transitive reasonhig needs the unitary trace model. In the uni-
tary trace niodel both the illelliory test-pairs aiid transitivity test-pairs are
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inferred from the sallie fuzzy trace. They showed that this unitary trace

model could well explain children's perforniaitce. However. the perfor-
niance on niemory and transitivity test-pairs in tasks witli differezit kinds

of manipulations was far from perfect. Apparently. several children were
not able to retrieve the appropriate fuzzy trace but retrieve(1 otlier. less
efficient traces to solve the transitive relationship. The average scores used

in Brainerd and Kingma's (1984) study did not take into accoutit individ-
ual differences aiid did not allow to distiIiguish different strategy groups.
However. Brainerd and Kingma explained that performance inay be inflii-
enced by teniporal and spatial position effects. With respect to verbatim
traces. a temporal position effect may occur when memory is overloaded

and a child is not able to retrieve tlie verbatiin trace containing the com-
plete premise inforniation.  Then performance on the memory test-pairs
presented first or last (or both) is better than on the midterms. With re-
spect to fuzzy traces. a spatial position effect inay occur when the most
appropriate fuzzy trace for the cognitive task is not used. For exaniple. in
a 5-object transitive-reasoning task. such as YA < YB < Yc' < 1''D < YE·
large objects are 011 the right and small objects are on the left leavhig the
midterms undefined.  Performance on one or both of the eiid-anchors is
better than on the midterms. In their study, Brainerd and Kingnia (1984)
concentrated in particzilar on the influence of task manipulatioris 011 perfor-
mance.  In the present stiidy. both individual differences of chilciren and tlie
iiiflrience of task manipulations on performatice were taketi into accoillit.

In a study on the strategies diildreii Tised for solving transitivity test-

pairs, Bouwmeester et al.  (2004) follilcl that wlien children are not able to
tise a fuzzy trace to infer transitive relationships. they use a verbatim trace

wliich mostly does not lead to a correct answer. Bouwmeester et al. (2004)
also found that for tasks iii which few cues were given about the ordering.
either  due to forillat   ( 1'.1   -   YB   >   }1' - YD) Or present.atioii forni. literal

preinise information was used to solve the transitive relationship. However.
the information was often incorrectly remembered. which rendered those
tasks difficult. This literal premise information can be assumed to steni

froin a verbatini trace. Children who scored high on the ability scale mostly
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used ordering information to solve the tasks, which stemmed from a fuzzy

trace.

5.1.1   Aim of This Study

Based on the results frOIIl previous research and the theoretical framework
of fuzzy trace theory, we expect that (1) both verbatim and fuzzy traces are

involved in de development of transitive reasoning, and (2) the develop Inellt

of transitive reasoning can be described by a changing interaction of these

two kinds of traces in time when a shift takes place from verbatim to fuzzy

thinking (Brainerd & Reyna, 1995). Based on these expectations,  the  aim

of this study is to reveal the development of both verbatim and fuzzy traces

in the context of transitive reasoning, by distinguishing groups of children
that differ in their use of verbatim and fuzzy traces when responding to
memory test-pairs and transitivity test-pairs in different kinds of transitive-
reasoning tasks. The relationship of age and the strategy groups is expected

to reveal whether the development of transitive reasoning is characterized

by a shift from verbatim to fuzzy thinking.

Verbatim Ability

The trace-levels that are retrieved by the child depend on his/her verbatim
and fuzzy ability levels. Figure 5.1 shows the relationships between verba-

tim ability, verbatim traces and performance on memory test-pairs. When
applied to transitive reasoning, a verbatim ability level induces verbatkn
traces according to a particular probability structure (in the context of
transitive reasoning three verbatim traces were hypothesized). The proba-
bility distribution is defined as P(trace ability). This is the probability of
using a particular trace given ability level. Note that both the ability and
the trace variables are unobservable, that is, they are latent variables. It
is hypothesized that P(guessinglability) decreases as a functioll of ability,
and is maximal when ability level is low; P(temporal positionlability) first
increases and then decreases as a function of the ability and is maximal

' when the ability level is intermediate; and P(complete memory1ability) in-
creases as a function of ability and is maximal when the ability level is high.
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Verbatim Thice Ability (Latent Variable)

Verbatim Trace (lontent (Latent Variable)
Guessing Temporal position Complete Mmmy

Observable Behavior (Manifest Variable)
Bad performance Good performatice on Good pei·formatice
on all niemory some test-pairs on all meniory
test-pairs but bad on others test-pairs

Figiire 5.1: Relationship Between Continuous Latent Ability and Discrete
Manifest Behavior Based on a Ve·rbatim Trace

Iii Figure 5.1 the black arrows between the latent variable levels indicate
high probability. the grey arrows indicate lower probability and the light
grey arrows indicate low probability.

A verbatim trace corresponds to a particular probability to answer a
nieniory test-pair correctly. The success probability of a correct answer to
a test-pair giveii the verbatim trace level is denoted as P(test-pair trace
level). The response variable  is an observed variable  (i.e., a manifest  vari-

able). When trace level  is  low, a child  has a probability approximately  at
chance level to answer a test-pair correctly. When trace level is high. a
child has a probability close to 1 to answer a test-pair correctly.

The retrieval of verbatim traces enables characteristic perforriiance on
the memory test-pairs. Guessing is likely to lead to bad performance on
memory test-pairs. A temporal position effect is likely to produce good

performance on memory test-pairs presented first or last in a sequence,
and worse performance oIl the memory test-pairs presented in between. For
example.  iii a transitive-reasoning task  (e.g..  YA  >  YB  >  YC  >  YD  >  YE)  in
which the premises are presented in an ordered form (first Y.4 > YB· second
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YB > YC. third YC > YD. and   finally.    YD > YE). children remeniber the
premise relationships Y4 > YB and YD > YE better than YB > YC' and
YC   >   YD·     When children retrieve a verbatim trace   with the coniplete

premise information, performance is likely to be good on all nieniory test-
pairs. Note that verbatim ability level (and acconipanying trace levels) is
assunied to have no effect on the performance oIl transitivity test-pairs.

Fuzzy Ability

Figure 5.2 shows the relationships between fuzzy ability, fuzzy traces and
the performance on memory and transitivity test-pairs. When applied to
transitive reasoning. a fuzzy ability level induces fuzzy traces according to a

particular probability structure (in the context of transitive reasoning three
fuzzy traces were hypothesized).   It is hypothesized that P(guessinglability)
decreases as a function of ability, and is maximal when ability level is

low; P(spatial position ability) first increases and then decreases as a func-

tion of ability and is maximal when the ability level is intermediate; and

P(complete ordering ability) increases as a ftinction of ability and is maxi-
mal when ability level is high. In Figure 5.2 the black arrows indicate high
probability. the grey arrows indicate lower probability and the light grey

arrows indicate low probability.
A fuzzy trace corresponds with a particular probability to answer a

test-pair correctly. For example, when pattern information is not available,

children guess on all test-pairs which is likely to result in bad performancel.

When children retrieve a spatial position fuzzy trace. they have higher

success probabilities on the end anchors of the spatial representation than

on the midterms.   For  example,  in a transitive-reasoning  task  (e.g.,  YA   >

YB   >YC   >YD   > YE)·in which the objects are positioned from large

to small but the premises are not presented iIi an ordered way (e.g., first

YB>YC. second YD > YE. third YA > YB, and finally, Yc' > YD) children
use the fuzzy trace "small objects are on the right and large objects are on

I To keep the explaiiatioli Coniprehensive here. we assumed that children will not resort

to verbatim information. In the complete model. this problem is resolved by takiIlg botli
verbatim ability and fiizzy ability into account.
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Fuzzy Trace Ability (Latent Vanable)

Flizzv   T,·ace   C'on terit (Latent Vatiable)
G i /*,ss i,ig Spatial p cisitioti Complete Ordering

-
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(311 all tratisitivit\ soliw tratisiti\'ity test- on all transitivit>
test-p:'irs pairs but bacl cin others test-pairs

Figure 5.2: Relationship Between Continuou.s Latent Ability and Discrete

Al(rn.ifest Beh.atior Ba.,sed. ori a Fuzz·4 Trcice.

the left'.  They are likely to perforni better Oil the end anchor test-pairs of
tlle spatial representatioll (YA > YB· YD > YE. Y.4 > YC· YC > YE) than on
the iniciterm test.-pair (YB> ic·. h'> YD·YB>YD)· The effect may also
occiir at only otie end of the ordering: for example, the fuzzy trace is -left-
side  objects  are  large:.   According  to  the imitary trace model  (Brainerd
& Kingnia. 1984). this spatial position effect occurs both on transitivity
test-pairs aiid illetilory test-pairs. When a child uses the appropriate fuzzy

trace. 1)erfoi'iiiaiwe is expected to be good on all test-pairs.

Development of Verbatim and Fuzzy Abilities

According to Brainerd aticl Kingma (1984. 1985), Reyna and Brainerd
( 1990).   aiid  Reyna  (1992)   the  development  of verbatim ability is rather
fast ancl reaches full (leveloptnent at approximately five years of age. Fuzzy
ability develops slower and is not expected to reach full development dur-
irig childhood (Revila & Brainerd. 1990: see also Liben & Posnansky. 1977:
Alarx. 1985b. 1985a: Perner & iIansbridge. 1983: Stevenson. 1972). Figure
5.3 gives a scherriatic itiipressiozi of the development of ftizzy and verbatim
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ability.

fuzzv abilit

verbatiin ability
a

b

t

Y

development

Figure 5.3: Schematic Display of The Development of Fuzzy and Verbatim
Trace   Abilities

Both abilities are expected to play an important role in the performance
on the memory and transitivity test-pairs in a transitive-reasoning task.
When crossed completely the three verbatim and fuzzy trace levels lead
to nine theoretical combinations, each of which is characterized by its own
expected performance on the test-pairs. The characteristics of the task are
expected to influence the retrieval of verbatim and fuzzy traces.

5.1.2 Transitive-Reasoning Tasks and Task Manipulations

Transitive-reasoning tasks differ with respect to the cues they provide about
the ordering of the objects. For example, when the objects are positioned

in a linear order and also presented in a linear order, the cues about the
ordering of the objects are obvious. As a consequence, the required fuzzy

ability level is not as high as when, for example, the objects are not po-
sitioned in a linear order or presented in a linear order. In this study, we
used three kinds of tasks, that may be characterized as (1) ordered po-

sition. ordered presentation (OposOpres); (2) ordered position, disordered

presentation ( Opos Dpres ) ;  and (3) disordered position, ordered presentation

(DposOpres)· The combination of "disordered position, disordered presen-
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tation" was not used because it was expected to be too difficult even for
adults (see Brainerd & Reyna. 1992). In this study. in every task-type
four premise pairs were presented. Next. the child was confronted with
the test-pairs. Each task had four memory test-pairs and three transitivity
test-pairs.

Ordered Position, Ordered Presentation Tasks (oposopres)

In Opo.,0'Pre'.9
tasks, the objects are ordered from small to large or large

to small.  The presentation of the premises is also ordered. Thus, first
premise pair (A. B) is presented, followed consecutively by preiizise pairs

(B. C).(C. D)  and  (D. E). Ordered presentation  of the ordered objects
niakes the use of pattern information from fuzzy traces rather easy. Figure
5.4 shows an example of the four premises of an 0 poa0 task. Box 1pres

presents the first preniise pair. box 2 presents the second premise pair, and
so on.  The "test-pair" box shows an exaniple of the first meniory test-pair.

 - 1- liMM
- 1- .Illililill I

"""M . 4'

1                                                 2                                               3                                                4

+*

Test-Pair

Figure 5.4: E:rample Of the Prentise Presentation of an "Ordered Position.
Ordered Presentation" Task

The expected performance patterns for combinations of verbatim and
fuzzy trace levels on the memory and transitivity test-pairs of OpOSOpre.i

tasks  are  shown  in  Table  5.1.    When  fuzzy  trace  level is intermediate or

high. the expected performance on all test-pairs is good. because pattern
information call easily be used to infer the relationships in both the memory
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Table 5.1: Expected Performance on the Test-Pairs of OposOpres Tasks for

Nine Combinations of Trace Levels

Verbatim Fuzzy Alemory Transitivity

'111 A12 M.3 AI# TI 712 73
h,W 0 0 0 0 0          0          0

jow intermediate
/ligh
low * 0 0 * 0          0          0

interniediate interinecliate lilI ...
high
jow 0          0          0

high interniediate               0          •          0 0 .00
high

0:   baci  performance:  *:moderate  perfc>rmance:  •:   good  perft,rmance

test-pairs and the transitivity test-pairs. When fuzzy trace level is low,

the combination with (1) low verbatim trace level is expected to lead to

guessing, yielding success probabilities at approximately chance level on

all test-pairs; (2) intermediate verbatim trace level is expected to lead

to temporal position effects, yielding moderate performance on the first
and last memory test-pairs (Ml and 1114) and bad performance on all other

test-pairs; and (3) high verbatim trace level is expected to lead to complete
memory of the memory test-pairs, yielding high sticcess probabilities on the
memory test-pairs and low success probabilities on the transitivity test-
pairs.

Ordered Position, Disordered Presentation Tasks (Opos Dpres)

In  Opes Dpres tasks, the objects are ordered from small to large or large to
small. The presentation of the premises is disordered: for example, in Fig-
ure 5.5 first (C, D) is presented, followed consecutively by (A. B). (D, E),
and  (B, C).   The midterm relationships are always presented  first  and  last.
and the end anchors are always presented in between so as to be able to
distinguish a temporal position effect from a spatial position effect (see also
Brainerd & Kingnia. 1984). Disordered presentatioii  makes the use of fuzzy
traces more difficult than ordered presentation because it is more difficult
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to recognize the ordering of the objects. The "test-pair" box in Figure 5.5
shows the first transitivity test-pair. The expected performance patterns....

1                                           2                                         3                                          4++

Test-Pair

Figure 5.5: Example of the Premise Presentation of an  "Ordered Position,
Disordered Presentation Task

for combinations of verbatim and fuzzy trace levels on the memory and
transitivity test-pairs of OposDpres tasks are shown in Table 5.2. When
verbatim trace level is low, the combination with (1) low fuzzy trace level
leads to bad performance on all test-pairs; (2) intermediate fuzzy trace level
leads to a spatial position effect resulting in moderate performance on the
end anchors, (YD. YE), (YA, YB), (YA, YC), CYC, YE), and bad performance
011 the other test-pairs: and (3) high fuzzy trace level leads to good per-
formance on all test-pairs because the ordering information can be used to
solve both memory and transitivity test-pairs. When verbatim trace level
is intermediate, the combination with (1) low fuzzy trace level leads to
teniporal position effects, yielding moderate performance on the first and
last memory test-pairs (AIi and 114) and poor performance on all other
test-pairs: (2) intermediate fuzzy trace level leads to both spatial and tem-
poral position effects resulting in moderate performance on the test-pairs
except Ti: and (3)  high fuzzy trace level leads to good performance on all
test-pairs. When verbatim trace level  is  high,   the  combination  with   (1)
low fuzzy trace level leads to complete memory of the memory test-pairs.

resulting in high success probabilities on the memory test-pairs and low
success probabilities on the transitivity test-pairs: (2) intermediate fuzzy
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Table 5.2: Expected Performance on the Test-Pairs of OposDpres  Tasks for
Nine Comb·inations of Trace Levels

hypothesized probabilities
Verbatmi Fuzzy Memory Transitivity

All A,12 A/3 A.14 Tl   T2   T3
10W· 0 0 0 0 0        0         0

low intermediate 0**0 0**

high

10\N * 0 0 * 000
itileriziediate intermediate **** 0**

high

low lilI 0         0         0

high intermediate O**
high lilI ..0

0:    bad  perforniance: *: moderate performance;  •: good performance

trace level leads to complete memory and a spatial position effect resulting
in good performance on all memory test-pairs and moderate performance
on the end-anchored transitivity test-pairs  (T2  and  Ti);  and  (3) high fuzzy
trace level leads to good performance on all test-pairs.

Disordered Position, Ordered Presentation Tasks (DposOpres )

In Dpos0pres tasks, the objects are positioned disorderly. That is, in Figure
5.6 stick A is in the third position in the box, while stick B is in the
first position. The presentation of the premises is ordered.  That is, in
Figure 5.6, first premise pair (A,B) is presented, followed consecutively
by premise pairs  (B,C),   (C,D)   and  (D,E). A disordered position requires
both high verbatim and fuzzy ability levels, because positional cues about
the ordering of the objects are not provided. Consequently, not only the
ordering has to be recognized but also the premise information has to be
remembered. The "test-pair" box, in Figure 5.6 shows the first memory
test-pair.

The expected performance patterns for combinations of verbatim and
fuzzy trace levels on the memory and transitivity test-pairs of DposOpres
tasks are shown in Table 5.3. When verbatim trace level is low, the perfor-



122 Chapter 5. Individual Differences and Development

...Im...
1                                           2                                         3                                          4++

Test-Pair

Figure 5.6: Example of the Premise Presentation of a  "Disordered Position.

Ordered Presentation" Task

mance is expected to be bad for all test-pairs. independent of fuzzy trace

level. That is, for Dpo,0 tasks at least intermediate verbatim ability
pres

is needed to remember the premises or recognize the ordering of the ob-
jects. When verbatim trace level is intermediate. the combination with (1)
low and interniediate ftizzy trace level leads to temporal position effects

resulting in moderate performance on the first and last presented memory
test-pairs  (AIl,  ALt):  and  (2) high fuzzy trace level leads to spatial positioIi

effects yielding  moderate  performance  on  the  end-anchors   (AIi .   A.4,   Ti .

and  I) ) .   When verbatim trace level  is  high.  the  combination  with  (1)  low

alid intermediat trace levels leads to complete memory resulting in good

performance on tlie iziemory test-pairs but bad performance on transitivity
test-pairs:  and  (2) high fuzzy trace level leads  to good performance  on  all

test-pairs.

5.1.3 Theoretical Model

The theoretical model of fuzzy trace tlieory with respect to transitive rea-

soning is displayed in Figure 5.7. The correct and incorrect responses to
the niemory (AI) and transitivity (T) test-pairs of the three kinds of tasks

are at the lowest level of analysis. These responses are determined by the

retrieval of verbatim and fuzzy traces. These traces are at the second level.
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Table 5.3: Expected Performance on the Test-Pairs of DposOpre a Tasks
for Nine Combinations of Trace Levels

hypothesized probabilities
Verbatim Fuzzy Memory Transitivity

AIi       112      Al)      A 4 Ti   T2   Ti
low 0 0 0 0 0          0          0

10W intermediate 0 0 00000

high 0 0 00000
101 · * 0 0* 000

intermediate intermediate * 0 0 * 0          0          0

high * 0 0 * *0*
jow 0          0          0

high intermediate • • •e 0          0          0

high

0:    bad  perfortriatice; *: moderate performance:  •:    good  performance

The use of the traces is governed by probability processes conditional on
the verbatim and fuzzy ability levels, which are at the third level.

In  Figure 5.7 responses  to the test-pairs  are  manifest (i.e., observable)
variables, and the verbatim and fuzzy abilities and verbatim and fuzzy trace
variables are latent (i.e., unobservable) variables. The latent ability vari-
ables are continuous and the latent trace variables are ordered categorical
variables. In this study, the structure of this theoretical model was tested

empirically. When the theoretical model fits, the estimated probability
structure must agree with the hypothesized probabilities in Tables 5.1, 5.2
and 5.3.  When this is the case we are able to distinguish groups of children
that differ in their use of verbatim and fuzzy traces when responding to
memory test-pairs and transitivity test-pairs.
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5.1.4 Hypotheses

The hypotheses to be tested were divided into three categories. The first
concerns the structure of the theoretical model. the second the interpreta-
tion of the abilities. and the third the relationship between age and ability
level. Together the hypotheses were a test of the fit of the theoretical model
to the empirical data.

I. Structure of Theoretical Model

-Hypothesis Il:  TWO ABILYI'IES EACH INFLUENCING THREE ORDINAL TRACE

LEI'ELS EXPLAIN PERFORMANCE BETTER THAN ONE ABILI'I'Y INFLUENC-

ING A LIMITED NITMBER OF ORDINAL TRACE LEVELS.

Fuzzy trace theory explains the performance on test-pairs by means
of two abilities. Ability level explains the differential use of verba-
tim and fuzzy trace levels. Combination of trace levels governs nine
classes of typical performance. This model is hypothesized to reflect
the data structure better than alternative models which posit one
ability governing either one. two. three, four, or five2 ordinal trace
levels yielding one through five typical performance classes.

Hypothesis I.1: THREE VERBATIM TRACE LEVELS AND THREE FUZZY TRACE
LEVELS ARE THE OPTIMAL NUMBERS TO DISTINGUISH DIFFERENT PERFOR-

MANCE GROUPS IN TRANSITIVE REASONING.

Both verbatim aIid fuzzy abilities are continuous. Children differ
considerably with respect to ability level. However, only a limited
number of verbatim and fuzzy trace levels are needed to distinguish
typical performance groups. Thus, children close on verbatim ability
are expected to have the same or nearly the same probability distri-
butiori for use of verbatim traces resulting in typical performance on
the test-pairs. We liypothesized that three verbatim trace levels and
three fuzzy trace levels are optimal. This hypothesis is tested against
models having either two or four trace levels.

g Experience with latent class analysis has shown that fitting more than five ordered
classes does tiot imI,rove the fit of the model anymore (Van Onna, 2002)
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Hypothesis /3: THE AIODEL IN WHICH ABILITY HAS - VIA THE TR.ACE LEV-
ELS - AN INDIRECT EFFECT ON PERFORMANCE EXPLAINS PERFORMANCE

BETTER THAN A MODEL IN WHICH ABILITY HAS A DIRECT EFFECT ON

PERFORMANCE.

According to the theory ability level influences the kind of trace level
that is retrieved. and trace level influences the performance on the
test-pairs. The hypothesis of three levels - ability - trace - perfor-
mance - is tested against a model in which trace level (second level

in Figure 5.7) is left out. indicating a direct effect of ability level on

perforniance.

II. Interpretation of the Abilities

Hypothesis I/1:  THE  TWO  ABILITIES  ARE VERBATIM ABILITY AND FUZZY

ABILITY

It is hypothesized that the verbatim ability influences, via the re-
t.rieval of verbatim traces, the performance on memory test-pairs but
not the performance on transitivity test-pairs. The higher the verba-
tim trace level. the better the performance on memory test-pairs.  The
fuzzy ability level influences, via the retrieval of fuzzy traces, both the
performance on memory test-pairs and transitivity test-pairs (this is
the unitary trace model: Brainerd k Kirigma, 1984).

Hypothesis  I/2:  THE   PERFORMANCE   ON   THE  TEST-PAIRS  OF   DIFFERENT

TASK TYPES AGREES WITH THE PERFORMANCE PREDICTED IN TABLES

5.1. 5.2 AND 5.3.
The performance on the test-pairs can be predicted by combinations
of verbatim and fuzzy trace levels. Characteristics of the task in-
fluence how easily a trace can be used. and this is reflected by the
expected performance patterns (Tables 5.1. 5.2 and 5.3)

III. Relationship Age and Ability

Hypothesis  III:   AGE Is POSITIVELY RELATED TO Z'ERBATIAI AND FUZZY

ABILITY LEVELS.
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Tlie higher the age. the 11igher the probability of a high ability level
for both verbatim and ftizzv abilities. We hypothesized that the de-
velopment of verbatim ability is fast, iii particular, during the first
years of life. After tlie first five years development progresses slowly
and not remarkably. Ftizzy al,ility development is hypothesized to
progress later and continue  eveii  into  adulthood  (see  Figure  5.3).

5.2 Method

5.2.1  Instrunnents

A computer test for transitive reasoning. called Tranred2. Was Collstructed

(Bouwmeester & Aalbers, 2004). Tranred2  is an individual  test.   The  reg-
istration of the test scores during test administration was done by the
program. There were four versions of the test in which the tasks were
presented in different order. These four versions were used to control for
order effects of the task presentation. Based on their order of entry iii the
investigation. children were assigned to one of the four versions.

5.2.2 Sample

The transitive reasoning test was administered to 409 children ranging from
5 to 13 years of age. Children came from four elementary schools iIi the
Netherlands. They were from middle class social-economic status (SES)
families. Table 5.4 gives an overview of the number of children per grade,
and the mean age and the standard deviation of age within each grade.

5.2.3 Design

The three kinds of tasks described earlier were used. Four versions of each
task type were administered. Tasks of the sanie type differed iii the colors
of the sticks and the direction of the ordering or the presentation: that is.
sticks could be ordered from left to right or from right to left.. and sticks
could be presented from siIiall to large. or from large to small.  One type
of task was always followed by a different kind of task. After the preniises
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Table 5.4: Number of Children. Mean Age in Months (M) and Standard
Deviation (SD) in Each Grade

Grade Number Age
AI SD

Kindergarten 39 73.67 4.70

1           65 86.15 4.81

2           70 100.16 5.85

3           60 111.80 5.80

4           63 123.44 5.52

5           58 140.31 7.69

6           54 146.18 6.61

were presented, first the four memory test-pairs were presented and next
the three transitivity test-pairs. The ordering of the memory test-pairs
was always the same as the ordering in which the premises were presented.
A 1-score was assigned when the child clicked on the correct stick: and
a 0-score otherwise. So for each child. 7 (test-pair) x 3 (task-type) x 4
(task-type-version) = 84 scores were assigned.

5.2.4 Procedure

The test was administered iii a quiet room iii the school building. The

experimenter started a short conversation with the child to put her/him
at ease. The child started doing two introductory tasks in which it was
explained that (s)he had to click on the longest stick every time. Next, the
experimenter explained that there were 13 tasks and that the child had to

do them on his/her own. The child did not know that the first of the 13
tasks was another introductory task of which the purpose was to let the
child get used to the idea that (s)he had to work on her/his own now.
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5.2.5 Analyses

From Theoretical Model to Statistical Model

The theoretical model including the latent and nianifest variables was fitted
to the test-pair data by means of a multilevel latent class model (Vermunt,
2003). This model was preferred over an analyses of variance (ANOVA)
model for three reasons. Firstly. the manifest, dependent variables are bi-

nary Icorrect (score 1)/incorrect (score 0)], whereas ANOVA assumes inter-
val measurement level for the dependent variable. Secondly, the theoretical
model contains dependent observations at two levels. At the first level, the
seven test-pair scores within a task - four memory test-pairs and three
transitivity test-pairs - are dependent due to the combinations of trace

levels that are retrieved. For example, when a child retrieves the fuzzy
trace "objects become smaller from right to left",  (s)lie is able to infer all
memory test-pairs and transitivity test-pairs correctly. At the second level,
the combination of verbatim and fuzzy traces that is used for solving a par-

ticular task is dependent on the child's verbatim and fuzzy ability levels. A
multilevel model incorporates these dependencies, whereas a within-subject
ANOVA is unable to do this. Thirdly, the theoretical model encompasses
both manifest and latent variables. An ANOVA model cannot deal with
latent variables, but a multilevel latent class model can. To summarize, a
multilevel latent class models formed an appropriate model to evaluate the
fit and the interpretation of the theoretical model.

An upgraded version of the program Latent Gold (Vermunt & Magid-
son, 2003) was used to estimate the parameters of the model and calculate
fit statistics. For evaluating the fit, the sample was randomly split into two
halves. The first half was used to evaluate the improvement of the fit of
different models. Next the fit of the hypothesized model estimated in the
first half of the sample was compared with the fit of that same model in
the second half. When the fit statistics in both halves are close, the degree

of chance capitalization is small and considerable negligible.
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5.3 Results

5.3.1 Background Analysis
An ANOVA was performed to determine whether the order of the tasks
had an effect on the liumber-correct score. that is. the nuniber of correct
answers to 84 items [7 (test-pair)  x 3 (task-type)  x 4 (task-type-version)1.
An ANOVA with nuniber-correct score as dependent variable and test-
version as independent variable showed that the four test versions did not
differ significantly  [F(3,401)  =  1.32. p  >  .051.  Thus tlie presentation order
of the tasks had no effect on number-correct.

A within-subject ANOVA was used to test whether the four replica-
tions of the three different task-types differed with respect to the number-
correct score. The means (aggregated over test-pairs) and the 95% con-
fidence iiitervals are given in Table 5.5. For Opot, ()pre.,   tasks   the   replica-

tions differed significantly [F(2.75. 1112.58) = 2.93.p = .037]. The partial
712 (for effect size: Cohen, 1977) was low (.007). The confidence inter-
vals of the replications all overlapped. For Opo.SDpres tasks the replica-
tions differed significantly  F(2.641. 1069.671) = 15.60.p  =  .000].   The
partial   112   was   low   (.037).      The   confidence   intervals   of  the   replications

all overlapped. For DposOpres tasks the replications differed significantly
[F(2.978, 1202.226) = 3.46, p = .016]. The partial 92 was low (.007).  The
confidence intervals of the replications overlapped.

Although there were sonie replications which differed significantly with
respect to their average performance, the effect sizes were small and the
confidence intervals showed that the differences between replications were
small in all cases.1. Therefore. we used all replications to estimate the niodel
structure.

1Note that a significant overall F-valtie does not guarantee that iticlividual groups
differ significantly (Stevens, 1996. pp. 163-164)
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Tahle 5.5: AIeaTis (M. Aggi·egated ouet· Test-Pairs). Standard EnY,TA (SE)
and 95% Corifidence Inteiv,ats (CI ) for· the Rephcations CA. B. C (197(i D)
of Each of the Three Task Tqpes

Op„sOpres 03,:Dpi'€ s Dpo.:Opre.i

Rep. At  SE  95% Cr   AI  SE  95% Cr AI  SE  95% CY

A .75 .02 .71-.78 .72 .01 .68-.75 .57 .()1 .54-.60

B  .78 .01 .74-.81 .69 .01 .66-.72 .59 .01 .56-.62

C .79 .01 .76-.82 .65 .Ill .62-.69 .55 .01 .52-.58

D .78 .01 .75-.82 .75 01 .72-.79 .57 .01 .54-.60

* Bc,nferroili acijustnient

5.3.2 Hypotheses Testing

I. Structure of Theoretical Model

All hypotheses with respect to structzire - two abilities or one, three trace

levels optimal, two-level  dependencies  -  were  confirmed,1. See Table  5.6

for tlie results.  Model B. consisting of one ability and one latent class, fitted
worse than model C, which had one ability influencing five ordered trace

levels [see BIC, AIC). and decrease in LL (taking into account the difference
iii  Iizimber  of  parameters) ill Table  5.6J.   Aforeover. the decrease  iii  LL  of

Model A relative to AIodel C, given the increase in number of parameters.
was substantial. This indicates that Alodel A fits better than hiodel C
(a formal significance test is hazardolls. however: therefore the BIC values

were  compared).   In  Model  D  the latent trace levels were omitted  leadilig
to a direct effect of ability level on performance. The fit of model D was
worse than the fit of model A iii terms of BIC, AIC3, and decrease iii LL.
Therefore it was concluded that the trace levels could not be omitted. The
three-trace-level model (A) fitted better than the two-trace-level inodel (E)
in terms of BIC. AIC3. and decrease iii LL.

40,1('liartic·ularpatternof olitliers. c·oilstitlitiilg 0.45f of all patterns. was foilnd whic·11

negatively iriHitenced the fit of the nic,dels. Flir (·hikireii who produced tliis i,attt,rii ti"'
atiswers were sc·ored as if they Were illissitig.
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Table 5.6:  Fit Measute.9 for the Estimated Models

kiodel Description LL #Par BIC AIC)       S
A                  2 abilities, 3 ordered trace levels -8880.33 69 18298.45 17967.67           €
B                 1 ability, 1 tra.ce level -10043.71 43 20422.56 19958.42        

0C                    1 ability, 5 ordered trace levels -9014.70    45 18395.71
18164.49          tr

D                   2 abilities. no trace levels -9259.08    63 19009.18 18707.18                        5

E                  2 abilities, 2 trace levels -8914.07 67 18350.34
18029.14                         

F                  2 abilities, 4 ordered trace levels -8848.05 71 18249.47 17909.10             E
Cross Validation 2 abilities, 3 ordered trace levels -9090.06 69       94
BIC': -2LL + #para,nrters x ln(N) (i,r N=204) 7

AIC,3: -2LL + :5 x #parantete·t·.9                                                                                                                         

 

i
'0

E
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The four-trace-level model (F) fitted better than the three-trace-level

model iIi terms BIC, AIC3, and decrease iii LL. The interpretation of the
four-class model showed that two of the four classes did not differ concep-

tually. Therefore, it was concluded that three trace levels were optimal to

distinguish relevant groups.
Chance capitalization was evaluated by fitting Model A to the second

random half of the sample (see Table 5.6). Because the numbers of records

(subjects x items per subject) was not exactly the same in both subsamples

(2426 records and 2434 records) due to nkissing values, we compared the

log-likelihood per record: For the first sample the LL per record equalled

-3.66, and for the second sample it equalled -3.73. This means that Model

A fitted almost equally well in both samples.
It can be concluded that the hypothesized model fitted the data well

in comparison with alternative models. However, a fitting model can only
be accepted when the interpretation of the parameters agrees with the

underlying theory. This interpretation follows below.

II. Interpretation of Estimated Model

Hypothesis IIi. Table 5.7 shows the structure of the estimated success

probabilities for the seven test-pairs per combination of verbatim and fuzzy

trace levels. The estimated success probabilities are summarized in three

categories to keep the presentation of the results orderly. Notation o means

a success probability lower than 0.65; * means a success probability between

0.65 and 0.80; and • means a success probability higher than 0.80. With
respect   to the first trace (given low second trace level), in general,   the

success probabilities of the memory test-pairs  (Mi,  M2,  M·3·  and  At#)  are

low  when the trace level  is  low  (rows   1,2  and 3), higher  when the trace

level is intermediate (rows 10. 11, 12) and high when the trace level is high

(rows 19, 20, 21). This pattern was found with the memory test-pairs but

not  with the transitivity test-pairs  (Ti,  T2, T3) Therefore, the first latent
trace can be interpreted as the verbatim trace.
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Tfith respect  to the secoiid latent trace (Tal,le 5.7. second Columli). the
siiccess probabilities  of the transitivity  test-pairs  (Ti.  73.  and  I.,)  are  low

wlie11 the trace level is low (rows 1.2.3 - 10. 11. 12  - 19. 20. 21). (iii
general) higher when the trace level is intermediate (rows 4.5.6 -   13. 14.
15 -- 22. 23. 24) and (in general) high when the trace level is higli (rows

7. 8, 9 - 16. 17. 18 -- 25. 26. 27). Therefore. the second trace can be
interpreted as the fuzzy trace.

Standard errors of the estimated success probabilities (not tabiilated

here) were between 0.000 atid 0.077 (inean = 0.027. standard deviatioii =

0.02). This means that the confidence intervals were relatively sillall.
Figure 5.8a shows the distribution of latent verbatim trace levels, given

a child's latent verbatim ability. Figure 5.8a shows tliat the probability
of using a low verbatim trace level decreases as a function of verbatim

ability and is maximal when ability level is low. The probability of using
an intermediate verbatini trace level first iiicreases and then decreases as

a function of ability and is maximal when the verbatim ability level is
izlternlediate

L O- . . . _ . - - - -      18  - - - - .--

0.9  -              -                   / 0.9 -K

0.8 -        '      .               0.8 -                   i
0.7                " 0.7 -

1
0 6.                               l 0.6 .. 1
0.5.             - .=                         0.5
0.4 . 0.4 . .1
0.3 . 0.3

02            /                   02
0.1 0.11 I
00 -/ 00                       1

Low Verbatim ability High Low·
Fuzzy ability 1{igh

- - - - -l o w kerbatim trace level -----Itil IiI.) trace le el
intermediate  verbatim  trace le\ cl Interniediate fw/v trace level
high verbatim trace level high fwzy trace  level

a. Relaticinshit, verbatim ability aiid b. Relatic,rishil, ftizzy al,ilit>· ai,(1
verbati "i trace levels. fuzzv tra(·(' 1('vi,ls.

Figure 5.8:  Distribution of Latent Verbat.im Trace Levels Git,en Latent k'er-
batiut Ability (Panel a) and Distnbution of Laten.t Fu.z:V Tra( e Let,el.9 Git1€71
Latent   Fuzzy  Ability   (Panel  b)

Note that along the verbatim ability. the probability of lising all ill-
terniediate verbatim trace level is Iiever higher than the probabilities of
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using a low or a high verbatim trace level. The probability of using a high
verbatim trace level increases as a function of ability and is maximal when
ability level is high.

Figure 5.8b shows the distribution of latent fuzzy trace levels. given a
child's latent fuzzy ability. The interpretation of the distribution of the
fuzzy trace levels is the same as the interpretation of the verbatim trace
levels. Note that in Figure 5.8b there exists a small region on the fuzzy

ability where the intermediate fuzzy trace level has higher probability than
the low and high fuzzy trace levels.

Hypothesis  II2: In Table 5.8.  both the hypothesized  and the estiniated
success probabilities of the test-pairs of OposO'pres tasks are shown. The
niajority of the estimated success probability patterns agreed with the hy-
pothesized success probability patterns. The pattern in the fourth row
differed in estimated and hypothesized success probabilities with respect
to the memory test-pairs.

Table 5.8: Estimated Success Probability for the Test-Pairs of Tasks
OposOpres for Nine Combinations of Latent Trace Levels

Hypothesized probabilities Estimated probabilities
VerbatimFuzzy Metnory Transitivity Memory Transitivity

All A12 813 114 Ti  T2 T·3 All A,12 AI3 A44 Ti 7'2    T3

jow 0000000.59 .48 .38 .49 .55 .56 .50

km interm. 0   0 0 lilI .94 .97 .95 .96 .97 .94 .97

h i g h• • • • • •l .99 1.0 1.0 1.0 1.0 .99 1.0

low *00*000 .93 .95 1.0 .99 .49 .46 .48

iliterm interizi. 0  0  0  0   0   0 0 .99 1.0 1.0 1.0 .97 .91 .96

high     •    o    •   •    • • e l.0 1.0 1.() 1.0 1.0 .99 1.0

low '.00000 .99 1.0 1.0 1.0 .43 .36 .46

high interni. 0  0  0  0   0   0 • 1.0 1.0 1.0 1.0 .96 .87 .96

high 0 1.0 1.0 1.0 1.0 1.0 .99 1.0

0:  < .65: *:  .65 - .79: •:  > .79

It was hypothesized that the intermediate verbatim trace level and the
low fuzzy trace level lead to a temporal position effect, predicting moderate
probabilities for the memory test-pairs presented first and last  (Mi  and AA)
and low probabilities for the test-pairs in between (AI2 and Al,) However,
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the results showed complete memory for premises when verbatim trace level
is intermediate and fuzzy trace level is low.

Table 5.9 shows that for Opo,Dpres tasks the majority of the estimated
success probability patterns agreed with the hypothesized success probabil-
ity patterns. Two patterns (in rows 2 and row 4) differed in hypothesized
and estirnated success probabilities. It was hypothesized that intermediate
fuzzy trace level in combination with low verbatim trace level leads to a
spatial position effect resulting in higher success probabilities for the end-
anchored test-pairs (Table 5.9, row 2; note that the end-anchored test-pairs

were  M2, AI·3, T2  and  Ti)  than  for the mid-term test-pairs. However,   the
estimated success probabilities show that this spatial position effect is only
active at one end-anchor leading to high success probabilities for the test-
pairs M)  and T3 · Further,  it was hypothesized that intermediate  verbatim

Table 5.9: Estimated Success Probability for the Test-Pairs Of Tasks

OposD for Nine Combinations of Latent Trace Levelspres

Hypothesized probabilities Estimated probabilities
VerbatimFuzzy Memory Transitivity Memory Transitivity

Mi M2 M3 A14 Ti T2 T) All A12 M) M4 Ti    T2   T3
low 0000000 .45 .41 .50 .46 .47 .44 .46

low interm. 0   *   *   0   0   * * .71 .74 .87 .82 .79 .79 .89

high••••••l .88 .92 .98 .96 .94 .95 .99

low *00*000 .95 .85 .80 .73 .45 .54 .55

interm. interm. *   *   *   *   0   * * .98 .96 .97 .94 .78 .85 .92

high•••••le .99 .99 1.0 .99 .94 .96 .99

low Ilolooo 1.0 .98 .94 .89 .43 .63 .64

high interm.00000** 1.0 .99 .99 .98 .77 .89 .94

high••••• 0 0 1.0 1.0 1.0 1.0 .93 .97 .99

0:  < .65: *:  .65 - .79: 0:  > .79

trace level in combination with low fuzzy trace level leads to a temporal
position effect (Table 5.9, row 4). However, the estimated success prob-
abilities showed a temporal position effect for the first memory test-pairs

(Afl  and  AI2),  but  not  for  the  last.
Table 5.10 shows  that for DPOSO tasks. four estimated success prob-pres

ability patterns agreed with the hypothesized success probability patterns.
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Five patterns (in rows 3.4.5.6,8) differed in hypothesized and estimated
success probabilities. Firstly. low success probabilities on all test-pairs were
hypotliesized when verbatim trace level was low and fuzzy trace level was

high (Table 5.10, row 3) However, the estimated probabilities showed a

spatial positioii effect resziltiiig in 111oderate atid high success probabilities

forthe test-pairs 34. Ati. Ti. and 13. Secondly. a temporal position effect
was hypotliesized when verbatim trace level was intermediate and fuzzy

trace level was JOR· or interinediate (Table 5.10. rows 4 and 5). However.
the estiniate<1 success prol)al,ilities oiily showefl this effect 011 the first meni-

orv test-pair but not 011 the last memory test-pair when fuzzy trace level

was low.  A spatial positioii effect was active (in particular at one side) when

fuzz.T' trace level was intermediate. Thirdly. for intermediate verbatim trace

Table 5.10: Estimated Suecess Probabilittf for the Test-Pairs of Tasks
Di„,ROp,·, . for Nine Combinations of Latent Trace Levels

Hypothesize(11)rtil,al)ilities Estimateci prolmi,ilities
\'erbati ili EP izz.>· Alenior>· 7'ransitivitv ,11 el nory Transitivitv

A l t      A I 2     .1 /:i      A 1.1      Ti          T2 73 Att 1/2 A 13 .1 4 Ti 7'2    Ti

/,1./. 0000000 . 50 .24 .25 .19 .50   .57   .47

k,# u#n-m. 0    0    0    0 0 0 0 .61 '18 .32 .30 .66 .56   .62

higil 0000000 .71 .51 .41 .64 79 .56   .75

1(,/ *00*000 .88 .71 .63 .52   .61 .63 . 5:3

intprm. ilit('ri". *    0    0    *    0    0 0 92 .A.9 .71 .75   .75 .63 .67

iligh *0 0* *0* .4 4 9, .78 .89 .85 .6;  .78

/('Li. •000 .f)/ .1)5 .9() .81 .71 .69 .58

high HM...0  0   0  0   0   0 0 .C)<) (17 .93 9:1 .Al .69 .71

higli••••000 94 94 .95 .98 .t)() .69 .82

0:  < .65: *:  .($5 - .79: 0: > .7f)

level Mid higli fuzzy trace level. a spatial posit 1011 effect was hypothesized

(Table 5.10. row 6). The estitiiated probabilities showed a spatial positioii
effect at only otie end-anc·hor but not at l,oth. Finally. it was hypothesized
that high verbatim trace level atid intermediate fuzzy trace level would lead

to high ineitiory test-pairprobabilities and low transitivity test-pair proba-
bilities (Table 5.10. row 8). The estimated prot,abilities for the transitivity
test-pairs were high for the erid-anchors.
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III. Relationship Age and Ability

Hvpothesis III: Figure 5.9 displays the scatterplots of the verbatim and
fuzzy ability by age.  The fit of linear, quadratic and cubic regression curves
did 11Ot differ significantly. Thus, the curvature of the hypothesized devel-
opmental curves iii Figure 5.3 was not supported by the data. The per-
centages of explained variance of the linear models were .08 for verbatim
ability and .20 for fuzzy ability.

160- 160-

140 - 140 -

120 -                            • 120 -

100- 100 -                         •...

80 - 80 -            .·

1 60 - 60 -
l i l l I 1 1                                                      1

-2                -1 0
1 2 -2             -1 *)

1 2

Verbatim Ability Fuzzy Ability

Figure 5.9: Scatterplots of Verbatim and Fuzzy Ability Scores and Age in
1 Months (the Larger the Bullets, the More Data Points on the Same Posi-

Non)

5.4 Discussion

In this study, fuzzy trace theory was applied to transitive reasoning. A
theoretical model was set up in which the performance on memory test-
pairs and transitivity test-pairs was explained by the use of verbatim and
fuzzy traces, which were dependent on the verbatim and fuzzy ability levels,
respectively.  Age was hypothesized to be related to both abilities.  A
multilevel latent class model was used to handle the dependencies between
ability level and trace retrieval on the one hand, and trace retrieval and
performance on the test-pairs on the other hand. Fitting the model had
two aspects. Firstly, we investigated the structure of the empirical data
and concluded that two abilities had to be distinguished. Secondly, we
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investigated whether these abilities could be interpreted as verbatim and

fuzzy abilities, and concluded that this was justified by the results.

This study showed that a high ability to remember premises is not
enough to correctly infer transitive relationships. An important result was

that children who have a high verbatim ability level but a low fuzzy abil-

ity level performed well on the memory test-pairs but at chance-level on

the transitivity test-pairs. This finding disagrees with Trabasso's linear

ordering theory which assumes that memory of the premises is enough to
infer the transitive relationship. Moreover, the results did not agree with

Piaget's theory. Piaget's theory assumes that memory for the premises is

a prerequisite for the capacity of using logical rules and inferring transitive

relationships. The format of the task was not expected to influence the use

of logical rules when the premises could be remembered. We found that
memory for the premises was not a prerequisite for inferring the transitive
relationship and that the format of the task had strong influence on the

success probability of inferring the transitive relationships, even when the

memory test-pairs were correctly remembered. However, the initial aim of
Piaget was not to give such a detailed description of transitive reasoning.

making a comparison between his theory and the present study disputable.
Some relevant deviations from the expected probability patterns of com-

binations of verbatim and fuzzy trace levels were found. These deviations

in particular concerned the finding of temporal position effects only at the

information presented first instead of the information presented first and

last. Spatial position effects in Dposo tasks were found in particular at
pres

one side of the ordering (containing the longest sticks) but not on both.
This result may be explained by a marking effect. That is, linguistic fac-
tors played a role in the end-anchoring. During the premise presentation

children had to click on the longest stick, which may explain that their

representation of the long-end-anchor is better than the short-end-anchor

(see  Riley & Trabasso,  1974;  Trabasso  et  al.. 1975; Sternberg, 198Ob).

Brainerd and Kingma (1984) showed that the unitary trace II10del could

well explain performance on memory and transitivity test-pairs.  This
model assumes that both memory and transitivity test-pairs are solved by
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means of fuzzy traces. We approached the data from a different angle by

distinguishing strategy groups instead of fixed age groups. and concluded
that different groups can be distinguished whicli are characterized by dif-
ferential iise of verbatim and fuzzy traces. For children having high fuzzy
ability levels. indeed the u11itary trace model can explain both performance
on memory and transitivity test-pairs when verbatim ability level is inter-
Iixediate or high. However. for children having intermediate or low fuzzy
ability level the verbatim trace lias a strong influence on the performance
on memory test-pairs, indicating that there is a changing oriezitation from
the use of verbatim traces to both kinds of traces and, finally, to fuzzy
traces. For tasks in which the position of the objects is not ordered, as in
Dpos() tasks, both high verbatim and fuzzy trace levels were requiredPres

to infer the transitive relationship.
We determined the influence of age by means of the relationship be-

tween age and ability level. We used a different perspective than Brainerd
and  Kingma  (1984), who assumed fixed age groups and investigated  the
differences between various age groups in performance. In Brainerd and
Kirigma's (1984) study individual differences within age groups were ig-
nored. We showed that the correlation between age and verbatim ability
was low and between age and fuzzy ability moderate. This result indicated
that age influences performance but that the effect is not strong. Therefore.
it seems more appropriate to study development by distinguishing strategy
groups instead of fixed age groups.   In  his book,  Wohlwill  (1973, pp 26-28).
when summarizing Kessen's (1960) objections to the use of age as a vari-
able in behavioral research, already argued that chronological age is not a
ziseful variable in statenients of functional relationships to behavior. since
there are considerable differences in rates of developmental change.

The results of this study also have implications for the discussion about
developmental stages. With respect to transitive reasoning even five-year
old children may have a substantial probability to retrieve high-level fuzzy
traces and thus infer the Complete ordering of a task. Also, 12-year old
children may have a substantial probability to retrieve the lowest trace level
and thus do not recognize any ordering in the task. In other words. it is not
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possible to distinguish clear-cut developmental stages in the development of
transitive reasoning (see also Bouwmeester & Sijtsma. submitted, chapter
3  of this thesis). Because  we  used a cross-sectional design, no conclusions

could be drawn about the transition from one ability level to another. A
longitudinal design is needed to study such transitions. This requires an

extra level in the multi-level structure to model the dependencies within
individual children's data over time.

Appendix
Model formulation

Let test pairs be indexed k = 1,.., 7: tasks i = l, .., 12: and children j =
1, .., N. Response variable Ej k    = 1 when child j gives a correct response
to  test-pair  k  in  task  i. and Ytjk = 0 otherwise. The scores of child j on
task  i are collected  iIi the vector  Y,j.  and Yj denotes the scores  of child  j

on all 12 tasks.
The variant of the multilevel latent class (LC) model we used contains

two ordinal latent variables denoted by Xij and Qij representing the ver-
batim and fuzzy traces, respectively. for a particular task i. These two
mutually independent latent variables are assumed to have discrete real-
ization between  0  and   1. with equal distances between categories.    With
three classes per dimension. z = 0.0,0.5, or 1.0. and q = 0.0,0.5, or 1.0.
This yields an LC model with multiple latent variables that Magidson and
Vermunt (2001) called an LC factor model. If we assume that the various
tasks performed by a child are independent of one another. the relevant LC
factor model  for  Y· ·  is  of the  form

1J

P(Yij) =EE P(X,j = .r)P(Q,j =q)II p(Yijk|Xij = I, Qij = q).    (5.1)
S q A·==1

This equation reveals the basic assumption of a LC model: the scores on

the 7 test-pairs are mutually independent given the latent verbatim and
fuzzy trace levels of child j at task i.

Because of the nesting of tasks within children. the standard assump-
tion of independent observations is not correct for our data. The multiple
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tasks performed by a child cari. liowever, be asstimed to be miltlially ill-
dependent given the child:s latent verbatim ancl fuzzy abilities. These two
cotitiiitioiis latent variables. whicli are clenoted by 11-j and Uj respectively.
with realization w and r. have the role of random effects in the models for

1.jX · atid Q,j (Verinunt. 2003). The abilities or random effects Wj and V,
modify the illodel for Y·  described iii Equation 5.1 as follows:7 1

PCY,jlit''j = w. 16 = i.)   =   Z X PCX,j =.rlists = u') P(Q,J    -   q| v,    =   t,J  )
.1. q

11 p(Y,.,k IX,j = .r, Q,j = q). (5.2)
k=1

As can be seen. Xij  is assumed to depend 011 11·5, and Qij  on Vj.  Aforeover.
tile effects of the continuous latent abilities on the responses are assumed
to be ftilly mediated by the discrete latent trace levels.

The probability associated with all responses of an individual, denoted
by  P(Yj), is obtained by taking the product of P(Yijlwj = W, 1/j = 1,)
over the 12 tasks and integrating the two latent ability variables out of the
equatioii. This yields:

F 12

P(YJ) = «1 . .i   f(H'j = u,) f(Vj = 1')'IIP(Yijlli'j =u,. 1/) - 1,)  dit,di'.  (5.3)
Li= 1

Note that P(Yij IFFj = w. 1/j - 1,) has the form described in Equation 5.2,

and f(115 = w) and f(Vj - t,) are standard normal univariate distributions.
The three types of model probabilities appearing in Equation 5.2 -

P<X,j - Ill'Vj = u,), P(Q,j = q 1 '1 = t,j). arid P(YijklXij = I,Qij - 4) -
are parameterized as logit models. The probability of a correct response
of child j oIl test-pair k of task i is restricted by a standard binary logit
moclel of tlie forni

exp(.414 + dlk, ·3' + 324·q + ·3:lk, ' 't' .q)P(Y'JA· = 1 IX,j = .r. Q,j - q) =
1+ exp(,Alki +.ilk, ' ·r t ,32ki  9+.3.'ik·i · ·t' ·q) '

(5.4)

wl ere ·306 , is aii intercept, .31ki and .32ki are the main effects of verbatim
trace lc'vel and fuzzy trace level. respectively, and Jik, is the interactiori
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effect of verbatim and fuzzy trace level. The indices k and i indicate that
these parameters differ across test-pairs and tasks. This is. however. not
fully correct since the parameters were restricted to be equal for all four
replications of the same task-type  (e.g...jok.i+.3  -  3ok.i). This implies  that

we have to estiniate only three sets of free 3 paranieters.
The other two parts of the model. capturing the relative sizes of the

verbatim and fuzzy trace levels given the verbatim and fuzzy ability levels.
are modeled as

exp(-toI· + 71··r·11')
PCX,J   =   d. I li'J =  11')  =  r exp(70,r + 1,·1 · I · U')

and
exp(739 + 74 ·9· 1,)

p(Q,1  - ql V,  =  l.) =
Eq exp(7,3q + -14 ·cl· 1')

These are adjacent-category ordinal logit models similar to the ones used
iri partial-credit niodels. which are IRT 1110(lels for ordinal items. The 7
parameters are assumed to be equal across the 12 tasks.

The multilevel latent class models were estimated by meaiis of Illaxi-

Illum likelihood using an adapted version of the EM algorithm (Vermunt.

2003,2004). This procedure is implemented iii version 4.0 of Lateiit GOLD

(Vermunt  &  Magidson,  2003),  a Windows-based  program  for  LC  analysis.
that is available at www.statisticalinnovations.com.



Epilogue

I started this thesis project believing that the development of transitive

reasoning could be studied by simply letting children perform a transitive
reasoning task and ask them to explain their answer. When children 111en-

tioned the premises necessary for the transitive inference, this was taken
as evidence that they were capable of transitive reasoning: and when they
did not mention the premises, they were incapable of transitive reasoning.

This was a simple and equally naive idea which I rejected after hav-
ing seen two children perform a transitive reasoning task. These children
explained their answers in several ways, which included information about
either the ordering of the sticks, the colors of the sticks, aspects of the
environment, or the premise information. Some of these explanations were

incorrect. having nothing to do with the task. Among the correct expla-
nations some used the premisses, but others used a strategy that did not
include the premises.

For me, this was the first serious confrontation with a difficult prob-
lem: what exactly is transitive reasoning? Piaget used transitive reasoning

tasks only as tools to study whether children were capable of operational

reasoning. According to his theory, children had to understand and apply
logical rules in concrete tasks like transitive reasoning tasks. However, in
practice it appeared that children used different strategies to infer the tran-
sitive relationship and often these strategies led to correct inferences. As a

result, it seemed implausible to conclude that these children were incapable

of transitive reasoning.
What is transitive reasoning? How does it develop, and how is de-

velopment characterized?  What is the role of environmental influences?

These issues formed the fundamental questions of cognitive development
according to Wohlwill  (1973).

Wohlwill (1973. pp. 40-42) claimed that the discovery and synthe-
sis of developmental dimensions was the first step in studying cognitive
developmental concepts.  In his book "the study of behavioral develop-
ment",  Wohlwill (1973) extensively discussed the questions  to be asked

145
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when studying Cognitive development and the methods to be used for an-
swering these questions. He explained that methods available at the time
when he wrote his book were suited primarily for analyzing data collected
in an experimental context and, therefore. often inappropriate for studying
developmental change. According to Wohlwill, developiriental psycliology
requires a differential approach in which changes in behavior are described
within the natural environment in which the emphasis is on response pat-
terns and individual differences.

AIodern test theory or item response theory has grown substantially
over the past decades. now offering appropriate and sophisticated analysis
methods to handle differential questions of the type discussed by Wohlwill.
In this thesis. a few of Wohlwill'+ developmental issues were discussed in
the context of transitive reasoning and item response theory was used to
clarify these issues.

Often. developmental theories are rather vague or unspecified with re-
spect to the underlying dimensions of constructs and the influence of task

characteristics on children's performance. Moreover, dimensionality does
Tiot have an absolute meaning and is valuable only to the degree in which
the research is based on a clear and unambiguous operationalization of
the construct of interest. Many theories lack this clarity. Furthermore. the
definition of a psychological dimension does not have a one-to-one relation-
ship with a mathematically defined dimension as represented in statistical
methods such as item response models. The methods used in this thesis for
investigating the dimensionality. assumed slightly different mathematical
definitions of dimensionality whicli led to somewhat different results and in-
terpretatioiis. This taught us that psychological dimensionality can be ap-
proached from different statistical perspectives which, when used together.
may give a rather complete picture of the psychological dimensionality.

According to Wohlwill (1973. e.g.. p. 40), the next step in describ-
ing developmental change was to determine whether behavior changes are
quantitative or qualitative and. corresponding with this. how to interpret
continuity  or discontinuity  in development.  Wohlwill  (1973.  p.   59)  empha-
sized that the answer to this question is mainly determined by the level of
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aiialysis.  Chazige can be analyzed at lilally levels of ,sophistication. each

of which leads to different conclusions about continiiity or discontitiuity.

Moreover, Wohlwill ( 1973. p. 25) argued that chroiiological age is iziap-

propriate for detecting discontinuity dize to the probabilistic character of

change iii behavior.
Nowadays, cotitinuity and discontinuity can be studied effectively bv

means of latent class analysis. This method can be used to (listinguish
groups of children. which differ with respect to their response patteriis to
transitive reasonhig tasks. In tliis thesis. discontinuity was stiidied on the
basis of the data structure without a priori assuming fixed age groups.

Aloreover. latent class analysis inade it possil,le to study relationships be-
tween environmental influences, cognitive behavior, and age in different
latent classes. We emphasize that latent classes identified froin the data
only have relative nieaning, priniarily dependeiit on the operationalization
of the construct. the level of analysis. aiid the particular statistical method
used. Without a highly accurate level of specification of the developmental
theory the statistical model cannot offer useful results.

Wohlwill (1973) adviced to study individual differences in development
by means of the changes in individuals' score patterns produced in response
to the tasks. Iii chapter 5, fuzzy trace tlieory was used to explain individual
differences in the development of transitive reasoning iii detail. Brainerd
and Kingma (1984. 1985) elaborated fuzzy trace theory but used an ex-
perimental design to test different aspects of the theory. In tlieir research.

these authors were unable to stzidy individual differences. and developnient
could not be investigated because average age scores were used as the level
of analysis. The availability of new and advanced statistical methods en-
abled us to analyze response patterns and predict the responses processes

on different kinds of transitive reasoning tasks assuming distinct verbatim
and fuzzy ability levels. The recently developed nolti-level latent class

niodel is a sophisticated and powerftil tool for testing the liypothesized
structure of the theoretical model and for describing the developnient of
transitive reasoning at a detailed level of analysis. In fliture research. this

method  may  be  used  iii  the  context  of  a  longit zidinal  desigii  for  st iiciring
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developniental transition processes.
The developniental issues discussed in this thesis are not specific for

transitive reasoning. The issues of dimensionality. qualitative or quantita-
tive change. influence of environmental factors. and development in indi-
vidual response patterns can 1,e generalized to otlier developmental - ofteil

Piagetian - concepts. Verweij (1994). De Koning (2000), Jansen (2001).
and Hosetifield (2003) already made fruitful contributions. With respect to
transitive reasoning a longitudinal study would be the next step to sttidy
the transition iii developmental change.

Wliat did we learn about developmental psychology from the hundreds
of children who performed transitive reasoning tests in this study? In
the introduction. I mentioned the most important differences between Pi-
agets theory about cognitive development. information processing tlieory.
and ftizzy trace tlieory. In this thesis. the hierarchical nature of Piaget's
theory. wliicli views childreii as imperfect adults progressing through the
necessary stages, starting froni the seiisory-motor stage and ending at the

,stage of formal adult thinking, was not supported by the empirical observa-
tions.  Thiis. the development of children's reasoning was riot characterized

by a shift from functional to operational thinkitig. Aloreover. it was found
that development was neither characterized by an increase in the coniplete-
ness of a quantitative. symbolic representation of incomitig information nor
the  efficiency  to  forni  sticli  a  representation.  as  is  assunied  by  inforniation
processilig theorists. Insteacl. we found that development seems to be char-
acterized   by a growing abilitr   to ret rieve information which adequately
inatches the task requirements. According to ftizzy trace theory. for solv-
iiig a cognitive task childreii learn to lise the ftizziest trace that le*ls to
sticcess. During development people leal'ii that pattern informatioll is often
better sitited than verbatini information because pattern information call
be retrieved longer than verbatim iiiformation and new informatioIi cari be
itiferred  from  the  pattern information. However.  for some cognitive tasks.

reqiziring detailed verbatini information. children perform a better job than
nially adults!
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SUIn]llary

Transitive reasoning is an iniportant construct in developmental psychol-
ogy. According to Piaget operational reasoriing is required to infer a tran-
sitive relationship. This operational reasoning is characteristic of the con-
crete operational stage, one of the four stages in Piaget's theory.

Iii a transitive reasoning task the unknown relationship between two
elenients (transitive relationship) can be inferred from their known rela-
tionships (premises) with a third element. According to Piaget children
have to be capable to understand and apply rules of logic to infer transi-
tive relationships.

Piaget's theory about transitive reasoning evoked much of discussion
and research was initially focussed at the age of emergence of transitive
reasoning. Later on, attention shifted towards the underlying processes in-
volved in transitive reasoning. Researchers from different theoretical back-
grounds used different definitions and operationalisations of the construct
leading to different conclusions about the processes involved. The most
iInportant purpose of this dissertation was to disentangle the cognitive
processes involved in transitive reasoning and to compare three leading
theories.

Chapter 1 describes the construction of a transitive reasoning test con-
taining 16 transitive reasoning tasks that differed with respect to the pre-
sentation form of the premises, the content of the task and the kind of re-
lationship between the objects used in the tasks. Previous research showed
that these task characteristics influence the difficulty of a task.  The test
was administered to 615 children ranging in age from 6 to 13 years old. 15
of the 16 tasks formed a reliable Alokken scale on which the children could
be ordered reliably according to their number-correct score.

In chapter 2 an empirical study is described in which the three leading
theories were compared with respect to dimensionality of the construct of
transitive reasoning and the influence of task characteristics on the diffi-
culty level of the task. Moreover, it was investigated whether the correct /
incorrect explanations the children gave after responding to the task led to
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more valid information about transitive reasoning ability than the correct

/ incorrect responses. Different nonparametric item response techniques

were used to determine the dimensionality of the data. The ability could

be described by one dimension when the correct / incorrect explanations
were used while at least three dimensions were required when the correct /
incorrect responses were used. It was concluded that the correct / incorrect
explanations gave more unambiguous and accurate information about the
transitive reasoning ability than the correct / incorrect responses.

Moreover, the results showed that the dimension could better be in-
terpreted by information processing theory and fuzzy trace theory than

by Piaget's theory. The distinction between functional and operational
thinking (typical of Piaget's theory) was not reflected by the results. The

difficulty level of the tasks was especially determined by the degree to
which the premisse information could be reduced into a more patternlike
form  (typical of information processing theory and fuzzy trace theory).

In chapter 3 it was investigated whether the development of transitive

reasoning is continuous or discontinuous. First. a number of aspects in-
volved in studying discontinuity were discussed. Second. two latent class

models were compared. The results showed that the binomial mixture

model, which is a common model to study discontinuity in cross-sectional

research, fitted worse than the latent class factor model. Both models

showed that the development of transitive reasoning was discontinuous.

At least two classes could be distinguished in the ability of transitive rea-

soning which could be interpreted by fuzzy trace theory.

In chapter 4 the relationships between age. strategy use and task char-
acteristics were investigated. A latent class regression model was used to
describe the influence of task characteristics on strategy use. Five latent

classes were distinguished in which the influence of task characteristics on

strategy use differed. Young children in particular used irrelevant details

of the task to infer (mostly incorrectly) the transitive relationship. Task
characteristics had little influence on strategy use. For elder children task
characteristics influenced the strategy use considerably.

In chapter 5 fuzzy trace theory was used to described the performance
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of children on three kinds of transitive reasoning tasks in detail. The tasks
differed with respect to the ordering of the objects and the presentation
of the premises. According to fuzzy trace theory information is processed
simultaneously at multiple levels. Fuzzy trace theory distinguishes a verba-
tinl ability and a fuzzy ability. According to the theory, only fuzzy ability is
needed to infer transitive relationships. Using this theory the performance
of children on different kinds of task given their verbatim and fuzzy ability
level could be predicted well.

A nizilti-level latent class model was used to determine wlietlier the
theoretical model fitted the empirical data. The results showed that the
theoretical model fitted well. Both the verbatim and fuzzy ability were
reflected in the data structure and the predicted performance agreed with
the estimated performance to a large extent.

In the epilogue it was concluded that the development of measurement

methods and techniques over the past decades enabled us to study de-
velopmental issues  in a differential way. According to Wohlwill  ( 1973)   a
differential approach forms the essence of developmental psychology.  How-

ever, at the time he wrote his book no adequate statistical methods were
available.

The stages formulated in Piaget's theory were not supported by our
enipirical observations 011 transitive reasoning. Moreover, it was found
that cognitive development was neither characterized by an increase in the
amount of information processed as assumed by information processing
theory. The results of this thesis iii particular showed that cognitive devel-
opment is characterized by an iricreasing ability to process information at
different levels and to retrieve information that adequately niatches task

reqziirements.
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Sanlerlvatting (Summary in Dutch)

Transitief redeneren is een belangrijk begrip in de ontwikkelingspsycholo-
gie. Volgens Piaget is operationeel redeneren nodig 0111 een transitieve
relatie af te kunnen leiden. Operationeel redeneren is kennierkend voor

het concreet-operationele stadium, 66n van de vier ontwikkelingsstadia uit
Piaget's theorie.

In een transitieve redeneertaak kali een oribekende relatie (transitieve
relatie) tussen twee elementen worden afgeleid uit twee bekende relaties
(premissen) tussen deze twee elementen en een derde element. Volgens

Piaget moeten kinderen iii staat zijn om logische regels te begrijpen en toe
te passen oni de onbekende relatie af te kunnen leiden.

Naar aanleiding van Piaget's theorie over transitief redeneren is er veel
onderzoek gedaan. Dit onderzoek was in eerste instantie vooral gericlit op
de vraag op welke leeftijd kinderen voor het eerst in staat zijn tot transi-
tief redeneren. Later verschoof de aandacht vooral naar de onderliggende

processen betrokken bij transitief redeneren. Onderzoekers uit verschil-
lende onderzoekstradities gebruikten verschillende definities van transitief
redeneren en verschillende operationaliseringen van het begrip in transi-
tieve redeneertaken. Het belangrijkste doel van deze dissertatie was om de
cognitieve processen die een rol spelen bij het transitief redeneren iIi kaart
te brengen en op deze manier theorieSn over transitief redeneren op een

aantal aspecten met elkaar te vergelijken.

Hoofdstuk 1 beschrijft de constructie van een transitieve redeneertest
met zestien transitieve redeneertaken die verschillen wat betreft de aan-

bieding van de premissen, de context, en het soort van relatie tussen de

premissen. Eerder onderzoek heeft aangetoond dat deze taakkenmerken de
prestatie sterk beinvloeden. De test werd voorgelegd aan 615 basisschool
leerlingen van groep vier tot en met groep acht. Het dubbele monotonie
model van AIokken paste op vijft.ien van de zestien taken. Hieruit kon

geconcludeerd worden dat de taken betrouwbaar geordend konden worden
volgens de totaalscore van de test en dat de taken een invariante ordening

hadden.

In Hoofdstuk 2 wordt een empirische studie beschreven waarin drie
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theorie6n werden vergeleken op de dimensionaliteit van het construct tran-
sitief redeneren en de invloed van taakkenmerken op de moeilijkheid van
de taak.  Ook werd onderzocht in hoeverre de juist / onjuist verklarin-
gen die kinderen gaven na het beantwoorden van een taak validere infor-
matie opleverden dan alleen de juist / onjuist antwoorden. Verschillende
non-parametrische item response technieken werden gebruikt om de di-
mensionaliteit van de test te beoordelen. Het bleek dat het theoretisch
construct redelijk goed met 6dn dimensie beschreven kon worden wanneer

de juist / onjuist verklaringen werden gebruikt. Om het construct met be-
hulp van de juist / onjuist antwoorden te beschrijven waren drie dimensies

nodig. Hieruit kon geconcludeerd worden dat de juist / onjuist verklaringen
eenduidigere en accuratere informatie opleverden over transitief redeneren
dan de juist / onjuist antwoorden.

Ook bleek dat de gevonden dimensie beter geYnterpreteerd koii worden
volgens de informatie-verwerkings theorie en de fuzzy-trace theorie dan vol-
gens Piaget's theorie. Een onderscheid tussen functioneel en operationeel
redeneren (zoals in Piaget's theorie) werd niet gevonden. De moeilijkheid
van de taken bleek vooral af te hangen van de Inate waarin de gedetailleerde
informatie in taken gereduceerd kon worden tot patrooninforniatie (zoals
in informatie-verwerkings theorie en fuzzy-trace theorie).

In Hoofdstuk 3 werd de vraag onderzocht of de ontwikkeling van het
transitief redeneren continu of discontinu verloopt. Eerst werden verschil-
lende onderzoekskwesties die een rol spelen bij het meten van discon-
tinuTteit besproken en vervolgens werden twee latente klassen modellen

met elkaar vergeleken. Het bleek dat het binomiale mixture model, dat
doorgaans wordt gebruikt om discontinuiteit bij cross-sectioneel onderzoek
vast te stellen, slechter paste dan het latent klassen factor model. Beide
modellen lieten zien dat de ontwikkeling van transitief redeneren discon-
tinu was. De vaardigheid van het transitief redeneren bleek op z'n minst
uit twee latent klassen te bestaan die geinterpreteerd konden worden met
behulp van fuzzy trace theorie.

In Hoofdstuk 4 werd de relatie onderzocht tussen leeftijd, strategiege-
bruik en taakkenmerken. Een latente klassen regressie model werd gebruikt
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om de invloed van taakkenmerken op strategiegebruik te beschrijven. Er
werden vijf latente klassen onderscheiden waarbij de relatie tussen strate-

giegebruik en taakkenmerk verschilden. Het bleek dat jonge kinderen vaak
met behulp van irrelevante details de transitieve relatie probeerden af te lei-
den. De taakkenmerken hadden nauwelijks invloed op het strategiegebruik.

Bij oudere kinderen hadden taakkenmerken daarentegen een belangrijke in-
vloed op het strategiegebruik.

In Hoofdstuk 5 tenslotte werd fuzzy-trace theorie gebruikt om een gede-
tailleerde beschrijving te geven van de prestaties van kinderen op drie tran-
sitieve redeneertaken. Deze taken verschil(len wat betreft de ordening van

de objecten in de taak en de presentatie van de objecten. Volgens de fuzzy-
trace theorie wordt informatie op tal van niveaus tegelijkertijd verwerkt.

Fuzzy-trace theory onderscheidt een vaardigheid in het verwerken van gede-
tailleerde inforniatie en een vaardigheid in het verwerken van patroon-
informatie. Volgens de theorie speelt bij het afieiden van transitieve re-
laties vooral het gebruik van patrooninformatie een rol. Vanuit het the-
oretische model konden voorspellingen worden gedaan over de prestaties
van kinderen Inet een bepaald detailvaardigheidsniveau en patroonvaardig-
heidsniveau op verschillende taken. Een multi-level latente klassen model

werd gebruikt om de te bepalen of de voorspellingen op basis van het
theoretisch model werden teruggevonden in de geobserveerde data. De re-
sultaten lieten zien dat het theoretische model goed paste bij de empirische
data; de twee soorten vaardigheden werden teruggevonden en de voorspelde
prestatie van kinderen kwam goed overeen met de geobserveerde prestatie.

In de Epiloog werd geconcludeerd dat met de nieuw ontwikkelde meet-

methoden en analysetechnieken ontwikkelingsvraagstukken op differenti8le
wijze kunnen worden beantwoord. Volgens Wohlwill (1973) vormt de dif-
ferenti6le benadering de essentie van de ontwikkelingspsychologie maar ont-
braken in de tijd dat hij zijn boek schreef adequate statistische methoden.

Daarnaast werd geconcludeerd dat de stadia geformuleerd in Piaget's
theorie niet worden teruggevonden bij het transitief redeneren. Ook werd
niet gevoliden dat de cognitieve ontwikkeling wordt gekerimerkt door een
steeds completere verwerking van informatie zoals wordt aangenomen door
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de informatie-verwerkings theorie.  Uit de resultaten beschreven in dit
proefschrift blijkt vooral dat cognitieve ontwikkeling wordt gekenmerkt
door een groeiende vaardigheid om informatie te verwerken op verschil-
lende niveaus en weer te gebruiken op een niveau dat optimaal aansluit bij
hetgeen de taak vereist.
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