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Introduction

When I tell you that my brother’s cat, Pooky, is older than his dog, Bente,
and also that his goldfish, Blub, is younger than his dog, I hope you imme-
diately inferred that Pooky is older than Blub. When you did, you used
your ability of drawing a transitive inference, that is, you inferred an un-
known relationship (Pooky is older than Blub) from known relationships
(Pooky is older than Bente, and Bente is older than Blub). Adults are
drawing transitive inferences several times a day, and they do this auto-
matically and unconsciously. However, young children are not capable of
drawing such inferences.

Formally, in a transitive reasoning task the unknown relationship, R,
between two elements, A and C, can be inferred from their known rela-
tionships with a third element, B; that is, (Rap, Rpc) = Rac. In this
example, the relationships Rap and Rpc are premises. When children are
capable of drawing a transitive inference from the premises, they are capa-
ble of transitive reasoning. Cognitive theories disagree about what transi-
tive reasoning is about, which processes are involved, and which kinds of

tasks should be used to measure it.

Piaget’s Theory

According to Piaget, cognition is constructed by the active, originally
sensori-motor, interaction between the child and the external world (Case,
1996; Chapman, 1988; Flavell, 1963). During development the interac-
tion becomes more and more internalized and mental operations can be
performed without real interaction with the external environment (Piaget,
1949). Groups of internalized actions form cognitive structures. During
development these cognitive structures become less concrete and domain-
specific, and more abstract, general and applicable to a broad domain.
Piaget constructed cognitive tasks, such as transitive reasoning tasks, to in-
vestigate the developmental level of cognition in children (Chapman, 1988;
Flavell, 1963). Cognitive development, according to Piaget’s theory and
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research, in principle follows four discrete stages, the sensory motor stage,
the preoperational stage, the concrete operational stage, and the formal op-
erational stage. This theoretical framework can be found in any textbook
on developmental psychology or cognitive development.

Children are capable of drawing transitive inferences when they under-
stand the necessity of using logical rules. For example, if Y4 stands for
the amount object A (e.g., a stick) has of property Y (e.g., length), then
Ya > Yp and Yp > Yo together imply Y4 > Yo. When children know
how to use these rules of logic, they are able to solve any transitive rela-
tionship as long as they can remember the premises. This understanding
is acquired at the concrete operational stage, at about seven years of age
(Piaget, 1947), when the cognitive structure of children is for the first time
characterized by the reversibility principle (Piaget, 1942, 1947). A transi-
tive inference beautifully demonstrates this reversibility principle: when A
is larger than B, B must be smaller than A, and when we know that A is
longer than B, and C is shorter than B, then we can use the reversibility
principle to conclude that A is longer than C'. Children at the preoper-
ational stage, at two through seven years of age (Piaget, 1947), do not
understand the reversibility principle. Objects or characteristics of objects
are considered in a nominal way, that is, not in relationship to other objects
(Piaget, 1942). Due to this nominal thinking, or preoperational thinking
in Piagetian jargon, children are not capable of performing internalized
operations on objects and they do not understand the necessity of using
logical rules. When a cue is provided about the ordering of the objects in
a task, an understanding of logical rules may not be necessary to solve the
task. For example, the position of the objects can be used for inferring
their mutual relationships when all objects are presented simultaneously
and ordered on the dimension on which they differ. This kind of reason-
ing is called functional reasoning. Functional reasoning is typical of the
preoperational stage.

Piaget’s theory was not meant to be a psychological theory. He was
interested in the general, biological development of cognitive structures
of the human being in general or the individual child in particular with-
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out emphasizing task conditions (Bidell & Fischer, 1992). In accordance
with research traditions of their time, Piaget and his colleagues preferred
a clinical method to investigate the development of intelligence by using
interviews without standardization and statistical data analysis (Flavell,
1963). The Neo-Piagetians maintained the constructivistic assumptions of
the theory but attempted to operationalize the constructs empirically by
taking variations in tasks and individuals into account (Case, 1992, pp.
166).

Reaction to Piaget

In the early 1960s, the age boundaries of the developmental stages ac-
cording to Piaget’s theory were the first source of criticism of cognitive
psychologists. Braine (1959) showed that after the child had learned the
premises, (s)he was able to draw transitive inferences at five years of age.
His finding evoked a thorough discussion. Braine (1959) argued that re-
membering the premises was the real problem for young children, not logical
reasoning. However, Smedslund (1963, 1965, 1969) argued that Braine's
results could be explained alternatively by a labelling strategy, according
to which children use a nominal label of an object to solve the task. For
example, during the premise presentation object A may be encoded as
‘short’ and object C' as ‘long’. As a result, the answer that C' is longer
than A can be inferred from the labels ‘long” and ‘short’, without making
use of the relationships within the object pairs A, B and B, C. In their re-
search, Brainerd (1973) and Youniss and Denisson (1971) used Miiller-Lyer
illusion techniques to prevent children from using this labelling strategy.
Youniss and his colleagues (Murray & Youniss, 1968; Youniss & Furth,
1973; Youniss & Murray, 1970) used mixed-format (Y4 =Yg > Yo = Yp)
relationships. In this kind of tasks, the objects did not have a unique label
(object C'is both smaller than object B and equally long as object D), so
the labelling strategy could not be used. However, Brainerd (1973) argued
that illusion and mixed-format tasks confused children and interfered with

the reasoning process.
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Information Processing Theory

Bryant and Trabasso (1971) used five-objects inequality-format tasks (Y4 >
Ys > Yo > Yp > Yg) in which labelling strategies could not be used to
solve the transitive relationship Rgp. They showed that after an inten-
sive training children were able to draw transitive inferences at the age of
five. Bryant and Trabasso (1971) and Riley and Trabasso (1974) explained
their results by a linear ordering theory in which children form a symbolic
internal representation of the objects and the relationships between the
objects. This representation is used to infer the answer. Trabasso (1977)
used reaction time to show that the linear ordering theory could explain
how an internal representation was formed for drawing inferences without
the use of logical rules.

The Neo-Piagetians were not convinced by the results of Trabasso and
his colleagues. Perner, Steiner and Staehelin (1981), Perner and Mans-
bridge (1983), and Perner and Aebi (1985) argued that the visual feed-
back, the presentation form, and the intensive training lead to specific task
conditions in which a labelling strategy could be used to solve the transi-
tive relationship. Chapman (1988) and Chapman and Lindenberger (1992)
argued that the simultaneous presentation of the premises provided a po-
sitional cue about the ordering of the objects. By means of the intensive
training of the premises, children had learned the ordering and drew infer-
ences on the basis of this ordering. This kind of reasoning was functional
instead of operational, because children did not need the reversibility prin-
ciple to solve the transitive relationship.

Although the criticism of information-processing theorists was directed
initially at the age boundaries of Piaget’s theory, neglect of individual
differences, poor experimental setting, and neglect of environmental influ-
ences, the most important difference appeared to be the epistemological
assumptions of both theoretical approaches. These assumptions led to
conflicting requirements of specific task conditions, which explains the gap
of two years between the ages at which transitive reasoning first emerged

according to the two theories.
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Fuzzy Trace Theory

Piaget and the Neo-Piagetians assumed that memory is a necessary but
not a sufficient condition for using logical rules. Information-processing
theorists assumed that memory of the premises is sufficient for drawing a
transitive inference. A strong argument for the hypothesis that memory of
the premises is not necessary for drawing a transitive inference is made by
fuzzy trace theory (Brainerd & Kingma, 1984, 1985; Brainerd & Reyna,
1993, 2001).

Fuzzy trace theory assumes that human cognition is a parallel encod-
ing mechanism of information at different levels of abstraction (Brainerd
& Reyna, 1990, 1995, 2004). The level of exactness of encoded information
varies along a continuum. One end is defined by fuzzy traces, which are
vague, degenerate representations that conserve only the sense of recently
encoded data in a degenerated, “fuzzy”, way. The other end is defined by
verbatim traces, which are literal representations that preserve the con-
tent of recently encoded information with exactitude. Because retention of
vivid, verbatim traces requires much memory capacity, these traces usually
are not available. The information in a fuzzy trace, however, is reduced and
schematic, so longer retention is possible and the fuzzy trace is more easily
available. People prefer to reason fuzzy rather than verbatim, because the
degraded information from the fuzzy-trace is more easily accessible and
costs less memory capacity.

The characteristics of a task determine which level of the continuum
can be used to solve the transitive relationship. When a cue about the
ordering is provided, the fuzzier end of the continuum can be used, which
contains a degenerated representation of the objects, for example, “objects
get smaller to the left”. When cues are absent, it is difficult to reduce
information and the verbatim end of the continuum is used. This makes
the task more difficult because the literal premise information has to be
remembered. When the fuzzy end of the continuum can be used, memory
of the premises is not needed. Brainerd and Kingma (1984, 1985) showed
that transitive reasoning is primarily based on the schematic information

of fuzzy traces.
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The Neo-Piagetians Chapman and Lindenberger (1992) argued that
fuzzy trace theory only applies to tasks in which a cue is provided about
the ordering of objects, that is, tasks which can be solved using functional
reasoning. When such cues are not provided, memory of the premises is nec-
essary for applying logical rules, that is, to reason operationally. Brainerd
and Reyna (1992) did not distinguish operational and functional reasoning
as separate abilities. They argued that reducing information is more diffi-
cult when cues about an ordering are absent, and that people attempt to

use the fuzziest trace possible.

Issues in Transitive Reasoning

The three theories have different ideas about what cognitive development
is and how change in behavior should be measured. Piaget assumed a hi-
erarchical structure in which children are viewed as imperfect adults which
have to pass the necessary stages to reach formal thinking. The thinking of
children in different stages deviates qualitatively due to the different forms
of the cognitive structures.

According to information processing theory, however, the child’s think-
ing deviates from adult’s thinking only in a quantitative way. The process-
ing of information is slower and less efficient leading to incomplete, impov-
erished internal representations of the information. Development, in this
respect, is reduced to accumulative learning of internal stimulus-response
relations.

Fuzzy trace theory was developed as a reaction to information process-
ing theory’s computer-based approach to cognitive development. According
to fuzzy trace theory information is processed simultaneously, automati-
cally and unconsciously at a variety of levels which differ in the degree of
exactness of the information. Cognitive development is assumed to be the
growing capability to retrieve the appropriate level of information given
the task requirements. Note that this level is not necessarily a complete or
detailed representation of the information involved as is assumed in infor-
mation processing theory.

The way the theories view development has important consequences
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for the study of development in transitive reasoning. We not only have to
define what development means but also what transitive reasoning is. In
this thesis I tried to disentangle the underlying response processes involved
in the development of transitive reasoning by taking individual differences
and task characteristics into account. I started bottom-up, that is, I did
not choose one of the theories as a framework for transitive reasoning but
evaluated the different theories by means of the latent structure in empirical
data. In the last chapter a top-down approach was followed. Fuzzy trace
theory was used as a theoretical model to describe the underlying response

process at a detailed level.

Construction of a Scale for Transitive Reasoning

First I constructed a computerized test containing 16 transitive reasoning
tasks. Based on earlier research, these tasks were varied on three char-
acteristics which were found to influence the cognitive processes and the
accompanying performance. Two pseudo-transitive reasoning tasks were
included in the test. They resembled the transitive reasoning tasks, but
were different because a transitive relationship could not be inferred from
the premise information. The test was administered to a sample of 615
elementary school students ranging from grade two to grade six stemming
from six schools in The Netherlands. Both the correct/incorrect answers
and the explanations of the answers given by the students were analyzed.
Chapter 1 reports the results of a Mokken (1971) scale analysis that was
applied to the 16 transitive reasoning tasks in an effort to determine the
quality of these tasks and the reliability of the ordering of the students by

means of their test score.

Abilities Involved in Transitive Reasoning

Piaget’s theory, information processing theory, and fuzzy trace theory posit
different ideas about the underlying processes involved in transitive reason-
ing and the influence of task characteristics on the difficulty of a task. Ac-
cording to Piaget’s theory and the Neo-Piagetians, two kinds of reasoning

have to be distinguished, functional and operational reasoning, representing
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qualitatively different abilities. The characteristics of the task determine
which type of reasoning is needed. Information processing theory, most
extensively elaborated by Trabasso and his colleagues, assumes one un-
derlying ability. Also, the theory assumes that the difficulty of a task is
determined by the ease by which the premises are remembered. Fuzzy trace
theory also assumes one underlying ability, which is the fuzzy trace ability,
but according to this theory task difficulty is determined by the ease by
which the ordering of the objects in a task is recognized. Chapter 2 reports
an empirical study on the number of abilities involved in transitive reason-
ing. Three methods are used for this purpose (represented in the computer
programs MSP, DETECT, and improved DIMTEST). Multiple regression
is used to determine the influence of task characteristics on the difficulty
level of the tasks. Moreover, the usefulness of both the correct/incorrect

scores and the correct/incorrect explanations is compared.

Continuous or Discontinuous Change?

Another, important topic is whether cognitive development is stage-like,
as assumed in Piaget’s theory, or continuous without jumpy transitions
from one stage to another. When studying a single ability instead of com-
plete cognitive structures, discontinuity can be defined as the existence of a
number of modes ordered along the developmental scale which correspond
with different rules or strategies that are used to solve particular tasks. In
chapter 3, I first discuss a number of research issues typical of the study of
developmental change and discontinuity. Then discontinuity is studied in
cross-sectional transitive reasoning data. Two statistical mixture models,
the binomial mixture model and the latent class factor model, are com-
pared. Unlike the binomial mixture model, the latent class model does
not assume binomial distributions, allows task difficulties to be different,
and uses the information in the individual’s item-score patterns to estimate
class probabilities. Next, additional analysis are done to interpret the dis-
continuity, and this lends meaning to the classes that are distinguished on
the basis.of the latent class analysis.
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Latent Cognitive Variables, Environmental Influences, Cog-
nitive Behavior and Age

In chapter 3 the emphasis is on determining discontinuity in transitive rea-
soning, and in chapter 4 on the detailed interpretation of latent cognitive
classes by means of manifest variables such as age, cognitive behavior, and
environmental influences. Again, developmental groups are distinguished
but at a more detailed level of sophistication. In this chapter the usefulness
of the latent class regression model for studying cognitive developmental
phenomena is discussed. Using this model, the relationships between la-
tent and manifest variables can be explained by means of empirical data
without the need for strong a priori assumptions made by a cognitive devel-
opmental theory. In the latent class regression model a number of classes
are distinguished which are characterized by particular cognitive behavior.
Task characteristics influence cognitive behavior and this influence varies
over different (developmental) classes.

Fuzzy Trace Theory as a Framework for Explaining Individ-
ual Differences

Fuzzy trace theory offers a detailed description of the performance on both
the memory of the premises and the inference of transitive relationships
in transitive reasoning tasks (see Brainerd & Kingma, 1984, 1985; Brain-
erd & Reyna, 1995). This opens the possibility to test empirically and
in great detail the application of the theory in the context of transitive
reasoning. In chapter 5 fuzzy trace theory is used as the theoretical frame-
work for modeling both individual differences in performance and task in-
fluences on performance on memory test-pairs and transitivity test-pairs.
A test is constructed containing four replications of each of three kinds of
tasks, each having four memory-of-the-premises items, and three transitive-
relationship items. The three task types differ in difficulty with respect to
the position of objects and the presentation of the premises. Both the posi-
tion and the presentation can be ordered or disordered, but the combination
of disordered position and disordered presentation is not used because it
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would render tasks too difficult. The test was administered to a new sam-
ple of 409 students ranging in age from 5 to 13 years and stemming from
four elementary schools in The Netherlands. Per student 84 responses are
used to determine both the verbatim and fuzzy ability levels. Because the
retrieval of verbatim and fuzzy traces is dependent on the verbatim and
fuzzy ability levels, and the responses to the items of the tasks are depen-
dent on the verbatim and fuzzy traces used, a multilevel latent class model

(Vermunt, 2003) is used for data analysis.



Chapter 1

Constructing a Transitive

Reasoning Test for Six to
Thirteen Year Old Children

1.1 Introduction

The aim of this chapter is to report on the construction of a transitive
reasoning test for elementary school students. In a transitive reasoning
task, the unknown relationship R between two elements A and C can be
inferred from their known relationships with a third element B: that is,
(RaB, Rpc) = Rac. In this example, the relationships Rap and Rpc are
premises. When children are capable of drawing a transitive inference from

the premises, they are capable of transitive reasoning.

1.1.1 Tasks of the Test

Researchers used various kinds of tasks for studying the development of
transitive reasoning (see, e.g., Bryant & Trabasso, 1971; Chapman & Lin-
denberger, 1988; Harris & Bassett, 1975; Kallio, 1982:

This chapter has been submitted for publication.

11
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Murray & Youniss, 1968; Perner & Mansbridge, 1983; Perner et al., 1981;
Smedslund, 1963; Youniss & Murray, 1970; Verweij, Sijtsma, & Koops,
1999). For our test (see Figure 2.1, chapter 2), we constructed 16 tasks.
Each task consisted of objects that had to be compared with respect to
a property, such as length. This property was denoted Y, and the value
of object A on Y was denoted Yy, et cetera. Tasks differed with respect
to three task characteristics. These characteristics were frequently used
by researchers representative of different theoretical approaches (see, e.g.,
Brainerd & Kingma, 1984; Bryant & Trabasso, 1971; Chapman & Linden-
berger, 1988; Harris & Bassett, 1975; Murray & Youniss, 1968; Piaget,
1942; Youniss & Furth, 1973).

The task characteristic format determined the kind of transitive rela-
tionship. The four levels of format were: Y4 > Yp > Y; Ya =Yg =Y =
Yp; Ya>Ys >Yeo >Yp > Yg; and Yi4 = Y > Yo = Yp. Although the
formats Y4 > Yg > Yo and Y4 > Yg > Yo > Yp > Y differed only in
the number of objects involved, they were expected to differ in difficulty.
For example, in the 3-object task, object A was always large in comparison
with other objects and could therefore be labelled as large. In the 5-object
task, object B was small compared with object A and large compared with
object C, so that object B did not have a unique label. This difference was
expected to produce greater difficulty for 5-object tasks. The task char-
acteristic presentation determined whether the premises were presented
all together (simultaneously) or one after the other (successively). The
task characteristic content determined whether the objects that formed
the premises were sticks that could differ in length (physical type of con-
tent) or animals that could differ in age (verbal type of content). Each task
in the test was a unique combination of the three characteristics, such that
each of the 4 x 2 x 2 possibilities were represented. The difficulty level of
the tasks was determined by the combination of the task characteristics.

The test was administered by computer to 615 students sampled from
grade two through grade six in elementary school. First, the students did
three exercises to get used to the program, the objects, and the relationships
involved. Then, they performed the 16 transitive reasoning tasks and two
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additional pseudo-transitive reasoning tasks. These latter two tasks resem-
bled the transitive reasoning tasks, but were different because a transitive
relationship could not be inferred from the premise information. The for-
mat of the two pseudo-transitive reasoning tasks was (Y4 > Yg, Yo > YD)
and (Y4 =Yg, Yo = Yp), in both cases leaving the relationship between B
and C' unidentified.

Students were asked to click on the longest stick, the eldest animal,
or the equality button when they thought that the sticks/animals had the
same length/age. In each item, they had to choose one from three options.
Children received a 1-score when they correctly explained the transitive
relationship, and a 0-score when they gave an incorrect explanation or no
explanation at all. Verweij (1994) showed that students often gave non-
transitive explanations even when they had chosen the right option. The
computer registered the option chosen and the experimenter recorded the

verbal explanations.

1.2 Background Analyses

The P-values (sample proportions of correct explanations!) of the 16 tasks
ranged from 0.01 to 0.86. A within-subject ANOVA showed that all main
effects and interaction effects of the task characteristics and combinations of
task characteristics were significantly (p < .001). Because of the large sam-
ple size (N = 615) these significant results offered little information about
the importance of task characteristics or combinations of them. Partial
n* (Stevens, 1996, p. 177%) was used for expressing effect size. The effect
sizes were large for the characteristics presentation (partial n* = .65) and
format (partial n? = 0.72), and for the interactions presentationx format
(partial n? = 0.21) and presentationx formatx content (partial n* = 0.32).
The effect sizes were modest for the characteristic presentation (partial
n? = 0.1), and the interactions presentationx content (partial n? = 0.13)

!Correct explanations were preceded by correctly chosen options 96% of the time.
2Following Stevens (1996, p. 177; based on Cohen, 1977, pp. 284-288), partial n* =

0.01 was interpreted as small, partial n° = 0.06 as medium, and partial n? = 0.14 as

large.
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and formatx content (partial n? = 0.12). Successive presentation was more
difficult than simultaneous presentation. Physical content was more diffi-
cult than verbal content. Post hoc analyses were performed to determine to
which difference the significant effects could be attributed. The 95% con-
fidence intervals (Cls) of the means are displayed in Figure 1.1 (standard
error of the mean based on N=615). Because the number of statistical
tests was 82, the significance level was adjusted to 0.05/82 (Bonferroni
adjustment).

Figure 1.1a shows that format Y4 = Yp = Yo = Y)p is significantly
easier than the other formats. Format Y4 = Yg > Yo = Yp is the most
difficult, and the formats Y4 > Yg > Yo and Y4 > Y > Yo > Yp > YE
differ the least but significantly. Figure 1.1b shows that for each format,
simultaneous presentation is easier than successive presentation, and that
the difference between the two kinds of presentation is smaller for the for-
mat Y4 = Y > Yo = Yp than for the other formats. Figure 1.1c shows
that physical content is more difficult for the formats Y4 > Yp > Y and
Yas > Yp > Yo > Yp > Yg, but that there is no significant difference
for formats Y4y =Yg = Yo = Yp and Y4 = Yg > Yo = Yp. Figure 1.1d
shows that verbal and physical content do not differ significantly when pre-
sentation is simultaneous, but that physical content is more difficult when
presentation is successive. Figure 1.1e shows that in particular the combi-
nation of successive presentation and physical content makes the task very
difficult for the formats Y4 > Yg > Yo, Ya > Yg > Yo > Yp > Yp, and
Y1 =Yg > Yo = Yp, but not for format ¥4 = Yg = Yo = Y¥p-

Table 1.1 gives for each grade the mean test score, the standard devia-
tion, and Cronbach’s alpha. The Levene (1960) Test (W) showed that the
variances were not equal for the five grades [W(4,610) = 3.49, p < .01].
A procedure for comparing means, which takes unequal variances into ac-
count (Welch, 1951), revealed that the mean test scores increased with
grade level, [F(4,610) = 43.66, p < .01]. The 95% CI of the post hoc
tests of adjacent grades (using Bonferroni adjustment) showed that only
the mean test scores of Grade four and Grade five did not differ signifi-
cantly (CI: -1.48 - 0.45). A comparison of the alpha coefficients (see Feldt,
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Woodruff, & Salih, 1987) showed that none of the coefficients differed sig-

nificantly from any of the others.

Table 1.1: For Each Grade, Mean Test Score, Standard Deviation (SD)
and Cronbach’s Alpha Based on 15 Tasks*

Grade n M SD Alpha

2 108 3.29 2.74 a9
3 119 4.49 2.96 AT
4 122 6.40 3.67 .84
5 143 6.91 3.04 .76
6 123 7.98 3.06 i

* Task 2 had zero variance in most grades.

1.3 Mokken Scale Analyses

We applied Mokken (1971) scale analysis in an effort to find support for the
hypotheses that an increase in test score implies developmental progress,
and that the ordering of students by test score is reliable. Mokken scale
analysis is based on nonparametric item response theory (IRT; see Sijtsma
& Molenaar, 2002). Nonparametric IRT defines the relationship between
an observed item score and a latent trait by means of order restrictions,
whereas parametric IRT models use a parametric function such as the lo-
gistic (Embretson & Reise, 2000).

The nonparametric IRT model that is the basis of a Mokken scale is
defined by three assumptions: unidimensionality, local independence and
monotonicity. Unidimensionality means that one latent trait parameter
0 suffices to explain the data structure. Local independence means that,
given a fixed # value, responses to different tasks are unrelated. Monotonic-
ity means that the item response functions are monotone increasing in 6.
This implies an ordering of the students along the scale which, theoretically,

is invariant over items. These three assumptions constitute the monotone
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homogeneity model (MHM). The double monotonicity model (DMM) is a
more restrictive model in which a fourth assumption of non-intersection of
the item response function is added to the other three. This assumption is
identical to an invariant item ordering (Sijtsma & Molenaar, 2002, chap.
6). Several researchers used Mokken scale analysis to construct scales for
cognitive abilities (e.g., De Koning, Sijtsma, & Hamers, 2003; Hosenfield,
Van den Boom, & Resing, 1997). Verweij, Sijtsma, and Koops (1996, 1999)
used Mokken scale analysis to construct a scale for transitive reasoning that
used only formal content tasks and item scoring based on a more restricted
conceptualization of transitive reasoning.

We used the program MSP (Molenaar & Sijtsma, 2000) to analyze
the scalability of our transitive reasoning items. Scalability coefficient H
(Mokken, 1971) was used to evaluate the scalability for the total test, and
item scalability coefficient, H;, was used to evaluate separate items. H
is a weighted mean of the Hs and provides evidence about the degree to
which subjects can be ordered by means of the complete set of tasks. The
MHM implies that 0 < H < 1; a scale is considered weak if 0.3 < H < 0.4,
medium if 0.4 < H < 0.5, and strong if H > 0.5 (Sijtsma & Molenaar,
2002, p. 60). For individual items, a Mokken scale analysis requires that
H; > 0.3, for all j.

Task 2 was rejected from the analysis, because it had a negative covari-
ance with both tasks 8 and 15 (negative covariances are in conflict with the
monotonicity assumption). For the remaining 15 tasks, the task scalability
coefficients ranged from 0.37 to 0.66. The overall scalability coefficient H
was 0.45, thus indicating a medium scale.

Cronbach’s alpha was 0.83. Based on H and Hj, and other analyses
(not reported), it was concluded that the 15 tasks formed a unidimensional
scale. Thus, all tasks evaluated the same ability and all students could be
reliably ordered by their ability level using the number-correct score, based
on the number of correct explanations.

The assumption of non-intersection of item response functions was in-
vestigated by means of the H-coefficient of the transposed task-person ma-
trix, denoted HT (Sijtsma & Meijer, 1992). To conclude that the items
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have an invariant item ordering, Sijtsma and Meijer (1992) recommended
that HT > .3 and the percentage of negative person H! must not exceed
10. The HT-coefficient for the total scale was 0.52, and the percentage
of negative H! -values for individuals was 1.6. Together these results sup-
port the assumption of non-intersecting item response functions, and this
indicated that the tasks could be ordered invariantly.

Next, exploratory Mokken scale analysis was conducted for each grade
separately under the restriction that items were only admitted to a scale if
their H; > 0.3 relative to the other items in that scale. Table 1.2 shows that
the scales for Grades two, three, and five, contained nine items, in Grade
four, the scale contained 14 items and in Grade six, the scale contained 11
items. The items formed a weak scale in Grade five, a medium scale in the
Grades three, four, and six, and a strong scale in Grade two. The HT values
were sufficiently high and the percentages of negative H!s sufficiently low

to conclude that the items had an invariant item ordering.

Table 1.2:  For Each Grade, Number of Tasks in the Scale, Scalability
Coefficients H and HT, and Percentage of Negative H! s

Grade # tasks H HT % neg.HT

2 9 .54 .57 1.1
3 9 48 .60 1.0
4 14 .49 .53 9
5 9 37 54 2.2
6 11 45 .63 .0

Furthermore, we investigated the scalability of the correct-incorrect
task scores (these are the task scores that do not take the verbal expla-
nations into account). Based on the 16 tasks, Cronbach’s alpha was 0.63,
indicating weak reliability. The task Hjs varied from 0.01 through 0.25,
and the overall scalability coefficient H was 0.16, indicating that the tasks
did not form a practically useful scale.

The format of the two pseudo-transitive reasoning tasks was (Y >
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Yg, Yo > Yp) and (Ya = Yp,Ye = Yp), in both cases leaving the relation-
ship between B and C' unidentified. Thus, these tasks cannot be solved
by means of the strategy used to solve real transitive reasoning tasks and,
therefore, these tasks were not expected to fit into the transitive reasoning
scale. A second Mokken scale analysis was conducted on the data of the
16 tasks and the two pseudo-transitive reasoning tasks to evaluate whether
the scale had discriminant validity. The Hjs of the two pseudo-transitive
reasoning tasks were 0.03 and 0.14. Both tasks had several negative co-
variances with transitive reasoning tasks and were therefore rejected from

the analysis.

1.4 Conclusion

We constructed a test for transitive reasoning containing 16 tasks which
were varied systematically with respect to three three task characteristics,
and found that in particular the presentation form and the task format in-
fluenced the task difficulty level. 15 of the 16 tasks formed a Mokken scale
on which the students could be ordered reliable. Also, evidence was col-
lected for an invariant item ordering; that is, an item ordering by means of
P-values that is the same for all students and, by implication, all subgroups
of students (e.g., grades). The finding that responses to the theory-based
tasks were driven by one ability indicated convergent validity. The mis-
fit of the pseudo-transitive reasoning tasks indicated discriminant validity.
Together these convergent and discriminant validity results indicate con-
struct validity (Campbell & Fiske, 1959), but more research supporting
such a conclusion is needed. An analysis of the correct/incorrect scores
without verbal explanations showed showed that the tasks were not scal-
able. Analyses of the data in separate grades showed a weak scale in one

grade, medium scales in three grades, and a strong scale in one grade.
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Chapter 2

Measuring the Ability of
Transitive Reasoning,
Using Product and Strategy

Information

Abstract®

Cognitive theories disagree about the processes and the number of abil-
ities involved in transitive reasoning. This led to controversies about the
influence of task characteristics on individuals’ performance and the devel-
opment of transitive reasoning. In this study, both product and strategy
information were analyzed to measure the performance of 6 to 13 year old
children. Three methods (MSP, DETECT, and Improved DIMTEST) were
used to determine the number of abilities involved and to test the assump-
tions imposed on the data by item response models. Nonparametric IRT
models were used to construct a scale for transitive reasoning. Multiple
regression was used to determine the influence of task characteristics on
the difficulty level of the tasks. It was concluded that (1) the qualitatively
distinet abilities predicted by Piaget’s theory could not be distinguished by
means of different dimensions in the data structure; (2) transitive reasoning

could be described by one ability, and some task characteristics influenced

21
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the difficulty of a task; and (3) strategy information provided a stronger

scale than product information.

* This chapter has been published as: Bouwmeester, S., & Sijtsma, K. (2004)
Measuring the Ability of Transitive Reasoning, Using Product and Strategy In-
formation. Psychometrika, 69, 123-1/6.

2.1 Introduction

2.1.1 Definition of Transitive Reasoning

Suppose an experimenter shows a child two sticks, A and B, which differ
in length, Y, such that Y4 > Yp. Next, stick B is compared with another
stick C' which differs in length, such that Yz > Y. In this example the
length relationships Y4 > Yp and Y > Y are the premises. When the
child is asked, without being given the opportunity to visually compare this
pair of sticks, which is longer, stick A or stick C, (s)he may or may not be
able to give the correct answer. When a child is able to infer the unknown
relationship (Y4 > Y ) using the information of the premises (Y4 > Yp
and Yp > Y¢), (s)he is capable of transitive reasoning.

2.1.2 Theories of Transitive Reasoning

Three general theories on transitive reasoning can be distinguished. They
are the developmental theory of Piaget, information processing theory, and
fuzzy trace theory. These theories propose different definitions of the tran-
sitive reasoning ability and different operationalizations into transitive rea-
soning tasks. Consequently, the theories led to contradictory conclusions

about children’s transitive reasoning ability.

Developmental Theory of Piaget

According to Piaget’s theory (Piaget, Inhelder, & Szeminska, 1948), chil-
dren acquire the cognitive operations to understand rules of logic at the
concrete operational stage, at about six or seven years of age. This un-

derstanding implies that an object can have different relationships with
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other objects. For example, a stick can be longer than a second stick and
shorter than a third stick. This understanding is necessary to draw tran-
sitive inferences (Piaget & Inhelder, 1941; Piaget & Szeminska, 1941). At
the preoperational stage, before the concrete operational stage, children
think in a nominal way. This means that objects are understood in an
absolute form, but not in relationship to other objects. Consequently, at
this stage children are incapable of drawing a transitive inference.

Piaget distinguished two kinds of reasoning. To understand a transi-
tive inference, the formal rules of logic had to be acquired and applied to
the transitive reasoning problem. This kind of reasoning was called “op-
erational reasoning”. A child is able to reason in an operational way at
the concrete operational stage. However, Piaget argued that operational
reasoning is not necessary in each kind of task. When some kind of spa-
tial cue in the task gives information about the ordering of objects (e.g.,
when all objects are presented simultaneously), operational reasoning is
not required because the information given by the spatial cue can be used
to infer the transitive relation; for example, objects become smaller from
right to left. In this case, no formal rules have to be understood. Piaget
called this kind of reasoning “functional reasoning”. Functional reasoning
is acquired at the preoperational stage. Piaget was in particular interested
in the development of logical comprehension, and therefore used transitive
reasoning tasks in which the premises were successively presented to be
sure that children had to reason on an operational way. When a succes-
sive presentation of the premises is used, spatial cues about the ordering of
objects are not available (although other kinds of ordering cues might be

available).

Information Processing Theory

Although within information processing theory a broad diversity of ideas
about information processing exists, differently oriented researchers on
transitive reasoning do not make a distinction between functional and
operational reasoning. An understanding of formal logical rules is not a

necessary condition for drawing transitive inferences in any version of in-
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formation processing theory. For example, in their linear ordering theory
Trabasso, Riley, and Wilson (1975) and Trabasso (1977) emphasized the
linear ordering in which the premise information was encoded and inter-
nally represented. Linear ordering was the only ability involved in transi-
tive reasoning rendering it a one-dimensional construct. Task characteris-
tics like presentation form (simultaneous or successive), task format (e.g.,
Ya>Yp >Ycand Yy =Yg = Yo =Yp), and content of the task (phys-
ical, like length; or verbal, like happiness) might influence the difficulty
to form an internal representation, but the same ability is assumed for all
kinds of transitive reasoning tasks.

Sternberg (1980a, 1980b) and Sternberg and Weil (1980) studied the
development of linear syllogistic reasoning, a special form of transitive rea-
soning in which the premise information is presented verbally. Sternberg
(1980b) showed that a mixed model, which contains both a linguistic com-
ponent and a spatial component, could explain linear syllogistic test data
(for alternative models, see also Clark, 1969; DeSoto, London, & Handel,
1965; Huttenlocher, 1968; Huttenlocher & Higgens, 1971; Quinton & Fel-
lows, 1975; and Wright, 2001). According to this mixed model, both a
verbal and a linear ordering ability are involved in solving linear syllogistic
reasoning tasks. Premise information is first encoded linguistically, and

then ordered spatially into an ordered internal representation.

Fuzzy Trace Theory

According to fuzzy trace theory (Brainerd & Kingma, 1985, 1984: Brainerd
& Reyna, 1995, 2004), the level of exactness of encoded information varies
along a continuum. One end is defined by fuzzy traces, which are vague,
degenerate representations that conserve only the sense of recently encoded
data in a schematic way. The other end is defined by verbatim traces, which
are literal representations that preserve the content of recently encoded
information with exactitude. These verbatim traces contain information
like: there is a red object and a yellow object; the objects are vertical
bars; and the red bar is longer than the yellow bar. At the other end of
the continuum, the information is stored in a degraded, schematic way;
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for example, objects get longer to the left (Brainerd & Kingma, 1985;
Brainerd & Reyna, 1995). The various levels of the continuum process in
parallel; that is, by encoding literal information from a task, at the same
time degraded fuzzy information is processed at several levels. Brainerd
and Kingma (1984, 1985), and also Brainerd and Reyna (1995) showed
that the fuzzy end, containing degraded information about the ordering of
objects, was used to draw a transitive inference.

Fuzzy trace theory does not distinguish operational and functional rea-
soning (Brainerd & Reyna, 1992, see also Chapman & Lindenberger, 1992).
It is assumed that task characteristics influence the level of the fuzzy trace
continuum that may be used and, consequently, determine the difficulty
level of a transitive reasoning task. No logical rules have to be applied and
~one ability, which is the ability to form and use fuzzy traces, explains an in-
dividual’s performance on different kinds of tasks, rendering the construct

of transitive reasoning a one-dimensional construct.

Comparison of Theories

Number of Abilities Involved The most important point of disagree-
ment is what the ability to draw a transitive inference really is. Piaget
distinguished operational and functional reasoning, two forms of reasoning
that were qualitatively different, and acquired at different stages of cog-
nitive development. Trabasso’s (1975) linear ordering theory assumes one
ability; that is, forming an internal representation of the objects is assumed
to be one ability. Sternberg, who studied linear syllogistic reasoning, as-
sumed a mixed model in which both a verbal and a spatial ability are
involved. They are assumed to function as two separate abilities. Fuzzy
trace theory also assumes one ability; that is, reasoning based on a fuzzy
continuum.

From the perspective of Piaget’s theory, information processing theory
and fuzzy trace theory define transitive reasoning as a functional form of
reasoning only applicable to a limited set of transitive reasoning tasks in
which a linear ordering of the objects is given by a spatial cue. This func-
tional reasoning does not require an understanding of transitivity, which is
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only acquired when children are capable of operational reasoning (Chap-
man & Lindenberger, 1988).

Influence of Task Characteristics on Difficulty Although not all
theories make explicit predictions about the influence of task characteristics
on the difficulty of a task!, implications with respect to difficulty can be

inferred from the theories’ assumptions.

e Piaget’s Theory. Firstly, because simultaneously presented tasks can
be solved by functional reasoning while successively presented tasks
must be solved by operational reasoning, from Piaget’s theory it can
be inferred that simultaneous presentation of the premises of a task
is easier than successive presentation. Secondly, because the same
logical rules are needed to solve equality, inequality or mixed equality-
inequality task formats, the format of the task (e.g., Y4 > Yp >
Yo, or Y4 = Yp = Y¢) does not influence the difficulty of a task.
Thirdly, because content of the relationship does not influence the
application of logical rules, type of content does not influence the
difficulty level of a task. However, Piaget first used length and then
other concrete observable relationships to study transitive reasoning.
He called the acquisition of understanding of different types of the
same ability in different time periods horizontal décalage (Piaget,
1942). Therefore, as a fourth prediction it may be hypothesized that
inferring a transitive relationship in a physical type-of-content task

is easier than in a non-physical type-of-content task.

e Information Processing Theory. Firstly, the formation of a linear
ordering and the memory of the premises are expected to be easier
when the premises are presented simultaneously than when they are
presented successively. Secondly, because it is more difficult to form
a linear ordering of a mixed format task, it may be expected that

mixed inequality-equality tasks are more difficult than equality or

'For example, in Piaget’s theory the influence of external conditions (like task char-
acteristics) on performance was hardly discussed.
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inequality tasks. Although information processing theorists do not
use equality format tasks to study transitive reasoning, these tasks
may be expected to be easier than inequality-format tasks because the
internal representation of an equality task is easier than the internal
representation of an inequality task. Thirdly, according to the mixed
model of Sternberg (1980b) both a verbal and a spatial ability are
needed to solve linear syllogisms. For verbally presented tasks both
abilities are required and for physical tasks only the spatial ability
is required. Thus, it may be hypothesized that verbal tasks (linear
syllogisms) are more difficult than physical tasks.

e Fuzzy Trace Theory. Firstly, because the retrieval of a fuzzy trace
is easier for simultaneously presented tasks (which contain a spatial-
order correlation) than for successively presented tasks (in which the
ordering of the premises is less obvious) (Brainerd & Reyna, 1992),
successive presentation is expected to be more difficult than simul-
taneous presentation. Secondly, because it is difficult to reduce the
pattern information of the mixed inequality-equality format into a
fuzzy trace, it can be hypothesized that the mixed inequality-equality
format is more difficult than the equality or the inequality format.
Thirdly, when a fuzzy trace is used to infer the transitive relationship
only pattern information and no verbatim information (like type of
content of tasks) is involved. Thus, different types of contents are

not expected to influence the difficulty level.

A summary of the influence of task characteristics on the difficulty level
according to the theories is given in Table 2.1.

Responses

Cognitive theories not only disagree about the kinds of tasks that should
be used to measure transitive reasoning, but also about the types of re-
sponses that are required to verify that a child had really drawn a tran-
sitive inference. Piaget asked children to verbally explain their answers

to verify whether a child has really used operational reasoning to solve a
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Table 2.1: Comparison of the Theories With Respect to the Number of
Abilities and Influence of Task Characteristics on Difficulty Level of Tasks

Theory Topic Predictions
Piaget NUMBER OF ABILITIES: two, functional and operational reasoning
PRESENTATION: successive more difficult than simultaneous
FORMAT: all formats same difficulty
CONTENT: verbal content more difficult than physical content
Information ~ NUMBER OF ABILITIES: one (linear ordering), two (mixed model)
Processing PRESENTATION: successive more difficult than simultaneous
FORMAT: equality easier than other formats,
mixed more difficult than other formats
CONTENT: verbal content more difficult than physical content
Fuzzy NUMBER OF ABILITIES: one
Trace PRESENTATION: successive more difficult than simultaneous
FORMAT: equality easier than other formats,
mixed more difficult than other formats
CONTENT: physical content and verbal content equally difficult

transitive reasoning task. According to Piaget, children were capable of
operational reasoning when they could mention aloud all the premises in-
volved (Piaget & Inhelder, 1941; Piaget et al., 1948; Piaget, 1961). More
recently Chapman and Lindenberger (1992) assumed a child to be able to
draw a transitive inference when (s)he was able to explain the judgements.
However, information processing theory hypothesized that the verbal ex-
planations interfered with the cognitive processes (see e.g., Brainerd, 1977).
Also, the internal representation was not assumed to be necessarily verbal.
Instead, cognitive processes were measured using reaction times (e.g., Tra-
basso et al., 1975) or using the performance of children on specific task
formats (e.g., Smedslund, 1963; Murray & Youniss, 1968).

When the aim of a study is to construct a transitive reasoning task
for determining the age of emergence as exact as possible, using either
the judgement or the judgement-plus-explanation may highly influence the
result. For example, although a fair comparison between studies using
different task formats could not be made, Bryant and Trabasso (1971) found
children of only four years of age to be able of transitive reasoning, but
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Chapman and Lindenberger (1992) did not find children able of transitive
reasoning before the age of seven.

In fact, the discrepancy of judgment and judgment-plus-explanation ap-
proaches can be summarized as a choice between type I and type II errors
(Smedslund, 1969). Given the null hypothesis that children do not have a
transitive reasoning ability, a judgment-only response is prone to evoke a
type I error (false positive), assuming that a child is able to draw a transi-
tive inference when in fact it is not. However, when a verbal explanation is
required, a type Il error (false negative) is likely to occur, by assuming that
a child is not able to draw a transitive inference when in fact it is. This in-
ference may be caused by the child’s underdeveloped verbal ability. When
the aim of the study is to obtain an impression of the processes involved
in the development of transitive reasoning, the explanations given by the
child are useful, accepting the risk of a type II error and being somewhat
conservative about the age of emergence. Using judgment-plus-explanation
data, Verweij et al. (1999) showed that several transitive and non-transitive
strategies were used to solve different kinds of transitive reasoning tasks.

For several task types, different strategies led to correct answers.

2.1.3 Goal of Present Study

The disagreement about the number of abilities involved in transitive rea-
soning, the type of responses to be recorded, and the influence of task
characteristics on task performance led to three hypotheses:

1. Hy: Two qualitatively different abilities, functional and operational
reasoning, explain the response patterns on various tasks containing
transitive relationships.

H 4: One ability explains the response patterns on various transitive
reasoning tasks. The tasks differ only in difficulty.

2. Hy: The response patterns based on strategy scores provide a better
scale than the response patterns based on product scores (see Section
2.2.6, for a description of strategy and product scores).
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H 4: Response patterns containing strategy scores and response pat-

terns containing product scores both provide good scales.

3. Hy: The difficulty of transitive reasoning tasks is not influenced by
task characteristics or combinations of task characteristics.
H 4: The difficulty of transitive reasoning tasks is influenced by task
characteristics or combinations of task characteristics.

For determining the number of abilities involved in transitive reasoning
(first hypothesis), nonparametric item response theory (NIRT) methods
(Molenaar & Sijtsma, 2000; Stout, 1993, 1996) were used to investigate
the underlying dimensionality of a data set generated by means of a set
of tasks having different characteristics. When one ability is involved, the
task scores can be explained by one underlying dimension. Then, the tran-
sitive reasoning tasks differ only in difficulty as predicted by linear ordering
theory (Trabasso et al., 1975) and fuzzy trace theory. When two or more
abilities are involved for solving different kinds of tasks, multiple dimen-
sions are needed to describe the responses of children to a set of transitive
reasoning tasks.

To investigate which kind of response information gives the most useful
insights into transitive reasoning, two kinds of responses were compared
(second hypothesis). First, we collected the correct/incorrect judgments
children gave on a set of transitive reasoning tasks (quantified as product
scores). Second, the verbal explanations children gave for the judgments
(quantified as strategy scores) were recorded. Before comparing the useful-
ness of both types of responses, the relationship between the two types was
investigated. IRT models were used to compare the quality of the product
scores and the strategy scores.

The predictions of the theories with respect to the difficulty level of
transitive reasoning tasks (Table 2.1) were studied by determining the in-
fluence of task characteristics on the difficulty level of the tasks (third

hypothesis). For this purpose a multiple regression model were used.
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2.2 Method

2.2.1 Operationalization of the Construct

For constructing transitive reasoning tasks, three kinds of task charac-
teristics were used. The first characteristic was presentation form of the
premises. According to Piaget’s theory, qualitatively different reasoning
abilities are involved in successive or simultaneous presentation of the
premises, while information-processing theory and fuzzy trace theory as-
sume that one ability is involved in both presentation forms. The second
characteristic was task format. Various task formats may have a different
influence on the formation of a linear ordering or the use of logical rules.
The third characteristic was task content. This characteristic was chosen
to measure the influence of different kinds of content of the transitive re-
lationship on performance. According to Sternberg (1980b, 1980a), both
a spatial and a verbal representation are involved in solving tasks having
a verbal content (linear syllogism) whereas only a spatial representation is
involved when the content is physical. The performances on the tasks were
both measured by means of the correct/incorrect answers and the verbal

explanations of the answers.

2.2.2 Tasks

Three kinds of task characteristics, presentation form, task format, and
task content with 2, 4, and 2 levels, respectively, were completely crossed,
forming 2 x 4 x 2 = 16 tasks. Figure 2.1 shows the tasks of the transitive
reasoning test. Note that the sticks had the colors blue, green, orange,
purple, red, and yellow in the computer test. The task characteristics and

their levels are:
e Presentation form. The two levels are:

1. Simultaneous presentation (Figure 2.1, tasks 1, 4, 5, 7, 10, 11,
13, and 16). When the premises were presented simultaneously,

all the objects were visible simultaneously during the whole task.
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According to Piaget’s theory, this kind of task may be solved

using functional reasoning.

2. Successive presentation (Figure 2.1, tasks 2, 3, 6, 8, 9, 12, 14,
and 15). When the premises were presented successively, in each
step of the presentation one pair of objects was visible but the
other objects used in the task were not. According to Piaget’s
theory, this kind of task must be solved using operational rea-

soning.
e Task format. The four levels are:

1. Y4 > Yp > Y(; transitive test pair Y4, Yo (Figure 2.1, tasks 1,
6, 12, and 13). In Figure 2.1, Task 1, the lion is assumed to be
older than the camel, and the camel is assumed to be older than
the hippo.

2. Yq4 = Y = Yo = Yp; transitive test pair Yy, Yo (Figure 2.1,
tasks 3, 7, 9, and 16). In Figure 2.1, Task 7, all sticks have the
same length.

3. Y4 >Yp >Yc > Yp > Yg; transitive test pair Yp,Yp (Figure
2.1, tasks 4, 8, 10, and 15). In Figure 2.1, Task 4, the green
stick is longer than the red one, the red one is longer than the
purple one, the purple one is longer than the yellow one, and
the yellow one is longer than the orange one.

4. Y4 = Yp > Yo = Yp; transitive test pair Yy, Yo (Figure 2.1,
tasks 2, 5, 11, and 14). In Figure 2.1, Task 5, the hedgehog is
assumed to be the same age as the rabbit, the rabbit is assumed
to be older than the duck, and the duck is assumed to be the
same age as the chicken.

e Type of content. The two levels are:

1. Physical content (Figure 2.1, tasks 2, 4, 6, 7, 9, 11, 13, and
15). When the content of the task was physical, the length
relationship between the sticks could be observed visually during
the presentation of the premises.
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2. Verbal content (Figure 2.1, tasks 1, 3, 5, 8, 10, 12, 14, and 16).
When the content of the task was verbal, the experimenter told
the age relationship between the animals to the child during the

presentation of the premises.

2.2.3 Instrument

The transitive reasoning computer program “Tranred” (Bouwmeester &
Aalbers, 2002) was an individual test, constructed especially for this study.
This computer program replaced the normally used in vivo presentation
of the tasks. The advantage of a computerized test was that the admin-
istration of the test was highly standardized. Moreover, movements and
sounds could be implemented to enhance the test’s attractiveness and hold
the child’s attention. Finally, the registration of the test scores was done
mostly by the program during the test administration. The verbal expla-
nation the child gave after (s)he had clicked on the preferred answer was
recorded in writing by the experimenter. The tasks were presented in the
same fixed order for every subject (see Figure 2.1 for the task ordering).
Relatively difficult tasks were alternated by easier tasks to keep the children
motivated. A pilot study showed that the verbal explanations with respect
to the same objects appearing in different tasks were hardly ever confused.
Nevertheless, to avoid a dependence between the objects of different tasks,
tasks sharing the same objects or task characteristics were alternated as

much as possible by tasks having different objects or task characteristics.

2.2.4 Procedure

The test was administrated in a quiet room in the school building. The
experimenter started a little conversation with the child to put him/her at
ease and introduce the task types. Then the child did some exercises to get
used to the Tranred program. The buttons of the program were explained.
It was explained that the colored sticks could have different lengths, which
could only be observed when the doors of the box were opened (see Figure
2.1, physical content). Also, it was explained that the animals could have
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different ages, but that this was not observable. After the instructions were
given, the test was started.

When the content of the relationship was physical, a box appeared
on the screen which either contained all objects (Figure 2.1, simultaneous
presentation of physical content) or a pair of objects (Figure 2.1, successive
presentation of physical content). The doors were opened to show the
objects of the first premise pair, and the child was asked which stick was
longer or whether the sticks had the same length. When the sticks differed
in length, the difference could be observed clearly. Then the child clicked on
the longest stick, or on the equality button when both sticks had the same
length. The doors closed and the doors of the next premise pair opened.
The question was repeated for all premise pairs. During the test phase,
the doors were closed and the length of the sticks could not be compared
visually. The child was asked which of two sticks was longer or whether
the sticks had the same length. After the child had clicked on one of the
sticks or on the equality button, (s)he was asked to explain the answer.
The experimenter wrote down the explanation, the box disappeared from
the screen, and the next task started.

When the content of the relationship was verbal, all animals (Figure 2.1,
simultaneous presentation of verbal content) or a pair of animals (Figure
2.1, successive presentation of verbal content) walked onto the screen. For
each premise pair, the experimenter told the child which animal was older
or that both animals had the same age. The child was asked to click on
the oldest animal or on the equality button when both animals had the
same age. This was repeated for all premise pairs. In the test phase, the
child was asked which of two animals was older or whether both animals
had the same age. After the child had clicked on one of the animals or on
the equality button, the experimenter asked the child for an explanation
of the answer. The experimenter wrote down the explanation, the animals
walked off the screen, and the next task started.

The administration of the test took about half an hour, depending on
the age of the child. For young children the test took more time and for
elder children the test took less time.
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2.2.5 Sample

The transitive reasoning test was administered to 615 children ranging in
age from 6 to 13 years old. Children came from six elementary schools
in the Netherlands. The children came from middle-class social-economic
status (SES) families. Table 2.2 gives an overview of the number of children

and their mean age within each grade.

Table 2.2: Number of Children, Mean Age (M) and Standard Deviation
(SD) by Grade

grade number age
M* SD
2 108 95.48 7.81
3 119 108.48 5.53
4 122 11913 5.37
5 143 132.81. 517

6 123 144.95 5.34

number of months

a

2.2.6 Responses

Product Scores When children clicked on the correct object in the
test phase, they received a score of 1. When they clicked on an incorrect

object a score of 0 was registered.

Strategy Scores This study builds on previous research on scaling
transitive reasoning by Verweij (1994). He found satisfactory inter-rater
agreement for two raters who independently coded the verbal explanations
given by children who solved transitive reasoning tasks. Figure 2.2 gives
an overview of the transitive and non-transitive strategies children used in
this study to solve the 16 tasks. The first distinction was made between
explanations in which the information of the premises was either used or

not. When children did not give an explanation they said that they had



2.2 Method 37

either guessed, did not know how they knew the answer, or could not
explain their answer. When children gave an explanation but the premise
information was not used, children used external information instead to
explain their answer (e.g., the parrot is older because parrots can live more
than 40 years); or they used visual aspects of the task to explain their
answer (e.g., the blue stick is longer because I can see that when I look
close).

When the information of the premises was used correctly, children lit-
erally mentioned the premises or reduced the information of the premises.
When the premises were mentioned correctly, the child mentioned all the
premises involved (e.g., Y4 > Yp > Yo: animal A is older than animal
C because animal A is older than animal B, and animal B is older than
animal C). This strategy is equivalent to operational reasoning in Piaget’s
theory. When the information of the premises was reduced correctly, chil-
dren used a reduction of the premise information, by using the position of
the objects (e.g., Y4 > Y > Yo > Yp > Y, simultaneous presentation; all
animals are ordered from left to right, the oldest animal first, so animal B is
older than animal C); the time sequence (e.g., Y4 > Yp > Yc > Yp > Y,
successive presentation; the sticks are ordered in time, stick A was pre-
sented first and 1is the longest, object B was presented before object D,
so object B is longer); a total reduction (e.g., Y4 = Yg = Yo = Yp:
all animals have the same age). When the premises were mentioned in-
correctly, children used an incorrect interpretation of the premises (e.g.,
Y4 =Yg > Yo =Yp: all sticks are equally long, except for stick B, which
is longer, so stick A and stick C are equally long); gave an incomplete ex-
planation (e.g., Y4 > Yp > Y stick A is longer than stick C because stick
B is longer than stick C'); or confused the test-pair with a premise-pair
(e.g., Ya > Yp > Yo: stick A is longer than stick C' because I have just
seen that stick A is longer than stick C)?.

?In a study by Bouwmeester, Sijtsma, and Vermunt (2004), chapter 4 of this thesis,
a nominal variable was used in which all strategies were distinguished to determine the
relationships between age, strategy use and task characteristics.
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The strategies in which the premise information was correctly men-
tioned literally or reduced correctly, were called transitive reasoning strate-
gies and received a score of 1. All other strategies received a score of 0. In
0.16% of all cases, the explanation given by the child could not be classified

in one of the strategy groups. In those cases a missing value was registered.

2.2.7 Item Response Theory

Our three hypotheses were investigated by means of IRT. Figure 2.3 gives
an overview of the successive steps that were followed in this study. We
first mention these steps and provide a global description of the rationale
behind them. Then we explain the assumptions, methods and models in
some detail.

IRT models provide methods to assess the dimensionality of the data,
and thus can be used to determine the number of abilities involved in
our transitive reasoning test. The program DETECT (Stout, 1996), was
used to investigate dimensionality using the local independence assumption
of IRT, and the program MSP (Molenaar & Sijtsma, 2000) was used for
the same purpose using the monotonicity assumption of IRT. DETECT
and MSP are exploratory methods. In contrast, the program Improved
DIMTEST (Stout, 1993) was used to test the hypotheses about the dimen-
sionality resulting from DETECT, MSP, and the theories about transitive
reasoning. Our approach is more exploratory than confirmatory, and there
is a methodological and a theoretical reason for this. Methodologically, the
exploratory methods DETECT and MSP were used instead of a confirma-
tory method like factor analysis, because factor analysis of dichotomous
item scores has problems due to the extreme discreteness of such scores
(Nandakumar, Yu, Li, & Stout, 1998; McDonald, 1985; Hattie, Krakowski,
Rogers, & Swaminathan, 1996). Van Abswoude, Van der Ark, and Sijtsma
(2004) argued that DETECT and MSP do not suffer from these problems.
Theoretically, we chose an explorative approach because Piaget’s theory is
not explicit about the role of task characteristics with respect to the kind of
ability (functional or operational) that is involved in transitive reasoning;

that is, precise hypotheses about the task loadings on different factors or
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dimensions can not be posited. However, some less explicit expectations
may be derived from the literature. Improved DIMTEST was used to test
the expectation that successive tasks are solved by operational reasoning
while simultaneous tasks are solved by functional reasoning (Chapman,
1988; Chapman & Lindenberger, 1992).

The results of MSP, DETECT, and Improved DIMTEST were com-
pared and the resulting conclusion answered the first hypothesis about the
number of abilities. This conclusion was used as the input for investigating
the second hypothesis. This was done by fitting two progressively more
restrictive IRT models to the data. First, we fitted the nonparametric
monotone homogeneity model (MHM; Mokken, 1971, chap. 4; Sijtsma &
Molenaar, 2002, chap. 2) to the two data sets. This model implies the
ordering of children with respect to ability level. A more restrictive non-
parametric model is the double monotonicity model (DMM; Mokken, 1971,
chap. 4; Sijtsma & Molenaar, 2002, chap. 6). When this model fits, both
the children and the transitive reasoning tasks can be ordered, but on sep-
arate scales. The linear logistic test model (LLTM; Fischer, 1973, 1995;
Scheiblechner, 1972) can be used to model the relationships between task
difficulty and task characteristics. However, since the LLTM is a special-
ization of the Rasch model it is highly restrictive. Because the Rasch model
did not fit our data, as an alternative multiple regression on P-values was
used (Green & Smith, 1987).
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Assumptions Common to the IRT Models Used in This Study

Local Independence Let the test consist of J dichotomously scored
tasks, and let # denote the latent ability measured by the J tasks. If the
tasks measure more than one ability, we assume W latent ability parameters
collected in a vector 8 = (6,,..., fw ). Let X; be the random variable for
the score on task j, with j = 1,...,J; and let z; be the realization of
this variable, with z; = 0,1. The task score variables are collected in
X = (X155, X ), and the realizations in x = (x1,..., zy). Finally, the
conditional probability of a 1 score on task j is denoted P;(8); this is the
item response surface. For scalar 6, P;(f) is the item response function
(IRF). The assumption of local independence (LI) is defined as

J
P(X =x|6) =[] Pi(6)™[1 - P;(6)' ™. (2.1)
j=1

LI means that a subject’s response to a task is not influenced by his/her
responses to the other tasks in the test. LI implies that the covariance of
two tasks, j and k, given the latent trait composite, 6, is zero; that is,
Cov(Xj, Xy, | @) = 0. This zero conditional covariance is known as weak
local independence, which is important for practical item selection (Stout
et al., 1996; Zhang & Stout, 1999a) to be discussed shortly.

Unidimensionality The assumption of unidimensionality (UD) means
that the data structure can be explained by a unidimensional latent trait, 6.
When UD does not hold, one ability is not enough to explain the variation
in the scores on different tasks, and a second ability may be necessary to
explain the variability, and perhaps a third, a fourth, and so on. Although
UD and LI are mathematically not the same, in practice, the same methods
are used to evaluate these assumptions.

Monotonicity For unidimensional 6, we assume that the IRFs are
monotone nondecreasing functions. That is, for two arbitrarily chosen fixed

values of 6, say, 6, and #,, we have that
P;(0.) < P;j(0p), whenever 0, < 6p;5 =1,...,J. (2:2)

This is the monotonicity (M) assumption. Assumption M also gives infor-

mation about the dimensionality of the task set, based on the variation in
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the slopes of the IRFs. Suppose that the task set is multidimensional in
the sense that some tasks measure 6; and others measure 5. Because the
slope of an IRF expresses the strength of the relationship of a task with
the latent ability or a latent ability composite, it may well be that tasks
measuring one ability have steeper IRFs than tasks measuring a different
ability. Even if a unidimensional IRT model is incorrectly hypothesized for
these multidimensional data, the slopes of the IRFs may provide evidence
of this multidimensionality (Hemker et al., 1995; Mokken, 1971; Sijtsma
& Molenaar, 2002, chap. 5; Van Abswoude et al., 2004). In this study,
we investigated whether all the tasks measure the same # and, in case of

multidimensionality, we tried to identify unidimensional subsets of tasks.

The Monotone Homogeneity Model The MHM (Mokken, 1971,
chap. 4; Sijtsma & Molenaar, 2002, chap. 2) is based on the assumptions
of LI, UD, and M. The MHM is an NIRT model that orders subjects on the
¢ scale using their number-correct score, defined as X = 3~ X (Grayson,
1988; Hemker, Sijtsma, Molenaar, & Junker, 1997). Theoretically, this
ordering of persons is the same for each task, and also for a sumscore,
Y, = > Y], based on the task scores Y; from any subset of tasks selected
from the larger set of tasks that are driven by § and agree with the MHM.
In practice, the number of tasks affects the accuracy of a person ordering

estimated by means of the number-correct score X, .

Methods to Assess the Dimensionality of the Data

We used three methods to assess the dimensionality structure of the two
dichotomous data sets. The first method was the item selection proce-
dure in the computer program MSP (Molenaar & Sijtsma, 2000; also, see
Sijtsma and Molenaar, 2002, chap. 5). This procedure is used to select
the tasks on the basis of assumption M. The second item selection method
was DETECT (Zhang & Stout, 1999b). The third method was Improved
DIMTEST (Stout, Froelich, & Gao, 2001). This method was used to test
the null-hypothesis of UD for the whole task set. Both DETECT and
DIMTEST use the assumption of LI to assess UD.
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Program MSP.  MSP (Molenaar & Sijtsma, 2000) uses scalability coef-
ficient H (Mokken, 1971, pp. 157-169) to assess the discrimination power of
individual tasks (i.e., the slopes of the IRFs) and the whole test. The item
coefficient H; is an index of the slope of the IRF relative to the spread of
the number-correct score X in the group under consideration. The higher
Hj, the better task j discriminates between different X, scores. The H
coefficient for the whole test of J tasks summarizes the slope information
contained in all J item coefficients H;.

Mokken, Lewis, and Sijtsma (1986) argued that higher positive H values
reflect higher discrimination of the whole set of tasks and, thus, a more
accurate ordering of subjects. In practical test construction, to have at
least reasonable discrimination, a lower bound value for H; and H of 0.3
is recommended (Mokken, 1971 p. 184). Other guidelines (Sijtsma &
Molenaar, 2002, p. 60) for the interpretation of H are: 0.3 < H < 0.4
is a weak scale; 0.4 < H < 0.5 is a medium scale; and 0.5 < H < 1.0 is
a strong scale. The MSP item selection procedure has been described in
detail by Mokken (1971, pp. 190-194; also see Molenaar & Sijtsma, 2000;
and Sijtsma & Molenaar, 2002, chap. 5). It is a bottom-up procedure, that
starts by selecting the two items with the highest significantly positive H
that is at least ¢ (¢ > 0; user-specified). Then the procedure adds tasks
one by one, in each step maximizing the total H of the selected items, such
that H; > c for all selected items (for possible exceptions, see Sijtsma &
Molenaar, 2002, p. 79). After having selected the first scale, the procedure
continues by selecting from the unselected items a second scale, a third
scale, and so on. Van Abswoude et al. (2004) found that MSP was able to
exactly retrieve the true dimensionality from simulated data when latent
traits did not correlate highly (say, higher than 0.4). Hemker et al. (1995;
see also Sijtsma & Molenaar, 2002, p. 81; Van Abswoude et al., 2004)
recommended using a range of ¢ values from ¢ = 0.00 to ¢ = 0.55 with
increments of 0.05, and described sequences of outcomes for increasing c

values typical of multidimensionality and unidimensionality.
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Program DETECT. The computer program DETECT (Zhang &
Stout, 1999a, 1999b; Roussos, Stout, & Marden, 1998) contains an item
selection algorithm that tries to find the partitioning P for which the de-
gree to which LI is satisfied is maximal, given all possible partitions of
the task set. In contrast to MSP, where assumption M is the basis of the
item selection, weak LI is the basis of DETECT. DETECT works best
when all individual tasks load on one 6 (but not necessarily the same 6 for
all tasks). This is called approximate simple structure (Zhang & Stout,
1999a). When individual tasks load on different s, approximate simple
structure does not hold and no best partitioning can be determined. Un-
der the assumption of approximate simple structure, the DETECT index
is maximal when the underlying structure is correctly represented by the
number and the composition of the clusters. When the DETECT value is
zero, no best partitioning is possible and the task set is unidimensional.
As a rule of the thumb (Zhang & Stout, 1999b), a task set is considered
unidimensional when the DETECT value is smaller than 0.1. To evalu-
ate whether approximate simple structure exists, Zhang and Stout (1999b)
proposed that index R > 0.8. When approximate simple structure does
not exist, it is difficult to decide how many dimensions are involved. Van
Abswoude et al. (2004) recommended to use MSP and DETECT together

for analyzing one’s data.

Program Improved DIMTEST. DIMTEST is a procedure that tests
the null hypothesis that a set of items is dimensionally similar to another
set of items. Because the DIMTEST procedure does not work for short test,
we used the improved DIMTEST procedure (Nandakumar & Stout, 1993).
This procedure generates a unidimensional data set using a nonparametric
bootstrap method to correct for bias in parameter estimates and to increase
the power of the DIMTEST statistic (Stout et al., 2001). The hypothesis
is tested that the generated data set has the same dimensionality as the
real data set. For example, we tested the hypothesis that the responses
to the successively presented tasks are dimensionally distinct from those
to the simultaneously presented tasks. We considered the simultaneously
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presented tasks to be the Assessment Test (AT; see Nandakumar & Stout,
1993) and the successively presented tasks to be the Partition Test (PT;
see Nandakumar & Stout, 1993). The items in AT were hypothesized to
measure one dominant trait. An asymptotic test statistic denoted T', was
used to test whether the items in AT and PT measure the same 6.

IRT Models and Assessment of Fit.

Monotone Homogeneity Model After the dimensionality of the
transitive reasoning data was investigated, the computer program MSP
(Molenaar & Sijtsma, 2000) was used to investigate the fit of the MHM
to the two data sets. To evaluate whether the IRFs of the J tasks were
all nondecreasing, subjects were partitioned into J restscore groups on the
basis of their restscore, R(_j) = X4 — Xj. The restscore R(_j) is an ordinal
estimator of # (Junker, 1993). To enhance power, small adjacent restscore
groups were joined using recommendations given by Molenaar and Sijtsma
(2000, p. 100). For each restscore group r the probability of giving a cor-
rect answer, P(X; = 1| R_;) = r), was estimated, and the hypothesis was

tested that these probabilities are nondecreasing in R(_j.

Double Monotonicity Model The DMM adds a fourth assumption
to the MHM, which states that the IRFs do not intersect. This fourth
assumption equals invariant item ordering; that is, the ordering property
of the J tasks is the same for different subgroups of subjects (except for
possible ties), including individual #s. In particular, for two tasks j and k,
if we know for one 6y that P;(6p) < Px(fp), then it follows that for any 6,
we have that P;(#) < Py(#). This ordering can be extended to all tasks.
MSP was used to investigate whether the IRFs intersected. The scala-
bility coefficient H” (Sijtsma & Meijer, 1992) for the .J tasks in the test and
the person coefficient HiT were used to evaluate intersection of the IRFs.
As a rule of thumb, if HT > 0.3 and the percentage of negative H val-
ues < 10, then the IRFs do not intersect. Three additional methods were
used to investigate the nonintersection of IRFs for pairs of tasks. These
methods are the restscore method, the restsplit method, and the inspection
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of the P-matrices, P(—,—) and P(+,+) (Sijtsma & Molenaar, 2002, chap.
6). These methods are based on the same rationale, but use different sub-
groupings of respondents for estimating the IRFs. The three methods differ

in accuracy to estimate the IRFs and in power to detect intersections.

Linear Regression Using P-values In the multiple regression model
the proportions correct are regressed on the task characteristics. Because
the proportions corrected are bounded between 0 and 1, a logistic trans-

formation of the P-values was used.

2.3 Results

2.3.1 Relation Between Product Scores and Strategy Scores

Table 2.3 shows the proportions of strategy use and the proportions of cor-
rect answers given strategy use. The two “correct” strategies (literal and
reduced premise information) almost always led to correct answers. The
three strategies in which no premise information is used (visual informa-
tion, external information, and no explanation) have proportions of correct
answers close to chance level. Test/premise pair confusion relatively often
led to a correct answer, although it is an incorrect strategy. Table 2.3 shows
that incorrect strategies often led to correct answers that were produced

by chance.

2.3.2 Hypothesis 1: Assessing Dimensionality

Analysis of Product Scores

12 cases were rejected from the analysis because of missing values on one

or more tasks. The resulting sample consisted of 603 subjects.

MSP Analysis. Table 2.4 shows the sequence of outcomes of the MSP
analysis with increasing c-values. Task 2 was immediately rejected because
of negative covariances with other tasks. For lowerbound ¢ = 0, two scales

were formed containing six and nine tasks, respectively, which suggests that
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Table 2.3: Strategy Use and Proportion of Correct Answers

STRATEGY Proportion Proportion

strategy use correct answers
LITERAL COMPLETE PREMISE INFORMATION .16 .94
REDUCED PREMISE INFORMATION 21 .97
INCORRECT PREMISE INFORMATION .19 23
INCOMPLETE PREMISE INFORMATION .10 48
TEST/PREMISE PAIR CONFUSION 10 .58
VISUAL INFORMATION .06 .35
EXTERNAL INFORMATION .03 .36
NO EXPLANATION .16 37

the test measures at least two latent abilities. For increasing c-values, Task
3 and Task 6 were also rejected, and a third and a fourth scale were formed,
both containing two tasks. For c-values of 0.40 and higher, almost all tasks
were rejected and no scale was formed containing more than two tasks. For
¢ = 0.55 no scale was formed. On the basis of the guidelines of Hemker
et al. (1995), it was concluded that at least two abilities were involved in
answering the tasks. One scale contained the tasks 7, 9 and 16 (H = 0.44),
which all have the format Y4 = Yg = Yo = Yp, and another, rather weak
(H = 0.25) scale contained the tasks 1, 4, 5, 8, 10, 11, 12, 13, 14, and 15,
which have the formats Y4 > Yg > Yo; Y4 > Y > Yo > Yp > Yg; and
YA:YB>YC:YD.

DETECT Analysis. A random half of the sample was used for the
DETECT procedure. The second half of the sample was used for cross-
validation. The R index for assessing simple structure was 0.74. This is
smaller than the value of at least 0.8 that Zhang et al. (1999b) proposed
for approximate simple structure. The maximum DETECT value [denoted
D, (P*)] was 0.88, which was higher than 0.1, indicating that the task
set was not unidimensional. The partitioning with this value had three
clusters. For the second half of the sample, using the same partitioning
that was found to be optimal for the first data set, we found D,(P*) =
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Table 2.4: Item Selection for Increasing c-Values, for Analysis Using Prod-

uct Scores

c scale 1 scale 2 scale 3 scale 4 # tasks
rejected

.00 1,34,79,16 5,6,8,10,11,12,13,14,15 1
.05 1,34,79,16 5,6,8,10,11,12,13,14,15 il
10 1,3,4,7,9,16 5,6,8,10,11,12,13,14,15 1L
.15 3,4,7,9,16 1,5,8,10,11,12,13,14.15 2
.20 79,16 1,4,58,10,11,12,13,14,15 3
.25 79,16 5,14,10,8,1 4,13 11,15 4
.30 7,9,16 5,10,8,1 413 e
.35 7,9,16 5,10:1 4,13 8
.40 9,16 10,1 4,13 10
45 9,16 10,1 413 10
.50 9,16 10,1 4,13 12
.35 16

0.48 and R = 0.43. To gain more insight into the dimensionality of the
data, 20 random samples of approximately 50% of the subjects were drawn
from the original sample and the DETECT value was calculated for each
sample. Figure 2.5 shows the number of times that two tasks were in
the same cluster. Three (overlapping) clusters can be distinguished. One
contained the tasks 3, 7, 9, and 16 (all with format Y4 = Yp = Yo = Yp),
which were almost always in the same cluster. A second cluster contained
the tasks 1, 5, 8, 10, 11, and 14, and a third cluster contained the tasks 2,
4, 12, and 13. Task 6 did not fit well in any of the clusters and Task 15
might belong to either the second or the third cluster.

Improved DIMTEST Analysis Three hypotheses were tested.
First, it was tested whether the tasks that were simultaneously presented
measured the same ability as the tasks that were successively presented (Pi-
aget’s theory). Second, it was tested whether the tasks that had a verbal

content measured the same ability as the tasks that had a physical content
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Table 2.5: DETECT Partitioning in Clusters for 20 Random Samples,
Product Scores
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o 9B E 0 o« 00 00 00 00 00 05 00 03
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(Sternberg’s mixed model). Third, it was tested whether the tasks with an
equality format (Y4 = Yp = Yo = Yp) measured a different ability than
the other tasks, which was the result of MSP and DETECT. The results

were:

e Hypothesis 1: Statistic T was 1.24 (p > 0.05), so we can not conclude
that simultaneously and successively presented tasks require different

abilities.

o Hypothesis 2: Statistic T" was 2.51 (p < 0.05), so the tasks having a
verbal content may measure a different ability than the tasks having

a physical content.
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e Hypothesis 3: Statistic T was 2.85 (p < 0.05), so the equality tasks
may measure a different ability than the tasks having an inequality

or mixed inequality /equality format.

Conclusion About Dimensionality of Product Scores. MSP, DE-
TECT and improved DIMTEST results converged to the conclusion that
the structure of the product scores is not unidimensional. MSP distin-
guished at least two dimensions, one defined by tasks with the equality
format and the other by the other tasks. DETECT found three partly
overlapping clusters, one of which contained the tasks having the equality
format. The Improved DIMTEST procedure supported the hypothesis that
the tasks having an equality format were dimensionally distinct from the
other tasks, and that the tasks having a verbal content were dimensionally
distinct from the tasks having a physical content. None of the three meth-
ods showed that the successively and simultaneously presented tasks were

dimensionally distinct.

Analysis of Strategy Scores

15 subjects were rejected from the analysis because of missing values on
one or more tasks. The resulting sample consisted of 600 subjects. Because
only six children gave a transitive reasoning explanation for Task 2, this

task was rejected from further analysis.

MSP Analysis. Table 2.6 shows the sequence of item selection out-
comes with increasing c-values. For ¢ = 0, all tasks were selected into the
same scale. For higher c-values, all tasks were selected into the same scale
until a c-value of 0.40, when Task 12 was rejected from the scale. For ¢ =
0.45, a second scale was formed containing the tasks 3, 9, and 14. Consid-
ering this sequence of outcomes, it could be concluded that the structure

of the strategy scores was unidimensional.

DETECT Analysis. The R ratio on the first half of the sample was
0.68, indicating that there was no approximate simple structure. The max-
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Table 2.6: Item Selection for Increasing c-Values, for Analysis Using Strat-
eqy Scores

e scale 1 scale 2 # tasks rejected

.00 1,3,4,5,6,7,8,9,10,11,12.13,14,15,16
05 1,3.4,5,6,7,8,9,10,11,12,13,14,15,16
100 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16
15 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16
20 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16
25 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16
30 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16
.35 1,3,4,5,6,7,8,9,10,11,12,13,14,15,16

40 1,3,4,5,6,7,8,9,10,11,13,14,15,16 1
A5 1.4,6,7,8,10,13,15,16  3,9,14 3
.50 2,6,7,9,11,16 6
.55 4,6,8,10,13.16 711 5

imum DETECT value [D,(P*)] was 0.57, indicating that the task set was
not unidimensional. The partitioning with maximum DETECT value had
two clusters. For the cross-validation sample we found that D, (P*) = 0.24
and R = 0.32. Again, 20 samples of approximately 50% of the original sam-
ple size were drawn at random from the original sample and the DETECT
values were calculated for each sample. Figure 2.7 shows two overlapping
clusters; one cluster containing the tasks 3, 7, 9, and 16, which were almost
always in the same cluster, and one cluster containing the other tasks. It

could not be decided to which cluster the tasks 4 and 6 belong.

Improved DIMTEST Analysis. The same three hypotheses were
tested as was done using the product scores. The results were:

e Hypothesis 1: Statistic T' was 0.70 (p > 0.05), so we could not con-
clude that simultaneously and successively presented tasks required
different abilities.
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Table 2.7: DETECT Partitioning in Clusters for 20 Random Samples,
Strategy Scores

14 15 134 6 3 7 9 16
' 02 01 01 01 01
04 00 00 00 00
02 00 01 00 00
03 00 00 00 00
08 03 03

[: 0 — 5 times [:] 6 — 9 times 10 — 15 times - 16 — 20 times

e Hypothesis 2: Statistic T was 2.26 (p < 0.05), so the tasks having a
verbal content may measure a different ability than the tasks having

a physical content.

e Hypothesis 3: Statistic 7" was 2.30 (p < 0.05), so the equality tasks
may measure a different ability than the tasks having an inequality

or mixed inequality /equality format.

Conclusion About Dimensionality of Strategy Scores. Different
methods led to different conclusions about the dimensionality of the data.
MSP indicated unidimensionality. Improved DIMTEST suggested distinct
abilities for both the equality tasks and tasks having a verbal content.
DETECT resulted in two dimensions. One cluster contained the tasks

with the equality format and the other cluster contained the other tasks.
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The tasks having a verbal content did not form a distinct cluster.

2.3.3 Hypothesis 2: Fitting the NIRT Models

The product scores did not form a unidimensional scale. Therefore, the
NIRT models were only fitted to the strategy scores.

Analysis of Strategy Scores

MSP, DETECT and Improved DIMTEST led to different conclusions about
the dimensionality structure of the strategy scores. In particular the equal-
ity tasks formed a distinct cluster. In the following analyses, 15 transitive

reasoning tasks (except Task 2) were used.

MHM Analysis. The H-value of the scale was 0.45, indicating
medium strength scale. All H;s were between 0.38 (Task 12) and 0.66
(Task 16). Table 2.8 gives an overview of the Pj-values and the Hj-values.
The item-restscore regressions were increasing or non-significantly locally
decreasing for each of the 15 tasks. Thus the MHM fitted the 15 tasks.

DMM Analysis. The HT value was 0.52, and the percentage of neg-
ative HI values was 1.4. According to the assessment of intersection via
restscore groups, tasks 3 and 10, and tasks 9 and 10 intersected signifi-
cantly (2310 = 1.81; 29,10 = 3.05). Investigating the intersection via rest-
split groups, tasks 9 and 10, and tasks 4 and 12 intersected significantly
for two dichotomizations (yielding zg 1o values of 2.04 and 3.12; and 24 12
values of 1.66 and 1.67. The bivariate proportions in the P(+,+) matrix
showed an intersection of the tasks 9 and 10.

Summarizing the results of the four methods, the task pair (9,10) had
the most serious intersections, but the violations were small. It was con-
cluded that the DMM fitted the strategy data and that an invariant item
ordering held for the 15 tasks.
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Table 2.8: P;-Value and H;-Value of the Items, Based on Strategy Scores

Item # Presentation Format Content P; H,
6 successive Ya>Yg >Ye physical .05 .46
15 successive Yi>Ys >Ye >Yp >Ye physical .07 .47
5 simultaneous Yi =Yg >Yo=Yp verbal A5 .40
14  successive Yi=Ye>Yo=Yn verbal 19 .42
8 successive Ya>Yg>Ye>Yp >Ye verbal 21 .48
11 simultaneous Yy =Yg >Yco=Yp physical .31 .40
4 simultaneous Yy >Yp >Ye >Yp >Ye physical .39 .46
12  successive Ya>Ys >Ye verbal 40 .38
3 successive Ya=Ye=Yc=Yp verbal 45 41
10 simultaneous Y4 >Yg >Ye >Yp >Yr verbal 52 bl
9 successive Ya=Ye=Ya=Yp physical .54 .40
1 simultaneous Y >Yp >Ye verbal .56 .46
13 simultaneous Y4 > Y > Yo physical .57 .50
7 simultaneous Yi=Yp=Yo=Y)p physical .77 .55
16 simultaneous Y =Yg=Yo=Yp verbal .86 .66

2.3.4 Hypothesis 3: The Influence of Task Characteristics
on Difficulty

Multiple Regression

A multiple regression analysis was performed on the 15 tasks to which the
DMM fitted. The dependent variable was the logit transformation of the
proportion correct of each task. The three task characteristics were the
predictor variables. Because the task characteristics were nominal they
were transformed to dummy variables. A significant F-value was found:
Fe14 = 6.77 (p = 0.01). The adjusted R? was 0.71, meaning that the model
explained 71% of the variance of the difficulty levels of the 15 tasks. Two
regression weights (Table 2.9) significantly deviated from 0. The format
Y4 = Yp = Yo = Yp had a positive effect on the easiness of a task.

Simultaneous presentation was easier than successive presentation.
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Table 2.9: Estimated Weights of the Multiple Regression Model

Characteristic B SE £ p-value
(Constant) -1.980 .740 .028
Ya>Yp> Yo 273 698  .096 .706
Yi=Yp=Yo=Yp 1.797 698  .632 .033
YasYe>sYo>Yp>Ye 221 611 .078 2T
Yi=Yp>¥Yo=¥p -957 .631 -.305 .168
Presentation 1.504 .367 .597 .003
Content 333 393 132 .420

Simultaneous presentation form was coded 1, Successive presentation form
was coded 0; Verbal type of content was coded 1, Physical type of content

was coded 0.

2.4 Discussion

Theories stemming from different epistemological backgrounds used differ-
ent definitions, operationalizations and methods to study transitive rea-
soning. This led to disagreement about the number of abilities involved in
transitive reasoning, the kind of responses to be collected, and the influence
of task characteristics on performance. In this chapter, we first evaluated
the hypothesis that different abilities are involved in solving tasks by inves-
tigating the dimensionality structure of a task set with various task char-
acteristics. Both the product scores and the strategy scores were analyzed
and the results compared. Second, a scale was constructed which measured
individual differences in transitive reasoning. Third, the influence of task
characteristics on the difficulty level of tasks was determined.

The results of MSP, DETECT and Improved DIMTEST for the product
data and the strategy data showed that the dimensionality of successively
and simultaneously presented tasks did not differ. Thus, there is no evi-
dence to distinguish between functional and operational reasoning. This
result does not support Piaget’s theory. With respect to Sternberg’s mixed
model, it appeared that Improved DIMTEST suggested different abilities
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for tasks having a verbal content and tasks having a physical content. Al-
though MSP and DETECT did not support this finding, a tentative con-
clusion might be that there is some evidence that the tasks having a verbal
content require an additional verbal ability. A possible explanation for
finding the distinct abilities only by means of DIMTEST may be that the
verbal content tasks were relatively easy linear syllogisms with respect to
the verbal ability component (without negations or marked adjectives; see
Sternberg, 1980b). In terms of Sternberg’s mixed model this would mean
that verbal content tasks require a weak verbal component in addition to
the spatial ordering component whereas physical content tasks only require
a spatial ordering component.

In contrast to the results of the past four decades of research on cogni-
tive development (see e.g., Brainerd, 1977; Murray & Youniss, 1968; Smed-
slund, 1963), we found that the strategy scores produced more straightfor-
ward and useful findings than the product scores. The data structure of
the strategy scores could be explained by one dimension according to MSP,
but at least three dimensions were needed to explain the data structure of
the product scores. The results of the three methods did not converge to
one interpretation. The multidimensionality in the product scores might
best be explained by the difference in accuracy and meaning of the two
types of responses. A product score of 1 means that the child had clicked
on the correct object. A 1 score may therefore not represent true transitive
reasoning ability, but instead may be due to additional unimportant skills
or tricks. The data structure of the product scores is expected to be fuzzier
than the data structure of the strategy scores, for which the meaning of
a 0 or 1 score is clearer. This may explain why the product data were
multidimensional and the strategy data were unidimensional.

Our population consisted of children of six years and older, which were
well capable of explaining their thoughts afterwards. This population was
chosen because our aim was to describe the development of transitive rea-
soning, but not to determine the age of emergence of transitive reason-
ing. This often was the aim of researchers studying transitive reasoning by
young children (Braine, 1959; Smedslund, 1963; Murray & Youniss, 1968;
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Bryant & Trabasso, 1971). When younger children are studied, the require-
ment of verbal explanation may cause many false negatives due to verbal
incapacity. Then, product scores are expected to be more useful.

For the strategy scores, DETECT found that the equality-format tasks
(Ya = Yp = Yo = Yp) formed a distinct cluster. MSP and Improved
DIMTEST did not find a distinct dimension for the equality-format tasks.
The equality-format tasks were easy, and they discriminated well between
children with low ability levels, and worse between children with higher
ability levels. Although the equality-format tasks may not be entirely di-
mensionally equal to the other tasks, they are useful from a practical point
of view because they discriminate well at 6 levels not covered by the other
tasks but desirable for a transitive reasoning scale.

MSP, DETECT and Improved DIMTEST evaluate dimensionality from
different perspectives on the data. The three methods differ in several ways
and each has merits and drawbacks. Van Abswoude et al. (2004) concluded
that DETECT is the best method to assess true dimensionality. However,
the simple structure assumption is a strong assumption which may not
be realistic in many psychological settings. MSP is susceptible to locally
optimal solutions because it uses a sequential clustering procedure. Fur-
ther, MSP often does not accurately distinguish highly correlated abilities
(> .4), but DETECT does. However, by forcing tasks into clusters of
highly correlating traits, DETECT is vulnerable to chance capitalization.
Also, Van Abswoude et al. (2004) found that DETECT does not reflect well
dimensionality when abilities are measured by unequal numbers of tasks.
Improved DIMTEST does not reflect true dimensionality well when abili-
ties are measured by unequal numbers of tasks and these task subsets have
equal average discrimination. DETECT and Improved DIMTEST both
need large sample sizes, and Improved DIMTEST has low power for short
tests. Nevertheless, when the methods are used next to each other, they
can compensate each other’s shortcomings and offer a detailed description
of the underlying dimensionality. In future research it would be interesting
to sample new data and use the results from the present study for confir-

matory analysis. Multidimensional IRT models might be appropriate for
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this purpose (see e.g., Kelderman & Rijkes, 1994, and Reckase, 1997).

It is important to point out that statistical methods give mathematical
definitions of dimensions, and that these dimensions are not equivalent to
psychological abilities. The interpretation of the dimensionality of the data
is dependent on the operationalization of the construct of transitive rea-
soning, but not directly on the construct itself. While usually no explicit
distinction is made between the operationalization of the construct and the
construct itself when interpreting the results, the distinction should not be
ignored. In our study, we used a broad operationalization of transitive
reasoning by using different kinds of task characteristics. Using this opera-
tionalization, we could explain the structure of the strategy data by means
of one dimension. When we would have used a narrower operationalization
based only on the theory of Piaget (e.g., see Verweij, Sijtsma & Koops,
1999), we probably would have found a different dimensionality structure
leading to a different interpretation.

Multiple regression was used to determine the influence of task charac-
teristics on the tasks difficulty level. With respect to presentation form
each of the cognitive theories predicted that simultaneous presentation
was easier than successive presentation. This was indeed what was found.
With respect to the task format, the equality format appeared to be easier
than the other formats. This result was correctly predicted by information
processing theory and fuzzy trace theory but not by Piaget’s theory. Verbal
and physical content hardly influenced difficulty level, and this was only
predicted correctly by fuzzy trace theory.

This study showed that IRT techniques are not only useful tools to
construct tests but also offer a set of methods to investigate psychologi-
cal theories, in particular the dimensionality of a psychological construct.
Now that we know that transitive reasoning can be explained by one di-
mension, further research should be done to interpret this ability in more
detail. In our current research, Bouwmeester et al. (2004) used a latent
class regression model (see chapter 4), and found that several latent classes
could be distinguished in which children used different patterns of correct

and incorrect strategies and the influence of task characteristics on perfor-
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mance was different. From a developmental perspective, it is important to
determine whether the development along the ability found in this study
is continuous or discontinuous [see e.g., Hosenfield, Van der Maas, & Van
den Boom (1997), and Thomas, Lohaus, & Kessler (1999), for studies on

discontinuity in other Piagetian tasks]|.



Chapter 3

Detecting Discontinuity in
the Development of
Transitive Reasoning: a

Comparison of Two Models

Abstract

Since Piaget, the issue of the existence of multiple stages in develop-
ment is an important topic. In cognitive developmental research, the bino-
mial mixture model is often used to identify discontinuity from empirical
data. The binomial distributions that are hypothesized to correspond to
the stages are estimated by means of the number of correctly solved tasks
in the developmental test. In doing this, the binomial mixture model as-
sumes that all tasks in the test have the same difficulty level. However,
the assumption of equal task difficulty may be unduly restrictive for more
complicated task types, and the use of the number-correct score ignores
valuable information in the pattern of item scores.

Unlike the binomial mixture model, the latent class model does not as-
sume binomial distributions of number-correct scores, allows task difficul-
ties to vary, and uses the information in the individual’s item-score pattern

to estimate class membership probabilities and item success probabilities

61
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conditional on class membership. In this study, the binomial mixture model
and the latent class model were compared at the theoretical level, and ap-
plied to data obtained by means of a test for transitive reasoning from a
sample of 615 children ranging in age from 6 to 13 years of age. Because
the binomial mixture model is nested within the latent class model, the
fit of both models could be compared directly. It was concluded that the
more general latent class model is more appropriate for identifying multiple
stages when tasks differ in difficulty level.

This chapter has been submitted for publication.

3.1 Introduction

Since Piaget formulated his developmental stage theory, the concept of
discontinuity in cognitive development has become an important topic in
epistemological, psychological and methodological studies. Discontinuity
has been studied for several cognitive developmental abilities (Brainerd,
1978, 1993; Dolan, Jansen, & Van der Maas, 2004; Flavell, 1970; Formann,
2003; Van Geert, 1998; Jansen & Van der Maas, 1997; Thomas, 1989;
Thomas & Lohaus, 1993; Thomas et al., 1999; Hosenfield et al., 1997). In
this study, the focus was on the detection of discontinuity as reflected by
multiple modes in the development of transitive reasoning ability.

In cognitive developmental psychology, discontinuity is used to describe
the rather abrupt transition from one mode to another mode. Following
Piaget, a mode may be defined as a general cognitive structure or devel-
opmental stage (e.g., Chapman, 1988; Flavell, 1985; Piaget, 1947). Alter-
natively, it may be conceived of as a specific rule or strategy, which is part
of a particular ability (e.g., Hosenfield et al., 1997; Thomas et al., 1999;
Van der Maas & Molenaar, 1992). Piaget distinguished different stages in
cognitive development by means of the assumption that knowledge acqui-

sition develops via cognitive structures which differ qualitatively (see, e.g.,
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Case, 1992; Flavell, 1963). The transition of a cognitive structure into a
different cognitive structure explains the discontinuity in the development
of knowledge. It was difficult, or even impossible, to translate such general,
abstract stages into an empirical setting and investigate them systemati-
cally (e.g., Brainerd, 1978; Flavell, 1970, 1985). Commenting on Brainerd
(1978), Flavell (1970, p. 187) advised “to give up on grand and sweeping
developmental periods that try to find a single, uniform ‘deep structure’
description of the thinking the child does at a given age”. He encouraged
to continue studying steps or levels within a single conceptual domain or
subdomain. When modes are no longer taken as broad, developmental
stages but defined as rules or strategies in a particular domain or subdo-
main, the transition from one mode to a different mode can be interpreted
as discontinuity in the development of the specific ability under study.

Often the term abruptness is used to indicate discontinuity, meaning
that the change curve is expected to be jumpy in a particular time interval.
For example, Flavell (1970) and Brainerd (1993) agreed that a change curve
as in Figure 3.1b is abrupt, showing discontinuity, while a curve as in Figure
3.1a reflects continuous change (they actually disagreed about the validity
of the method that was used to determine continuous or discontinuous
change). However, deciding on whether or not discontinuity is present is
hampered by four problems. First, the slope of a curve depends on the unit
of measurement — days, weeks, half-year periods, and so on — and the
larger the unit, the steeper the slope. Second, although an observed change
curve may show dramatic changes in steepness, the magnitude of the change
in steepness needed to decide on discontinuity is arbitrary. Third, aspects
of behavior may be related to age, but other variables have presumably a
more direct, causal relationship to the behavioral changes found with age
(Wohlwill, 1973, p. 26). Finally, chronological age is not a useful variable
to study development of behavior, since there are considerable individual
differences in rates of development, that is, one child at four years of age
may attain a level at some given behavioral dimension which another child
may not reach till the age of six (Wohlwill, 1973, p. 26).

Researchers used both cross-sectional and longitudinal designs in study-
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Figure 3.1: (a) Continuous- and (b) Discontinuous Change Curve, Based
on Brainerd (1993)

ing discontinuity in the development of Piagetian concepts. A cross-
sectional design (see e.g., Hosenfield et al., 1997) describes discontinuity
by means of the existence of multiple modes in the general development of
an ability. These modes result from the use of a particular rule or strat-
egy. Because a test measuring the ability of interest usually is administered
only once, information about the transition from one mode to a different
mode is not available and therefore hypotheses concerning this transition
can not be tested. In fact, this approach agrees with Piaget’s initial aim to
develop a kind of encyclopedia of human cognition in which it is described
which cognitive tasks a child is able to solve within a particular age range.
Longitudinal designs (see, e.g., Van Geert, 1998) are appropriate when the
aim is to describe the transition from one mode or stage to a subsequent
mode or stage. The development of a child can be determined by means
of repeated measurements during a particular time interval. Markov chain
models (e.g., Brainerd, 1979) and catastrophe models (Van der Maas &
Molenaar, 1992) were used to study multimodality in longitudinal designs.
The choice of a cross-sectional design or a longitudinal design depends on
the hypotheses to be tested and the resources available.

In general, it is assumed that an observed discontinuity in the change
curve reflects discontinuity in the development of the ability of the child.
However, particular properties of the items used to measure the ability

may cause an artificial discontinuity in the change curve. For example,
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when a test contains tasks at two markedly different difficulty levels, the
change curve shows discontinuity which actually reflects discontinuity in
task difficulty, but not necessarily developmental discontinuity.

The problems of determining the definition, the operationalization, and
the measurement of discontinuity may be of concern, in particular, when
relating research results to the discussion about discontinuity in general
cognitive development, ignoring (1) accounting for the appropriate level of
sophistication at which discontinuity is studied; (2) implicit ideas about the
size of the change in performance; (3) restrictions of the research design;
and (4) properties of the measurement instruments. However, when these
issues are considered carefully, conclusions about the development of a
particular ability may be well founded. From a pragmatic point of view,
well-founded modes offer the possibility to differentiate between groups of
children that share relevant cognitive behavior.

3.1.1 Aim of This Study

Several researchers studied discontinuity in Piagetian tasks. For example,
Thomas (1989) and Raijmakers, Jansen, and Van der Maas (2004) studied
multimodality in classification performance; Thomas and Turner (1991),
Thomas and Lohaus (1993), Thomas et al. (1999) and Formann (2003)
studied multimodality in performance on the water-level task; Hosenfield
et al. (1997) studied multimodality in analogical reasoning; and Van der
Maas (1998), and Jansen and Van der Maas (2002) studied multimodal-
ity in performance on balance scale tasks. The aim of this cross-sectional
study was to determine whether discontinuity reflected by multimodality
exists in the development of transitive reasoning ability. In our research on
transitive reasoning (Bouwmeester & Sijtsma, 2004; Bouwmeester et al.,
2004), expectations about different modes in development arose because
of different kinds of explanations children of different ages gave after they
had solved transitive reasoning problems. We defined discontinuity as the
existence of different strategy groups and not as a particular change in
steepness of the developmental growth curve. That is, we expect a rela-
tionship between age and strategy use, but we do not expect fixed age
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periods to define discontinuity.

Fuzzy trace theory (Brainerd & Kingma, 1984; Brainerd & Reyna, 1995,
2001, 2004) predicts that different modes may be expected in performance
on transitive reasoning tasks. Fuzzy trace theory assumes a verbatim con-
tinuum and a fuzzy continuum. Young children use verbatim information
to solve problems (e.g., literal observable information), while older chil-
dren use progressively more fuzzy information (i.e., degraded, pattern-like
information, only holding the gist). Although the underlying verbatim
continuum and fuzzy continuum are assumed to be continuous, the per-
formance variable is expected to show at least two groups of children that
are characterized by different kinds of strategies reflecting the use of either
verbal or fuzzy information.

Several transitive reasoning studies showed that different kinds of
strategies were used to solve transitive reasoning tasks. Verweij et al.
(1999) showed that children between seven and 12 years of age used differ-
ent strategies, and Bouwmeester et al. (2004) distinguished seven categories
of explanations that children gave to justify their answers to different kinds

of transitive reasoning problems.

3.1.2 The Binomial Mixture Model

Thomas and Lohaus (1993), Thomas and Turner (1991), Thomas et al.
(1999) and Thomas and Hettmansperger (2001) used the Binomial Mixture
Model (BMM) to model discontinuity in performance on the water-level
task. In the water-level task children have to draw the water-level in a
glass which has a particular angle with the horizontal axis. The tasks
differ in the angle of the glass but can be assumed to have equal difficulty
(Thomas & Hettmansperger, 2001). Hosenfield et al. (1997) used the BMM
to model discontinuity in analogical reasoning.

Assume that a test consists of J tasks, which are scored correct (score
1) or incorrect (score 0). Random variables X; (j = 1,...,J) denote these
item scores (X; = 0,1). The BMM assumes that the frequency distrib-
ution of a number-correct score on a test, X, = Z'j]:l X, consists of a

mixture of binomial distributions. Further, assume ¢ classes each of which



3.1 Introduction 67

is characterized by a binomial distribution for X ;. Let Bin(X,;J,0,) be
a binomial distribution for X, based on .J trials each with a success prob-
ability #, (0 < 6, < 1). Let 7, be the marginal probability of belonging
to a particular binomial distribution class or component u (v = 1,...,¢)
with 0 < 7, < 1, and Y m, = 1. Then, the c-classes binomial mixture
distribution is defined as

&
f(X43J) =D muBin(Xy; J,60,). (3.1)
u=1
Although the BMM is the model most commonly used to detect discon-
tinuity in cross-sectional data, it has some serious drawbacks. These are
discussed below.

First, Hosenfield et al. (1997) used the BMM to detect multimodality
but argued that its fit does not necessarily imply bimodality or multi-
modality. According to Hosenfield et al. (1997, p. 532) “the presence of
bi- (or multi-) modality can only be concluded if the model plot (i.e., the
estimated overall frequency distribution of the number-correct score; the
authors) displays two clearly separable peaks.” We think that this conclu-
sion is not tenable in general. A gap between two peaks may be difficult
to observe in real data unless the binomial proportions differ markedly in
location or the test contains a large number of tasks and, as a result, the
peaks of closely located binomial distributions are clearly discernable.

Different kinds of cognitive strategies may lead to a mixture of overlap-
ping distributions which do not clearly show gaps or peaks in the estimated
overall frequency distribution. It may be true that multimodality is present
when two or more peaks or gaps can be distinguished, but a distribution
having one peak may in fact consist of several overlapping distributions
(Thomas & Lohaus, 1993). Alternatively, when discontinuity is assumed
to be revealed by the existence of multiple rules or strategies, it is not neces-
sary to restrict the concept of discontinuity or multiple modes to observable
peaks and gaps in the overall frequency distribution.

Second, the detection of discontinuity does not require a particular
shape of the frequency distribution. However, the BMM assumes a mix of

binomial distributions and this may unnecessarily restrict the data.
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Third, the BMM assumes that the binomial probabilities (i.e., the 8’s)
are constant among different tasks for all individuals belonging to the same
component, u; this is known as task-homogeneity (Formann, 2001, 2003).
The assumption of equal task difficulty may be true for the water-level task
(although this is also questionable; see Thomas & Hettmansperger, 2001),
but unrealistic for many other task types. Moreover, when item difficulty
influences the strategy that is used, it is inappropriate to assume that the
spread in item difficulty is due to error.

Finally, by using a binomial mixture distribution it is assumed that a
particular number-correct score X, was produced by just one strategy. For
this reason, Thomas et al. (1999, p. 1025) called the BMM conservative:
“It will likely find fewer strategies in the population than in fact are rep-
resented”. They argued, however, that for reasons of parsimony this “is
not necessarily an unattractive shortcoming”. However, deciding on the
existence of some strategies because others can not be revealed by the sta-
tistical method seems odd. We argue next that assuming that a particular
number-correct score was produced by just one strategy is unrealistic in

many practical situations (see also Formann, 2003).

Binomial Mixture Model and Item Response Theory

Many researchers (Hosenfield et al., 1997; Lohaus & Kessler, 1996; Lo-
haus, Kessler, Thomas, & Gediga, 1994; Thomas, 1989, 1994; Thomas
et al., 1999; Thomas & Lohaus, 1993; Thomas & Turner, 1991) who used
the BMM for studying discontinuity in cognitive developmental constructs
assume that a particular distribution of the number-correct score X or
just the mode of this distribution corresponds to a developmental stage or
mode. By studying a distinct ability, the mode is interpreted as correspond-
ing to a particular strategy or rule which characterizes the development of
the ability. This approach focusses on the number-correct score as the
statistic of interest, but not on the individual item scores.

Other researchers (e.g., Bouwmeester et al., 2004; Jansen & Van der
Maas, 1997, 2002; Raijmakers et al., 2004; and Van Maanen, Been, &
Sijtsma, 1989) focussed at the item scores, and assumed that the use of a
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@. Rasch model b. Two-parameter logistic model

Figure 3.2: Four Response Functions According to (a) the Rasch Model and
(b) the Two-Parameter Logistic Model

particular strategy implies a correct answer to item j with a probability
that is typical of this strategy. For example, the use of Strategy A may
imply a probability of 0.9 of having item j correct, and the use of Strategy
B a probability of 0.2. Then for Strategy A a score of 1 on item j is the
most likely outcome and for Strategy B a score of 0. When applied to
each of the J items, this probabilistic approach implies that Strategy A is
characterized by a most likely vector of J item scores, and Strategy B by a
different vector. However, because the approach is probabilistic, with each
strategy each of the 2/ possible item-score vectors has positive probability.
This implies that, with each of the strategies, each X score (which is the
sum of the item-scores in an item-score vector) occurs with a particular
probability. Thus, strategies are characterized by particular distributions
of X, but the question is whether X, provides unequivocal information
about strategies.

The idea of the BMM is to identify these X distributions and associate
them with strategies. Different strategies may lead to highly distinct most-
likely item-score vectors which, however, have the same X . For example,
assume that .J = 4, Strategy A’s most likely vector is (1,1,0,0) and Strat-
egy B’s most likely vector is (0,0,1,1); then for both strategies X, = 2.
Here the BMM approach is likely to fail in identifying different strategies.
An approach that focuses on item scores and identifies item-score vectors

may be more successful.
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Additional evidence supporting the use of item-score vectors comes from
modern item response theory (IRT; e.g., Embretson & Reise, 2000; Van der
Linden & Hambleton, 1997). Using the conceptual framework of IRT, we
demonstrate that (1) IRT models predict that for each individual taking a
test, each item-score vector has positive probability; (2) under one rather
restrictive IRT model in particular, for each individual, given a fixed X
value, one item-score vector clearly has greater probability than the other
vectors; (3) for other, more flexible IRT models, for each individual, given
a fixed X value, several item-score vectors may have relatively high prob-
abilities; and (4) individuals with different ability levels but the same X,
value may have different item-score vectors with almost the same prob-
abilities. Together these results support the use of item-score vectors to
identify strategies rather than the aggregated X, score.

1. IRT models. IRT models assume a continuous latent variable, here
denoted &, instead of discrete components, u. For person s with latent
variable location &, the probability of a correct answer to item j is denoted
P;(&s), and the probability of an incorrect score by Q;(&) = 1 — P;(&s).
Using the typical IRT assumption of local independence (Embretson &
Reise, 2000, p. 48), the probability of an item-score vector is the product
of probabilities P;(&) and @Q;(&;). For example, for J = 4 the probability

of item-score vector (1,1,0,1) is

P[(1,1,0,1)[&] = P1(&) P2 (&) Q3(&s) Pa(&s)- (3.2)

Arbitrarily assume that for person s the four probabilities of a correct
answer are (0.8, 0.7, 0.8, 0.6). Then, according to Equation 3.2 the observed
item-score pattern (1,1,0,1) has probability 0.8 x 0.7 x 0.2 x 0.6 = 0.0672.
Also consider the other three item-score vectors which result in X = 3 [i.e.,
(1,1,1,0), (1,0,1,1), and (0,1,1,1)]. For person s with &, the probabilities
are 0.1792, 0.1152, and 0.0672, respectively. Thus, in general IRT models
imply that all item-score vectors have positive probability.

2. Rasch model. Let §; denote the difficulty parameter of item j. Under
the Rasch model items elicit performance according to response function
exp(§ — 9;)

S e (3.3)

P;(€)
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For J = 4, Figure 3.2a displays the response functions for realistic item
parameters §; = —1.4,—-0.4,0.4,1.4 [see Thissen and Wainer (1982) for a
reasonable range of location parameters|. For these ds, Table 3.1 shows the
probabilities of the 2/ = 16 item-score vectors for five realistic values of
€ (of which the distribution usually is normed to have a mean equal to 0
and a variance equal to 1; see, e.g., Hoijtink & Boomsma, 1995). Given a
fixed £ value, it can be verified that for each X score one item-score vector
has the greatest probability, and other vectors have smaller but non-zero
probabilities. This seems to support the “one X, value, one strategy”

assumption to some extent.

Table 3.1: Probabilities of Item-Score Vectors Using the Rasch Model, and
the Two-Parameter Logistic Model

Vector  Vector X4 £
No. -2 -1 0 1 2 -2 -1 0 il 2
Rasch Two-par. logistic
| 0000 0 48 19 .04 .00 .00 38 .13 .00 .00 .00
2 0001 1 26 28 .16 .04 .01 .08 .06 .00 .00 .00
3 0010 1 .10 11 .06 .01 .00 .05 .13 .01 .00 .00
4 0100 1 .04 05 .03 .01 .00 .00 .04 .03 .00 .00
5 1000 1 .02 02 .01 .00 .00 34 .13 .00 .00 .00
6 0011 2 05 16 .23 .16 .05 .01 .06 .01 .00 .00
7 0101 2 .02 07 .10 .07 .02 .00 .02 .03 .01 .00
8 1001 2 .01 03 .04 .03 .01 .07 .06 .00 .00 .00
9 0110 2 .01 03 .04 .03 .01 .00 .04 .20 .14 .08
10 1010 2 .00 01 .01 .01 .00 .05 .13 .01 .00 .00
Ui 1100 2 .00 00 .01 .00 .00 .00 .04 .03 .00 .00
12 0111 3 .01 04 .16 .28 .26 .00 .02 .21 .33 .40
13 1011 3 .00 01 .06 .11 .10 .01 .06 .01 .00 .00
14 1101 3 .00 01 .03 .05 .04 .00 .02 .03 .01 .00
15 1110 3 .00 00 .01 .02 .02 .00 .04 .20 .15 .09
16 1111 4 .00 00 .04 .19 .48 00 .02 21 35 44

boldface: item-score vector probability which is close to another item-score vector prob-

ability for item-score vectors with the same X .

3. Two-parameter logistic model. Next, consider the more flexible,
much used two-parameter logistic model (Embretson & Reise, 2000; p.

70). Compared to the Rasch model, this model adds a slope parameter,



72 Chapter 3. Detecting Discontinuity in Cross-Sectional Data

denoted o, which is comparable to the regression parameter in the logistic
regression model (e.g., Agresti, 1990, pp. 85-87). The response function is

defined as (o (€ = 6,)]
EXp|a;(§ — 04
PjE)= ’ (3.4)
! 1+ exp[a; (€ — 4;)]
Figure 3.2b displays four response functions based on ¢; = 0.0,0.7,1.0,0.05
(j = 1,...,4) and «a; = 0.05,4.0,2.0,0.8, respectively. This variation in

slope parameters reflects variation in strength of relationship of the items
with the latent variable, and is assumed to be due to variation in item prop-
erties. Different properties may be related to different strategies. Table 3.1
shows the probabilities corresponding to the 16 item-score vectors, using
the same £ values as used for the Rasch model calculations. For £ = —1
and X, = 1, the item-score vectors 3 and 5 have the highest probabili-
ties, which are close (rounded values of 0.13 and 0.13, respectively). For
& =0 and X, = 3, for the item-score vectors 12 and 15 a similar result
is obtained (0.21 and 0.20, respectively). Thus, the two-parameter logistic
model accommodates the situation that a particular strategy leads to two
or more “most-likely” item-score vectors for a particular X score.

4. Different &, same X . People with markedly different ¢ values who
produced the same X, score may have different item-score vectors, giving
evidence of different strategies; see Table 3.1, two-parameter logistic model,
Xy =2, &= —1 with vector (1,0,1,0) and & = 1 with vector (0,1,1,0), and
vector probabilities of 0.14 and 0.13, respectively. Based on the same X
value it would be concluded that both respondents used the same strategy.
Based on the item-score vectors and given estimates of the latent variable
values for both respondents, and assuming that use of different strategies is
related to proficiency level, it would be concluded that different strategies
had been used.

Several other examples could be constructed showing that using the
aggregate number-correct X ; score for identifying strategies leads to a loss
of information, and that the use of the finer-grained item-score vector is

better suited for this purpose.
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3.1.3 The Latent Class Model

The BMM is a restrictive Latent Class Model (LCM). In an LCM, unidi-
mensionality is not assumed and within a latent class the item parameters
are not restricted to be equal. The LCM is a mixture model (Lazerfield
& Henry, 1968; see also Hagenaars & McCutcheon, 2002; McCutcheon,
1987), which allows heterogeneity in both individual performance and task
difficulty (Formann, 2003). In fact, the binomial model and the BMM are
special cases of the LCM with some additional restrictions on the number
of classes and the parameters. Classes have prevalence or class probabilities
m (0 < m <1, 3¢, m = 1). Each class has class-specific parameters,
O1us -+ 074, related to tasks 1, ..., J, respectively. Let the vector X contain
the item-score variables [X = (X, ..., Xs)], then the LCM is defined as:

c J
fX) =Y n(u H (0;]u). (3.5)
u=l g=1

Unlike the BMM, which uses the number-correct score X, the LCM
uses the vector of scores on the J tasks in the test, X. This difference
has important consequences. First, the BMM assumes that the difficulty
level of the tasks is equal for individuals in the same component. When the
item-score vectors are used, the difficulty level may vary across tasks within
a latent class. Second, the same number-correct scores may be based on
correct responses to different subsets of tasks. Therefore, different item-
score vectors with the same number-correct score may have been produced
by different strategies. These strategies are not distinguished by the BMM.

So far the LCM was applied rarely to study discontinuity in cognitive
development (for exceptions, see Formann, 2001, 2003; and Jansen & Van
der Maas, 2002). The results of an LCM analysis are more difficult to
interpret than those of a BMM analysis, mainly because of the varying
success probabilities of the tasks. However, Formann (2001, 2003) studied
discontinuity in the development of performance on the water-level task,
and showed that accepting a well-fitting BMM may be misleading without
having additionally evaluated the fit of LCMs.

LCM analysis is not without problems. Van der Maas (1998) and
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Raijmakers et al. (2004) argued that an LCM analysis with more than
six classes is not feasible using the available techniques. Large sample sizes
are needed to prevent sparse frequency tables and p-values associated with
the asymptotic x? statistics which can not be trusted. To handle this
problem, Formann (2001) used bootstrap procedures to estimate a p-value.
A bootstrap procedure is also implemented in the Latent Gold program
(Vermunt & Magidson, 2003) which can estimate and fit a large number of
LCMs.

3.1.4 Hypotheses

In this study the purposes were to detect discontinuity in transitive rea-
soning; to determine the relationship of discontinuity and age; and to give
a substantive interpretation of the strategy groups. Further, the fit of the
BMM and the LCM to transitive reasoning data was evaluated. Before
hypotheses about discontinuity could be tested, it had to be determined
that the discontinuity in the data could not be attributed to discontinuity

by the instrument. The following hypotheses cover these purposes:

1 The development of transitive reasoning is discontinuous. This is

reflected by ordered strategy groups.

2 When tasks differ in difficulty, the LCM gives a substantively better
explanation of the discontinuity than the BMM, because the LCM
accounts for the relationship between task difficulty and strategy used.

3 Individual differences in performance on transitive reasoning tasks
produce discontinuity within age groups. Clearly defined age periods
cannot be distinguished. Piaget distinguished broad developmental
stages which were delimited by age periods. We hypothesized that
strategy groups give a clearer description of the discontinuity than
age groups because we expect large individual differences in task per-

formance.

4 Fuzzy trace theory offers an interpretation of the discontinuity. Fuzzy

trace theory offers a framework for interpreting the discontinuity in
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transitive reasoning by distinguishing verbatim and fuzzy trace abil-
ities. It was hypothesized that one particular strategy group uses
verbatim trace information to solve the tasks and another strategy

group uses fuzzy traces.

To determine discontinuity in cross-sectional transitive reasoning data
both the BMM and the LCM were fitted to the data. First, to rule out
as much as possible the use of different strategies leading to the same
number-correct score, the dimensionality of the data collected by means
of a transitive reasoning test was determined using a nonparametric ver-
sion of the Rasch model. This is the double monotonicity model [DMM;
Mokken, 1971, pp. 174-176; Sijtsma & Molenaar, 2002, chap. 6; also see
this reference for an introduction into nonparametric IRT]. Second, the
proportions correct of the items were calculated to determine whether the
instrument causes discontinuity, thus inducing method bias. Third, LCMs
were fitted to the data to determine whether there was discontinuity and
if so, how many classes had to be distinguished (Hypothesis 1). Data from
separate age groups were analyzed because important age differences might
be masked in a pooled data set (Hypothesis 3). Fourth, the BMM was fit-
ted to the data and compared with the LCM results to assess how much fit
was lost when restricting the item parameters to be equal between classes
(Hypothesis 2). Fifth, the latent classes were interpreted by means of ver-
bal explanation data in order to determine whether fuzzy trace theory was

suited for interpreting discontinuity (Hypothesis 4).

3.2 Method

3.2.1 Sample

The pooled sample consisted of 615 children stemming from Grade two
through Grade six of six elementary schools in the Netherlands. Children
were from middle class social-economic status families. Table 3.2 gives an
overview of the number of children of six age groups, and the mean and

the standard deviation of age.
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Table 3.2: Number of Children (n), Mean Age (M ) and Standard Deviation
(SD) per Age Group

Age Group® n M SD
<9 73 91.78 3.057
97—108 83 103.02 3.138
109—120 126 114.45 3.305
121—132 108 126.70 3.084
133—144 116 138.70 3.005
>145 59 149.46 3.464

¢ number of months

3.2.2 Material

Transitive reasoning ability was investigated by means of a computerized
test containing 16 transitive reasoning tasks (Bouwmeester & Aalbers,
2002). The tasks differed on three task characteristics. The task char-
acteristics had 4, 2, and 2 levels, defining 4 x 2 x 2 = 16 tasks. The task
characteristics are summarized in Table 3.3. See Figure 2.1, chapter 2 for

an overview of the tasks.

Table 3.3: Description of the Transitive Reasoning Task Characteristics

CHARACTERISTIC Level Description
ForMAT Ya>Yp> Yo Defines the logical relationships be-
Ya=Ys=Yo=¥p tween the objects involved, e.g., when
A >Ye> Yo >Yn > YE the relationship is length, Y4 > Yp >
Ya=Yp>Yo=Yp Yo means that object A is longer than
object B, which is longer than object
C.
PRESENTATION Simultaneous Determines whether all objects are
Form Successive presented simultaneously or in pairs
during premise presentation.
CONTENT OF  Physical Determines whether the relationships
RELATIONSHIP Verbal can be perceived visually, or are told

in words by the experimenter.
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3.2.3 Procedure

The transitive reasoning test was an individual test administered in a quiet
room in the school building. Before the child was confronted with the
actual test tasks, the experimenter explained the different kinds of objects
and relationships that were used in the tasks. The administration of the
test took approximately half an hour, depending on the age of the child.

For more details see chapter 2.

3.2.4 Scoring

For each task the answer was automatically recorded by the computer. A
verbal explanation of the answer given by the child was recorded by the ex-
perimenter. When the child explained the transitive relationship correctly
by mentioning the premises involved or the linear ordering of the objects,
the explanation was evaluated to be correct. All other explanations were
incorrect. The correct/incorrect explanations were used in the analyses
because previous research showed that the explanations were more valid
indicators of the underlying ability than the correct/incorrect judgements
(Bouwmeester & Sijtsma, 2004; see chapter 2 of this thesis).

3.2.5 Verbal explanation

The correct/incorrect strategy scores were a dichotomization of an origi-
nal explanation variable having 13 categories. This explanation variable
was used to interpret the latent classes. For this purpose we recoded the
variable into four categories: (1) children used all the premise information
in their explanation (literal premise information), or children give a cor-
rect explanation of the ordering (reduced premise information); (2) children
used premise information, but incompletely or incorrectly; (3) children used
visual information or irrelevant external information in their explanation;

and (4) children did not give an explanation (See Figure 2.2, chapter 2).
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3.3 Results

3.3.1 Double Monotonicity Model

Because one task was correctly answered by only seven children, it was
considered not to be suited for further analysis. The DMM fitted the
remaining 15 tasks.! Because response functions did not intersect, it was
likely that a fixed number-correct score was driven mainly by one strategy
(Bouwmeester & Sijtsma, 2004), see chapter 2. Therefore, multiple modes
or strategies found by the BMM or the LCM were expected to be ordered

along a unidimensional scale.

Table 3.4: Proportion Correct of the Transitive Reasoning Tasks

item # Format Presentation ~Content P,
6. Ya>Yp>¥Yco successive physical .05
15 Ya>Yg>Yc>Yp >Ygr successive physical .07
5 ¥a=Yp>¥o=Xp simultaneous verbal A5
14 Ya=Yp>Yo=Yp successive verbal .19
8 Ya>Ys>Ye>Yp>Yg successive verbal 21
11 ¥i=¥g>Yo=¥p simultaneous physical .31
4 Ya>Yp>Yc>Yp>Yr simultaneous physical .39
12 Ya>Y¥Ys>Yc successive verbal .40
3 Ya=Ys=Yo=Y¥p successive verbal 45
10 Ya>Yg>Yc>Yp > Yy simultaneous verbal H2
9 Yi=Yp=Yo=Xp successive physical .54
Ya>Yp>Ye simultaneous verbal .56

13 Ya>Y¥p>>Ye simultaneous physical .57
T Ya=¥p=Ye=Yp simultaneous physical .77
l6 Ys=¥Yp=¥Yc=¥p simultaneous verbal .86

The proportions correct (Table 3.4) differed widely. Thus, no distinct

'The H-value of the scale was 0.45, and the HT-value of the scale was 0.52 (see
Sijtsma & Molenaar, 2002).
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subgroups of items could be distinguished which might cause discontinu-
ity. It was concluded that the instrument may be ruled out as a cause
of discontinuity. When discontinuity is found, we will attribute it to a

developmental process.

3.3.2 Latent Class Model Analysis

The program Latent Gold 3.0 (Vermunt & Magidson, 2003) was used
to estimate the parameters and compute the evaluation statistics of the
BMM and the LCM. Two evaluation statistics were computed. First, the
likelihood-ratio chi-squared statistic L? gives an indication of the fit of the
model to the data. The bootstrap p-value, denoted pp,ot, was used to de-
termine whether the results were significant (using oo = .05). Second, the
Bayesian Information Criterion [defined as —2LL + #parameters x In(N )],
denoted BIC, served as a selection criterion within the family of models fit-
ted to the same data set. The BIC weights the fit (LL) and the parsimony
[#parameters x In(N)] of a model: The lower the BIC, the better the
model in terms of parsimony.

Because the DMM fitted the data, latent class one-factor models were
fitted in which the latent classes were ordered on one dimension. In latent
class cluster models, the latent classes have a nominal measurement level,
in latent class factor models the latent classes have an interval measurement
level. We first fitted latent class factor models having one, two, and three
latent classes for each age group. The results of the model fit are shown in
Table 3.5. Because two tasks had zero score-variance in the first age group,
only 13 tasks were fitted in this group. The most important result in all age
groups was the difference in fit of the models having one and two classes.
The decrease in L? and BIC was large indicating discontinuity in transitive
reasoning. Therefore, Hypothesis 1 was accepted. The bootstrap p-values
showed that the two-class models could not be rejected in any of the age-
groups. A remarkable result was the p-value indicating that the one-class
model could not be rejected in age group 133-144, and in age group > 144.
The decrease of the L? and BIC suggested that the two-class model fitted
much better. The difference in fit between the two-class and three-class
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models was unequal between the different age groups. In particular in the
first and last age-groups (< 96 months, > 145 months) the gain in fit of the
three-class model was small. For the other age-groups the decrease in L?
and BIC from the two-class model to the three-class model was somewhat
larger.

Table 3.5 also shows the fit of the BMM. The BMM was estimated as
an LCM with restrictions: restrict the task parameters to be equal within
a latent class (0j=14 = 0j=24 = ... = 0j=74), and the same model can
be estimated as when using the number-correct score. The advantage was
that the BMM and the LCM could be compared directly.

On the basis of the fit of several BMMs it was difficult to decide whether
there was discontinuity in the transitive reasoning data. The one-class
model was rejected in all age-groups and the two-class models and the
three-class models were also rejected in age-groups 109 — 120 and 121 —132.
However, the p-values of the models in the other age-groups were rather
small (< .09). More important, the L? and BIC values of the BMMs
were much higher than those of the LCMs in all age groups and for all
models, indicating that restricting the item parameters deteriorates the fit
and masks possible discontinuity in the data structure.

These results showed that ignoring variation in task difficulties within
a latent class was inappropriate in the context of transitive reasoning. The
estimated success probabilities of the LCM’s confirmed this result (see Fig-
ure 3.3). Therefore, Hypothesis 2 was accepted.

For the latent class factor model and for each age group, Figure 3.3
shows the success probabilities of the 15 tasks (13 tasks for age group < 96)
given class membership. To facilitate the readability of the plots, the order
of the tasks is in accordance with their difficulty level (see Table 3.4). The
plots show that allowing the tasks to differ in difficulty level resulted in
highly varying success probabilities. The marginal success probabilities
of being in a particular latent class (printed below panels in Figure 3.3)
increased over age groups for the high ability class and decreased over age
groups for the low ability class. With respect to the first age group (< 96
months), the success probabilities of the two-class model were plotted.
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Table 3.5: LCM and BMM Fit Statistics, Per Class and Per Age Group

LCM BMM
Age group  # classes L?  ppoor BIC-value*  #par # classes L?  ppoot BIC-value*  #par
1 388.22 .00 947.70 13 1 644.39 .00 1152.05 1
< 96 2 239.94 20 859.86 27 2 575.27 .06 1091.57 3
3 233.31 .15 857.54 28 3 571.65 .08 1096.58 5
1 559.68 .00 1338.12 15 1 903.07 .00 1618.52 1
97108 2 375.89 .26 1226.33 31 2 822.65 .05 1547.10 3
3 362.70 21 1217.64 32 3 820.72 .06 1554.17 5
1 97897 .00 2211.40 15 1 1419.48 .00 2583.65 1
109—120 2 708.24 07 2018.67 31 2 1260.10 .01 2434.03 3
3 668.46 .09 1983.77 32 3 1236.89 .03 2420.56 5
1 894.59 .02 2093.69 15 1 1428.86 .00 2560.47 1
121—132 2 663.10 .16 1939.33 31 2 1315.24 .00 2456.50 3
3 636.67 13 1917.71 32 3 1305.87 .01 2456.70 5
1 909.28 .19 2199.97 15 1 1463.98 .00 2686.63 1
133—144 2 692.07 .35 2060.51 31 2 1349.60 07 25681.97 3
3 666.99 31 2040.29 32 3 134231 .08 2584.39 5
1 422.15 .26 1021.39 15 1 835.97 .00 1376.56 1
> 145 2 296.74 32 963.01 31 2 799.51 .07 1348.48 3
3 293.02 .25 963.48 32 3 798.37 .08 1355.71 5

*: BIC-value = —2LL + #parameters x In(N)
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This age group did not have a high ability curve as the other age groups.
For the last age group (> 145 months), also the two-class model probabil-
ities were plotted. This age group did not have a low ability curve as
found in the other age groups. Figure 3.3 shows that different performance
groups could be distinguished within age groups, meaning that clearly dis-
cernable age periods were inappropriate. This result led to the acceptation

of Hypothesis 3.

3.3.3 Interpretation of Discontinuity

Table 3.6 shows the percentages of the explanation categories for the two or
three latent factor classes of each age group. Note that in rows percentages
sum to 100. The most important result is that the interpretation of the
latent classes is the same for all age groups. The two classes of the first
age group (< 96 months) can be interpreted as the low- and intermediate
ability latent classes. The two classes of the last group (> 145 months) can
be interpreted as the intermediate and high ability latent classes. Figure
3.3 shows that the marginal probabilities of being in a latent class differ
between age groups (printed below panels in Figure 3.3).

The percentages showed that in the third latent class most children
used correct premise information. That is, they used the literal premise
information to infer the transitive relationship or they used the ordering
of the premises. For some tasks, children used the premise information,
but incorrectly or incompletely. The percentages of the categories exter-
nal/visual information and no explanation were very small meaning that,
in terms of fuzzy trace theory, children mostly used fuzzy trace information
to solve the tasks and rarely verbatim trace information.

Children in the second latent class used the premise information, but
more often incorrectly than correctly. Moreover, the percentage of no ex-
planation is higher in the second class than in the third class. In terms
of fuzzy trace theory, children in the second latent class often used fuzzy
trace information but not always the correct trace.

The first class is characterized by a relatively high percentage of external

and visual information and no explanation. Children in the first latent class
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Table 3.6: Average Percentage of the Explanation Type that is Used, Per
Class and Per Age Group

Age group  class correct incorrect external no
premise use  premise use or visual explanation

1 9 27 22 41
< 96 2 41 35 5 18
1 12 37 28 24
97—108 2 35 42 5 17
3 58 35 2 4
1 9 52 21 18
109—120 2 36 43 8 12
3 68 22 2 0
1 16 50 13 21
121—132 2 41 41 6 12
3 68 23 2 4
1 18 49 13 21
133—144 2 45 42 3 10
3 il 23 1 4
> 145 2 32 55 5 8
3 65 29 1 5

sometimes also used the premise information, but incorrectly in most cases.
In terms of fuzzy trace theory, children in the first latent class mostly used
verbatim trace information but this information does not lead to a correct

inference of the transitive relationship.

3.4 Discussion

This study showed that there is discontinuity in the development of transi-
tive reasoning which is reflected by strategy groups. The results of model
fitting indicate that development can be described by three ordered classes
of low-ability, intermediate-ability and high-ability levels, in which chil-
dren differ in the kind of information they use to solve the tasks. The
classes could be interpreted well by the explanation children gave after
they had answered the task. In terms of fuzzy trace theory the classes could
be called verbatim-trace class, verbatim/fuzzy-trace class, and fuzzy-trace

class. Bouwmeester et al. (2004) used a latent class regression model to
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investigate the relationships between the explanations children used when
answering the tasks, the influence of the task characteristics on perfor-
mance, and age. They showed that task characteristics (determining item
difficulty) had an important influence on strategy use (see chapter 4). A
longitudinal study would be better suited to investigate the transition from
one mode to another.

This study also showed that the BMM did not result in a useful de-
scription of the discontinuity in terms of strategy groups. Although the
results of the BMM for age groups led to the conclusion that there was
discontinuity, it was difficult to decide how many strategy groups had to
be distinguished. Because the transitive reasoning tasks clearly varied in
difficulty level, the BMM was too restrictive. Moreover, Bouwmeester et
al. (2004, see also chapter 4) showed that, due to task characteristics, the
difficulty of tasks influenced the strategy that was used, indicating an inter-
action between strategy and task characteristics. Thus, ignoring the task
difficulty level is not appropriate when studying discontinuity of a cognitive
ability that is measured by means of tasks which vary in difficulty.

Fixed age periods that matched useful developmental stages in transi-
tive reasoning could not be identified. Discontinuity is observable in par-
ticular in the different strategies that are used. Children of a particular
age have a most likely strategy and smaller probabilities of using other
strategies. Discontinuity, in this sense, can be interpreted as a probabilis-
tic concept. This result agrees with Wohlwill (1973, pp. 25-27, and chap.
9) who recommends to use other variables than chronological age when
describing change in behavior and approaches behavioral change from a
differential approach in which fixed age-groups have no meaning.

Our suggestion for future researchers who investigate discontinuity in
the development of a particular cognitive ability is to first fit an unrestricted
LCM to the data. Next, when an LCM fits and also the DMM model (or the
Rasch model) fits, the BMM may be attempted for reasons of parsimony
when equal difficulty levels within a class are hypothesized to be realistic.
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Chapter 4

Latent Class Regression
Analysis for Describing
Cognitive Developmental
Phenomena: an Application

to Transitive Reasoning

Abstract*

The aim of cognitive developmental research is to explain latent cog-
nitive processes or structures by means of manifest variables such as age,
cognitive behavior, and environmental influences. In this paper the useful-
ness of the latent class regression model is discussed for studying cognitive
developmental phenomena. Using this model, the relationships between
latent and manifest variables can be explained by means of empirical data
without the need of strong a priori assumptions made by a cognitive devel-
opmental theory. In the latent class regression model a number of classes
are distinguished which may be characterized by particular cognitive be-
havior. Environmental influences on cognitive behavior may vary for dif-

ferent (developmental) classes. An application is given of the latent class

87



88 Chapter 4. A Tool for Studying Cognitive Developmental Phenomena

regression model to transitive reasoning data. The results showed that a
five-class model best fitted the data and that the latent classes differ with
respect to age, strategy use (cognitive behavior) and the influence of task
characteristics on the strategy use (environmental influences). The flexi-
bility of the model in terms of mixed measurement levels and treatment of
different cognitive variables offers a broad application to several cognitive
developmental phenomena.

*This chapter has been published as: Bouwmeester, S., Sijtsma, K., & Vermunt,
J.K., (2004) Latent class regression analysis to describe cognitive developmental
phenomena: An application to transitive reasoning. European Journal of Devel-

opmental Psychology, 1, 67-86.

4.1 Introduction

The general aim of cognitive developmental research is the uncovering of
relationships between cognitive processes, environmental influences and age
(see e.g., Flavell, 1985; Siegler, 1991). Because cognitive processes can not
be observed directly but only inferred from observable variables, observable
cognitive behavior is assumed to indicate the latent cognitive processes. In
Figure 4.1, a general model is displayed of the relationships between ob-
served and latent variables in the domain of cognitive development. The
definition and operationalization of the different aspects and relationships
in Figure 4.1 varies for different cognitive developmental theories and the
epistemological assumptions about the acquisition of knowledge. More-
over, cognitive developmental theories have different perspectives on the
importance of the aspects (Figure 4.1) and how they should be measured.

For example, in the theory of Piaget (see e.g. Flavell, 1963; Chap-
man, 1988; Bidell & Fischer, 1992), cognitive abilities are assumed to de-
velop in stages which are characterized by a particular kind of knowledge
structures. One of the most important purposes of Piaget was to give a
broad description of the developing structures. Therefore his theory was
domain-general without paying much attention to the influence of external
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Latent variables

Manifest variables Manifest variable

Age

Influences

Cognitive
Processes

Environmental
Influences

Cognitive
Behaviour
Manifest variables

Figure 4.1: A General Model for the Relationship Between Manifest and

Latent Variables in the Domain of Cognitive Development

conditions (Case, 1992). In information processing theory (see e.g. Kail
& Bisanz, 1992), however, development is defined as cumulative learning
without qualitative change. External experiences make it possible to ac-
quire knowledge, that is, to learn and develop cognitively.

Dependent on the theoretical perspective, assumptions are made about
the unobservable (latent) processes and how these processes should be mea-
sured using observable variables. Given the assumptions, relationships be-
tween observable variables such as age, task conditions and cognitive behav-
ior, and unobservable variables, such as cognitive processes, are modeled.
By studying the observable variables empirically or by means of computer
simulation, one wants to reveal the latent cognitive processes and the rela-
tionships between these cognitive processes, environmental influences and
age.

However, it is difficult to test a model empirically in which both the
observed and the unobserved variables are represented, that is, to estimate
and test relationships between observable and unobservable variables with-
out the need of strong cognitive theoretical assumptions. Nevertheless,
statistical models in which latent variables can be defined using manifest
variables do exist and can be used to study relationships between age, envi-
ronmental influences and cognitive processes (Embretson, 1985, 1991: Fis-
cher, 1995; Kelderman & Rijkes, 1994; Mislevy & Verhelst, 1990; Sijtsma
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& Verweij, 1999).

In modern test theory, for example, the observed responses to a num-
ber of tasks (e.g., arithmetic problems), which measure a particular ability
(e.g. arithmetic ability) are used to determine the number of latent abilities
needed for explaining the observable data structure, and the strength of
the relationships between the item scores and these latent abilities. Thus,
modern test models, also known as item item response theory (IRT) models
(see, e.g., Hambleton & Swaminathan, 1985; Sijtsma & Molenaar, 2002),
make it possible to reveal and statistically test a latent structure for ex-
plaining the data without the need to posit an a priori theoretical structure
stipulated by cognitive theory.

In IRT models the latent variable is continuous, whereas latent class
models (e.g., Hagenaars & McCutcheon, 2002) assume latent abilities to
be discrete consisting of two or more nominal or ordered classes. In par-
ticular when studying cognitive development these latent class models are
useful to distinguish groups of children on a developmental scale which are
characterized by a pattern of specific cognitive behavior. The cognitive
behavior in a specific latent class may differ, in a particular aspect, from
the cognitive behavior in other latent classes. Latent class models allow
the estimation of the classes of the latent variable from the data instead
of assuming them on the basis of a cognitive theory. However, latent class
models can also be used in a confirmatory way by testing the latent class
structure assumed by a cognitive theory (chapter 5).

In the domain of cognitive developmental theory, age is hypothesized to
have influence on the formation of the latent classes. One may expect that a
particular latent class, which is characterized by specific cognitive behavior,
may fit better for children of a particular age range than for children outside
this range. Latent class analysis makes it possible to empirically determine
the influence of age (as a covariate) on the formation of the latent classes.

A division into classes does not necessarily imply a cognitive stage the-
ory. In contrast, the cognitive behavior typical of a latent class may be
an expression of the same underlying ability continuum. The classes may

be ordered and it depends on the level of description of the observed vari-
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ables whether the interpretation of the latent classes differs quantitatively
or qualitatively. For example, Bouwmeester and Sijtsma (2004) found that
the response patterns of children on a set of transitive reasoning tasks could
be explained by one ability, but that a broad variety of explanations were
used to motivate the responses. Possibly, on a more detailed level, the
transitive reasoning ability can be divided into a number of classes which
are characterized by a specific pattern of cognitive behavior.

The power of the latent class model is that specific behavior patterns
can be distinguished and the influence of age determined without a priori
cognitive theoretical assumptions. However, it is possible to test a cog-
nitive stage theory using latent class models. Jansen and Van der Maas
(1997) used a latent class model to empirically study the different stages
of reasoning on the balance scale task (Inhelder & Piaget, 1958; Siegler,
1976) and found that the theoretical stages were, together with some others
classes, represented by the latent classes.

An additional possibility of latent class models is to describe the classes
in more detail by assessing the influence of certain external conditions on
cognitive behavior in a particular class and compare classes with respect
to the influence of external conditions on cognitive behavior in a set of
classes. For this purpose, we used a latent class regression model (Wedel
& DeSarbo, 1994; Vermunt & Magidson, 2000) in which a multiple regres-
sion function is estimated for a number of classes. The formation of the
latent classes is influenced by the covariate age. For every latent class,
the influence of external conditions on the cognitive behavior can be de-
termined. This latent class regression model is a very general and flexible
model which can be applied to a broad range of cognitive developmental
phenomena. Examples are the development of reasoning on the balance
scale task (see e.g., Jansen & Van der Maas, 1997), transitive reasoning
(see e.g., Verweij, 1994), inductive reasoning (see e.g., De Koning, 2000),
and analogical reasoning (see e.g., Hosenfield, 2003).

Both the covariate, the dependent and the predictor variables can have
different measurement levels. For example, instead of age in months, grade

level can be used as a covariate or other child characteristics like gender,
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cultural background or social economic status. Cognitive behavior may be
operationalized as correct/incorrect responses, strategy information, verbal
explanations, or reaction times. Predictors may be all kinds of external
conditions. For example, tasks may vary in specific task characteristics, or
the experiment may take place on different locations or at different times.
In the next section an application of the latent class regression model is

given in the context of transitive reasoning development.

4.2 An Application

In a transitive relationship, the unknown relationship R between two ele-
ments A and C can be inferred from their known relationships with a third
element B; that is (Rap, Rgc) = Rac. In this example, the relation-
ships Rap and Rpc are premises. In the research on transitive reasoning
a number of different task characteristics are used to study the ability
of transitive reasoning. Different kinds of transitive and non-transitive
strategies appeared to be used to draw transitive inferences in tasks having
different task characteristics (Perner & Mansbridge, 1983; Verweij, 1994;
Bouwmeester & Sijtsma, 2004). In the last decades a discussion has been
taken place about which kinds of cognitive behavior are really expressions
of transitive reasoning; which kinds of tasks should be used to measure
transitive reasoning; and what really develops when studying transitive
reasoning (see, e.g., Smedslund, 1969; Trabasso, 1977; Brainerd & Reyna,
1992; Chapman & Lindenberger, 1992). Therefore, it is important to reveal
the relationships between age, cognitive behavior, and external conditions,
when studying the development of this cognitive developmental phenom-

enon.

4.3 Method

4.3.1 Instruments

Bouwmeester and Sijtsma (2004) investigated transitive reasoning by con-

structing a computer test containing 16 transitive reasoning tasks. The
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tasks differed on three important external conditions, called task character-
istics. The task characteristics had 4, 2, and 2 levels defining 4 x2x 2 = 16
tasks. A description of the task characteristics is given in Table 4.1. (See
also Figure 2.1, chapter 2.)

Table 4.1: Description of the Transitive Reasoning Task Characteristics

CHARACTERISTIC Level Description
FORMAT Ya>Ye>Ye Defines the logical relationships be-
Ya=Yp=Ye=Yp tween the objects involved, e.g., when
Yi>Ye>Yo>Yp >YE the relationship is length, Y4 > Yg >
Yo=Y >¥Y =Yp Yc means that object A is longer than
object B, which is longer than object
C.
PRESENTATION Simultaneous Determines whether all objects are
ForMm Successive presented simultaneously or in pairs
during premise presentation.
CONTENT OF  Physical Determines whether the relationships
RELATIONSHIP Verbal can be perceived visually, or are told

in words by the experimenter.

4.3.2 Strategies

For each task both the correct/incorrect responses and the verbal expla-
nations were recorded. The verbal explanations associated with the cor-
rect/incorrect responses showed that children used a broad variety of expla-
nations but that this differentiation could not be discovered by considering
only the correct/incorrect responses. Moreover, Bouwmeester and Sijtsma
(2004) showed that correct/incorrect responses to the tasks of the transi-
tive reasoning test did not form one reliable ability scale. Thus, we used
the verbal explanations data in this study. These verbal explanations were

categorized into seven strategies, which are displayed in Table 4.2.

4.3.3 Sample

The sample consisted of 615 children stemming from Grade two through
Grade six. Children came from six elementary schools in the Netherlands.

They were from middle class social-economic status (SES) families. Table
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Table 4.2:
Description of the Seven Strategies Used to Solve the Transitive Reasoning
Tasks.
Name Description Example
LITERAL All necessary premise informa- Object A is longer than object C' be-
tion is used to explain the tran-  cause object A is longer than object B
sitive relationship. and object B is longer than object C'.
REDUCED The premise information is Animals get older to the right, so the
used in a reduced form. horse is older than the cow because it
is positioned before the cow.
INCORRECT Premise information is in- The lion is older than the camel be-
correctly used, or incorrect cause the hippo and the lion have the
premise information is used. same age.
INCOMPLETE Premise information is used the blue stick is longer than the red

FALSE MEMORY

EXTERNAL &
VISUAL

NO EXPLANA-
TION

correctly but incompletely.

stick because the blue stick is longer
than the green stick.

The test pair is confused with

a premise pair.

I've just seen that the blue stick is
longer than the red stick, so that will
still be the case.

Visual or external information
is used to explain the transitive
relationship, no premise infor-

mation is used.

The parrot is older than the duck be-
cause parrots can become very old;
When I look very well, I can see that
the blue stick is longer than the red
stick.

No explanation is given.

I guessed, I just don’t know.

4.3 gives an overview of the number of children per grade, and the mean

age and the standard deviation of age within each grade.

4.3.4 Data

A representation of the input data file for the latent class regression analysis
is shown in Table 4.4. Each of the 615 children performed 16 tasks (in the
table indicated as replications). Each task was defined by a combination of
three task characteristics. For example, Task 1 had format Y4 > Yp > Y,
simultaneous presentation form, and verbal type of content. Each child
used one of the seven strategies, and the same child could use different
strategies for different tasks.
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Table 4.3: Number of Children, Mean Age (M) and Standard Deviation
(SD) per Grade

Grade n Age
M* SD
2 108 9548 7.81
3 119 108.48 5.53
4 122 119.13 5.37
5 143 132.81 5.17

6 123 14495 5.34

“ number of months

Table 4.4: Input Data File for the Latent Class Regression Analysis; 16

Lines per Case, Fach Line Representing a Transitive Reasoning Task

Replication. Case Id Grade Format* Presentation* Content*  Strategy

1 1 2 1 1 1 3
2 1 2 2 1 1 2
3 1 2 3 i 1 6
1 2
1 2 3
15 1 2 3 2 2 5
16 1. 2 4 2 2 3
1 2 3 1 1 1 5
2 2 3 2 1 l 1
16 2 3 4 2 2 6
1 615 6 1 1 1 4
615
3 615 5 ; . s ’
16 615 6 4 2 2 3

* Format, Presentation, and Content were the three task characteristics;
for a detailed description see Bouwmeester and Sijtsma (2004), chapter 2
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4.4 Analysis

4.4.1 Parts of the Model

It was expected that the strategy responses of the children on the 16 tran-
sitive reasoning tasks could be divided into a number of classes that were
ordered along a developmental scale and differed with respect to specific
strategy use for different kinds of transitive reasoning tasks. The formation
of the latent classes was expected to be influenced by age.

The first part of the latent class regression model is defined by the
probability (7) of being in a particular latent class (realization x of latent
c

variable X)), given grade level (realization z¢, of covariate Z¢ (where

stands for covariate), that is,

m(x|2°). (4.1)
These marginal probabilities of being in a specific class given a value on
the covariate, add to 1 over the latent classes x:

Zw(x|zc) =1 (4.2)

x

In the second part of the model, the probabilities are estimated of us-
ing a particular cognitive behavior given the latent class and the value(s)
on one or more external conditions. In this application the dependent
variable “cognitive behavior” is the discrete variable “strategy” (Y, with
realizations y) that has seven categories. The predictor variables “external
conditions” are three “task characteristics” ,Z7, Z, Z%, with realizations
2V, 28 2% (where ? stands for predictor) having also a discrete measurement
level:

%, 2500 20 (4.3)

fly

For each task (which consists of a combination of the three task charac-

teristics) a multinomial probability function is estimated for the use of a
strategy in a latent class, and this is done for each combination of a strat-
egy and a latent class. In a fixed latent class, these probabilities add to 1

over strategies (y), that is,

3 fyle, o 2B =1 (4.4
y
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Because there are 16 tasks, there are 16 of these probability functions for
each latent class.

Then, Equations 4.1 and 4.3 combine into the latent class regression
model. The model is defined by the product of a summation over latent
classes of the marginal probability of being in a latent class, given the grade
level and the product of multinomial probabilities for each task (denoted

t, 16 combinations of task characteristics):

f(y|zc* zzljv Zgazls)) = Z 77-(1“|ZC) H f(ytlxv Z{)t* th’ th)' (45)

& t
Because there are 16 observations per case, the dependent variable Y is a
vector containing the 16 strategy responses and the predictor variables Z

are also vectors containing the levels of the task characteristics.

4.4.2 Parameters

To calculate the multinomial probabilities of being in a latent class given
grade level (m(z|2¢) in Equation 4.5), two kinds of parameters have to be
estimated, denoted by 7 and ~!.,. Parameters 70 are the intercepts for
the latent class variable and parameters .., are the covariate effects on
the latent class variable. The first part of Equation 4.5 is modeled by a

multinomial probability, which is defined as a logistic regression function:

€37P(771|zc)
m(z]|2f) = =—————. (4.6)
)= T ean(n)
The linear term 7,|.c equals
flglge = 5+ Faog: (4.7)

To estimate the multinomial probability function of using a particular
strategy given the latent class and a combination of task characteristics
(ie., f(y|z, 20y, 25, 25,), in Equation 4.5), again two kinds of parameters
have to be estimated, denoted by B}Ey and ﬂizﬁ' Parameters ﬁ;y are the
class-specific intercepts. For all strategies in every latent class there is
a /3_}y parameter. Parameters szﬁ are the class-specific regression coeffi-

cients. For all levels of the task characteristics there is a parameter for
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Table 4.5: Number of Parameters to be Estimated

Classes wg 7ic1 J;y Sf‘lpl Total
1 1-1=0 1-1=0 7T-1)x1=6 T-1)x[(4-1)+(2—-1)+(2—-1)] x 1 =30 36
2 2-1=1 2-1=1 (T — 1) % 2 =12 (7T-1)x[4-1)+(2—-1)+(2—1)] x2=60 74
3 3-1=2 31=2 (7-1)x3=18 (7T-1)x[@d-1D+((2-1)4(2-1)]x3=90 112
4 41=3 41=3 (T-1)x4=24 (T-1)x[A-1)+(2-1)4(2-1)] x4=120 150
5 5-1=4 5-1=4 (7 =3) % 5 = 30 (7T-1)x[(4-1)+(2—-1)+(2—-1)] x 5= 150 188
6 6-1=5 6-1=5 (7T—1) x 6 =36 (7T-1)x[(4-1)+(2—-1)+(2—-1)] x 6 =180 226
7 7-1=6  7-1=6 (7T-1)%x7=42 (T-1)x[(4-1)+(2—-1)+(2—1)]x7=210 264

all strategies in every latent class. The multinomial probability function is

again a logistic regression function:

emp(nylx,zft‘zgt,zgt)

ol 2ty 25) = . (4.8)
2y €D Mylz,2%, 25,,5%, )
The linear term Mylz,2P, 28, 27, equals
_al 2 2 2
77y|1,zft,z§t.z§t = Mzy o ﬁzftly + 525’,11/ = ﬂzgtzy- (49)

The number of parameters to be estimated increases rapidly with an in-
creasing number of latent classes. Table 4.5 shows the number of parame-

ters to be estimated for models with one through seven latent classes.

4.4.3 Fit of the model

The program Latent Gold (Vermunt & Magidson, 2003) was used to esti-
mate the parameters and calculate the fit of the model. The program gives
evaluation statistics, estimates of the parameters and the accompanying
standard errors and z-values.

In the program Latent Gold a number of evaluation statistics are pro-
vided to choose a plausible model. First, the log-likelihood statistics are
calculated which express the fit for models with a user-specified number of
latent classes. The amount of reduction of the log-likelihood statistic for
models with an increasing number of classes can be considered to choose
the best fitting model. Because of sparse frequency tables, the asymp-
totic p-values associated with the x? statistics often can not be trusted.
Therefore, a p-value can be estimated by means of bootstrapping (Efron
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& Tibshirani, 1993) which is implemented in the program. The bootstrap
L? procedure involves generating a certain number of replication samples
from the maximum likelihood solution and re-estimating the model with
each replication sample. L? is a test statistic or fit measure. The boot-
strap p-value is the proportion of replication samples with higher L? than
in the original sample. For example, when 40% of the replication samples
has a L? value higher than the L? value of the original sample, the boot-
strap p-value is 0.40. However, a conditional bootstrap procedure, in which
the fit of models with different classes can be compared has not yet been
implemented in the Latent Gold program.

Secondly, the BIC values are calculated. The lower the BIC value the
more parsimonious the model (McLachlan & Peel, 2000). Thirdly, the
proportions of classification errors are provided. This proportion indicates
how well the model can predict latent class membership given the value on
the covariate and the dependent variable (Andrews & Currim, 2003). This
proportion is not a fit measure, but it is an important measure to evaluate
the distinctiveness of different classes.

Fourth, the class sizes and interpretation of the classes were used to
choose a model. Although the evaluation statistics calculated by the pro-
gram provided useful guidelines to choose the best-fitting model, the final

decision was based on the interpretableness of the classes and the class-size.

4.5 Results

Analysis of variance with number-correct score on all 16 tasks as dependent
variable and school and grade as independent variables showed no signif-
icant effects for the same grades of different schools. Therefore, it was
concluded tentatively that school had no influence on a child’s transitive

reasoning ability.

4.5.1 Model Fit and Number of Classes

Seven models were fitted with an increasing number of classes ranging from

one to seven. Table 4.6 shows the evaluation statistics which were used to



100 Chapter 4. A Tool for Studying Cognitive Developmental Phenomena

choose a final model.

Although a number of fit-statistics which evaluate different aspects of
the model can be used to choose a plausible model, the choice of a final
model also depends on substantive considerations, previous research re-
sults, considerations of parsimony, and so on. This can be compared with
factor analysis, where the choice of the final factor solution also depends
on considerations other than statistical ones. It remains difficult, maybe
practically impossible to determine the exact number of latent classes.

The log-likelihood statistics showed a reduction of at least 37% in mag-
nitude from the log-likelihood statistics from the one-class model to the
five-class model. The reduction of the log-likelihood statistic from the five-
class model to the six-class model was only 12%. On the basis of the
log-likelihood statistics the five-class model would be chosen.

The six-class model was the most parsimonious model in terms of BIC
values. The proportion of classification errors first increases from the one-
class model through the four-class model. This can be explained by the fact
that correct classifying is more difficult with a higher number of classes.
The result that the proportion of classification errors decreases with the
five-class model and then increases again indicates that the five-class model
may be preferred above the six-class model.

On the basis of the evaluation statistics provided by the program, the
five- and six-class models are most plausible. For this application, the
bootstrap procedure was not informative to choose the best fitting model.
On the basis of the class sizes and the interpretation of the classes, the five-
class model was chosen as the final model. The six-class model had three
relative small classes (marginal probability < 0.10). Moreover, the smallest
class did hardly differ from another class with respect to the interpretation.

4.5.2 The v Parameters: Class Size and Influence of Grade

Table 4.7 shows the v parameters. The 4" parameters are intercept para-
meters which were used to calculate class size. The 7!.. parameters were
all significant (z > 1.96). This means that the covariate grade had a sig-

nificant influence in all classes. When these v parameters are inserted in
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Table 4.6: Model Fit Statistics for Siz Latent Class Models

Number of I# BIC  Number of Proportion of
Classes Value Value* Parameters Classification Errors
1 25338.59  31320.69 36 .00
2 22867.01 29093.12 74 .03
3 21824.83 28294.97 112 .05
4 21176.73 27890.43 150 .05
5 20777.86 27736.04 188 .05
6 20430.21 27632.41 226 .06
i 20204.84 27651.06 264 .06

: BIC-value = -2log-likelihood + # parameters * In(N)

Equations 4.7 and 4.6, respectively, the marginal probabilities (class size,

see Table 4.7) and the probability distribution of grade given the latent

class can be calculated. Figure 4.2 shows the probabilities of grade for

each class. In particular in class two Grade six had high probability. Also

in classes one and three, higher grades had higher probability than lower

grades. For the classes four and five, lower Grades two and three had higher

probability than higher Grades four, five and six.

Table 4.7: v-Parameter Estimates and Class Size for the Five-Class Model

Class 7 4l Class Size
1 -.251 220 .381
2 -4.386  .796 .266
3 -1.866  .325 146
4 3.957 -.812 .106
) 2.545 -.530 .101
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Figure 4.2: Probability Distribution of Grade Given Latent Class
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4.5.3 The § Parameters: Strategy Use and Influence of Task
Characteristics

Table 4.8 shows the class-specific intercepts, the ﬁ;y-parameters. A non-
significant 6;!/ parameter estimate does not significantly deviate from zero,
which means that there is no effect for this strategy in the particular class.
The ;y-parameters can be used to calculate the probability distribution
of using a strategy given the latent class w(y|z) (7(ylz) = %).
Figure 4.3 shows the probabilities of using a particular strateg)l; for erch

class.

Table 4.8: The ﬁ;y -Parameter Estimates for the Five-Class Model

Strategy Class 1 Class 2 Class 3 Class4 Class 5
LITERAL .705 2.260 788 -1.137 -.910
REDUCED -1.421 -.026 -.871  -2.320 -2.351
INCORRECT 1.098 1.900 1.707 433 .038
INCOMPLETE -.704 .392 2.559 =770 -.651
FALSE MEMORY =273 -2.367 .409 440 .887
EXTERNAL & VISUAL -.236 -.926 410 .726 2.040
NO EXPLANATION 831 -1.232  -5.001 2.629 .946

Italics: effect is not significant(p > .05)

Children in class one in particular use INCORRECT premise information,
LITERAL premise information and NO EXPLANATION. Children in class two
are characterized by the use of LITERAL premise information and INCOR-
RECT premise information. Children in class three are characterized by the
use of INCOMPLETE premise information and INCORRECT premise informa-
tion. Children in class four in particular do NOT give an EXPLANATION or
use EXTERNAL & VISUAL information. Children in class five are character-
ized by the use of EXTERNAL & VISUAL information, FALSE MEMORY and
NO EXPLANATION.

There are 280 class-specific regression coefficient parameters (/Q)‘izlpt )

that is, one for each strategy (7) in each class (5), for every level of the task
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Figure 4.3: Probability Distribution of Strategy by Latent Class

characteristics (4+24-2). It is beyond the scope of this chapter to interpret
these parameters in detail, but we will give a global interpretation of the
influence of the task characteristics on the strategy use in the latent classes
by describing the size of the effect of the parameters. Table 4.9 gives the
interpretation of the strength of the influences. TASK FORMAT has some
influence on strategy use in the Classes one and two but hardly in the
classes three, four and five. PRESENTATION FORM has a strong effect on
strategy use in all classes except class three. CONTENT of the relationship
has a strong effect on strategy use in the classes one and two, some effect

in the classes three and four and hardly any effect in class five.

4.6 Discussion

When studying cognitive development of transitive reasoning using a latent
class regression model we found that a number of classes can be distin-
guished which differ with respect to cognitive behavior. Using the grade

level distribution over the classes, an ordering of the classes became visible.
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Table 4.9: Size of the Effect of Influence of the Task Characteristics on
Strategy Use

Characteristic Class 1 Class 2 Class3 Class 4 Class 5
TASK FORMAT some some hardly  hardly hardly
PRESENTATION FORM strong strong hardly strong strong

CONTENT strong  strong some some hardly

Classes Four and Five which contained in particular lower-grade children
were characterized by superficial cognitive behavior using almost no task
information but rather directly observable task characteristics or unimpor-
tant information from the external world. Several times, children gave no
explanation at all. In the classes one and three, in which children from all
grades were represented but in particular from Grade three, four, and five,
children often knew that they had to use the task information but they
did not have a complete or correct representation of the task space. Class
two contained in particular higher-grade children which were able to use
the task information, understood the underlying pattern and were able to
form a complete internal representation of the task space in most cases.

By treating age as a covariate which influenced the formation of the
classes, the developmental ordering of the classes was not assumed to be
known a priori. The results showed that there is a developmental ordering,
but that children from the highest grade are (marginally) represented in
lower-ability classes, while children from lower grades are represented in
the higher-ability class. The model thus gives opportunities to diagnose
children which deviate from the age-related criterion and to interpret the
deviation in detail.

An interesting finding of this application, which is difficult to reveal
when no latent classes are distinguished, is the differential influence of task
characteristics on strategy use in a latent class. In addition to a general
overview of the strategy use in a particular latent class, the latent class
regression model makes it possible to explain or predict the influence of
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external conditions at a detailed level, or even the influence of interactions
of external conditions (which was not done in this application).

In interesting product of this method is that specific cognitive behavior
can be better interpreted in relation to other cognitive behavior. For ex-
ample, it is difficult to interpret the NO EXPLANATION strategy when there
is no further information. When children do not give an explanation, they
may simply not know how to solve the problem; they may know that the
premises information has to be used, but they do not know how; or they
may simply not know how to explain their answer to other people. The
distribution of the strategies over the classes gives information on how to in-
terpret this NO EXPLANATION strategy. In class one and class four children
often used NO EXPLANATION, but children in class one used some more-
proficient strategies besides the NO EXPLANATION strategy, while children
in class four in particular used low-proficiency strategies. It appears that
children in class four had absolutely no idea how to solve the tasks, while
children in class one understood that they had to use the premises but did
not know how to use them.

The analysis of this application was explorative. We did not assume a
particular cognitive theory which was tested. However, it is also possible
to test a cognitive theory in terms of the latent class regression model, that
is, to perform a confirmative analysis. Assuming Piaget’s theory, we could
have tested whether empirical data fitted in the cognitive developmental
stages Piaget assumed. Then, it should be tested whether the data could
be explained by a number of latent classes which represented the cognitive
developmental stages. Using the latent class regression model, it is also
possible to model a priori hypotheses about developmental stages. It may
be expected from a developmental theory that a particular condition has
no effect in one particular latent class, or an equal effect in two or more
different classes. By imposing restrictions on the model, effects can be set
to zero, or can be set equal for different classes.

It has to be emphasized that we used data from a cross-sectional design,
that is, children of different ages were tested once. This design makes it

possible to interpret development in terms of differential classes, but we
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can only speculate about an individual child’s transition from one class to
another. A longitudinal study is necessary to study this transition. The
latent class regression model can also be used to study such a longitudinal
design.

In this chapter we introduced the latent class regression model for
studying cognitive developmental phenomena. The most important value
of the model is the possibility to empirically test the presence or absence of
latent classes without the need of strong cognitive theoretical assumptions
about the latent variable(s). In the application of the model to transitive
reasoning data, a very large number of parameters had to be estimated,
making the model relative complex. The large number of parameters was
caused by a nominal dependent variable, having seven categories, and nom-
inal independent variables. Models with other types of dependent and
independent variables will contain substantially fewer parameters.

The flexibility of the model in terms of mixed measurement levels and
treatment of different cognitive variables further offers a broad application
to a number of cognitive developmental phenomena, such as conservation,
symbolic analogies, verbal analogies, inductive reasoning, reading compre-

hension, or problem solving.
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Chapter 5

Development and Individual
Differences in Transitive
Reasoning: a Fuzzy Trace
Theory Approach

Abstract

Individual differences in transitive reasoning were investigated in 4 to
13 year-old children. The performance on three kinds of tasks which mainly
differed with respect to their presentation ordering and position ordering
was studied in an effort to determine the use of fuzzy trace theory (Brain-
erd & Kingma, 1984) as a framework for explaining the development of
transitive reasoning. The results from a sample of 409 children ranging in
age from 64 to 159 months showed that the two-dimensional classification
of performance patterns agreed with the expected distinction of perfor-
mance groups according to fuzzy trace theory. Task format had a stronger
effect on performance on transitivity test-pairs than on memory test-pairs.
Furthermore, the developmental effects showed more improvement in fuzzy

ability than in verbatim ability.

This chapter has been submitted for publication.
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5.1 Introduction

A transitive reasoning task requires the inference of an unknown relation-
ship between two objects from the known relationships between each of
these objects and a third object. For example, let three sticks, A, B,
and C, differ in length, denoted Y. such that Y4 > Y > Y, then given
Y4 > Yp and Yp > Y the relationship between A and C' can be inferred
from these two relationships. Together, the given relationships are the
premises.

A transitive reasoning task consists of a presentation stage and a test
stage. At the presentation stage, the premise pairs, A and B and B and
C, are presented, and the child is given the opportunity to memorize the
premises, Y4 > Yp and Yp > Y(.

During the test stage, the child has to reproduce the premises. At this
stage, because the premises are reproduced, the premise pairs are called
memory test-pairs. The object pair of which the relationship has to be
inferred from the memory test-pairs, here (A,C), is called the transitivity
test-pair, because it tests the ability to infer a transitive relationship from
the available premise information.

In Piaget’s theory, transitive-reasoning tasks are used to study the un-
derstanding of operational reasoning (Piaget, 1942; Piaget et al., 1948).
(Classical Piagetian theory assumes that children are capable of transi-
tive reasoning at the concrete operational stage (from approximately seven
through 13 years) in which they have acquired the ability to infer logically
an unknown relationship from two or more premises. When children do
not use the premise information for their explanation, they are assumed to
reason functionally. Functional reasoning is characteristic of the preopera-
tional stage (from approximately two through seven years).

Bryant and Trabasso (1971; see also Breslow, 1981; Riley & Trabasso,
1974; Thayer & Collyer, 1978; Trabasso, 1977; Trabasso et al., 1975) hy-
pothesized that not the understanding of logical rules, but memory of the
premises is crucial in transitive reasoning. They trained four and five year-
old children and showed that they were able of transitive reasoning and that

their transitivity test-pairs performance could be explained completely by
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their performance on the memory test-pairs. Therefore, these researchers
concluded that understanding of logical rules was not required and memory
of the premises was sufficient to infer the unknown relationship.

A few years later Brainerd and Kingma (1984) showed that nor an
understanding of logical rules nor memory of the premises was necessary
to infer transitive relationships. They used fuzzy trace theory to explain
their results (Brainerd & Reyna, 1992, 1990, 1995, 2001, 2004; Reyna, 1992,
1996; see also Chapman & Lindenberger, 1992).

Fuzzy trace theory assumes that incoming information is processed si-
multaneously in different traces. These traces contain different features of
the incoming information. The traces stem from an underlying continuum.
On the one hand there is a fuzzy continuum containing vague, pattern-like
information in a degenerated form at different fuzzy trace-levels, only hold-
ing the gist of information. The fuzzier the trace, the more reduced and
vague the information. On the other hand there is a verbatim continuum
containing literal and detailed information in different traces about, for ex-
ample, color, shape or size. The more verbatim the trace, the more details
it contains about the information.

According to fuzzy trace theory, information is encoded and processed
in a number of traces, simultaneously and automatically. The kind of task
determines which trace is the most appropriate to retrieve. For example,
when a cognitive task requires memory of color, shape, or size of previously
presented information, a verbatim trace is required which contains this
detailed information. However, when the task requires inferences between
objects, a fuzzy trace is required which contains pattern-like information.
Because the structure of verbatim traces is more complex than the pattern-
like structure of fuzzy traces, the verbatim traces are only available for a
limited amount of time, while the fuzzy traces can be retrieved much longer
(Reyna & Brainerd, 1990; Brainerd & Kingma, 1984; Brainerd & Reyna,
2004).

Brainerd and Kingma (1984) showed that the application of fuzzy trace
theory to transitive reasoning needs the unitary trace model. In the uni-

tary trace model both the memory test-pairs and transitivity test-pairs are
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inferred from the same fuzzy trace. They showed that this unitary trace
model could well explain children’s performance. However, the perfor-
mance on memory and transitivity test-pairs in tasks with different kinds
of manipulations was far from perfect. Apparently, several children were
not able to retrieve the appropriate fuzzy trace but retrieved other, less
efficient traces to solve the transitive relationship. The average scores used
in Brainerd and Kingma’s (1984) study did not take into account individ-
ual differences and did not allow to distinguish different strategy groups.
However, Brainerd and Kingma explained that performance may be influ-
enced by temporal and spatial position effects. With respect to verbatim
traces, a temporal position effect may occur when memory is overloaded
and a child is not able to retrieve the verbatim trace containing the com-
plete premise information. Then performance on the memory test-pairs
presented first or last (or both) is better than on the midterms. With re-
spect to fuzzy traces, a spatial position effect may occur when the most
appropriate fuzzy trace for the cognitive task is not used. For example, in
a 5-object transitive-reasoning task, such as Y4 < Yg < Yo < Yp < Y,
large objects are on the right and small objects are on the left leaving the
midterms undefined. Performance on one or both of the end-anchors is
better than on the midterms. In their study, Brainerd and Kingma (1984)
concentrated in particular on the influence of task manipulations on perfor-
mance. In the present study, both individual differences of children and the
influence of task manipulations on performance were taken into account.
In a study on the strategies children used for solving transitivity test-
pairs, Bouwmeester et al. (2004) found that when children are not able to
use a fuzzy trace to infer transitive relationships, they use a verbatim trace
which mostly does not lead to a correct answer. Bouwmeester et al. (2004)
also found that for tasks in which few cues were given about the ordering,
either due to format (Y4 = Yg > Yo = Yp) or presentation form, literal
premise information was used to solve the transitive relationship. However,
the information was often incorrectly remembered, which rendered those
tasks difficult. This literal premise information can be assumed to stem

from a verbatim trace. Children who scored high on the ability scale mostly
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used ordering information to solve the tasks, which stemmed from a fuzzy

trace.

5.1.1 Aim of This Study

Based on the results from previous research and the theoretical framework
of fuzzy trace theory, we expect that (1) both verbatim and fuzzy traces are
involved in de development of transitive reasoning, and (2) the development
of transitive reasoning can be described by a changing interaction of these
two kinds of traces in time when a shift takes place from verbatim to fuzzy
thinking (Brainerd & Reyna, 1995). Based on these expectations, the aim
of this study is to reveal the development of both verbatim and fuzzy traces
in the context of transitive reasoning, by distinguishing groups of children
that differ in their use of verbatim and fuzzy traces when responding to
memory test-pairs and transitivity test-pairs in different kinds of transitive-
reasoning tasks. The relationship of age and the strategy groups is expected
to reveal whether the development of transitive reasoning is characterized

by a shift from verbatim to fuzzy thinking.

Verbatim Ability

The trace-levels that are retrieved by the child depend on his/her verbatim
and fuzzy ability levels. Figure 5.1 shows the relationships between verba-
tim ability, verbatim traces and performance on memory test-pairs. When
applied to transitive reasoning, a verbatim ability level induces verbatim
traces according to a particular probability structure (in the context of
transitive reasoning three verbatim traces were hypothesized). The proba-
bility distribution is defined as P(trace|ability). This is the probability of
using a particular trace given ability level. Note that both the ability and
the trace variables are unobservable, that is, they are latent variables. It
is hypothesized that P(guessing|ability) decreases as a function of ability,
and is maximal when ability level is low; P(temporal position|ability) first
increases and then decreases as a function of the ability and is maximal
when the ability level is intermediate; and P(complete memory|ability) in-

creases as a function of ability and is maximal when the ability level is high.
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Verbatim Trace Ability (Latent Variable)

- A

Verbatim Trace Content (Latent Variable)

Guessing
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Observable Behavior
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on all memory

Good performance on
some test-pairs
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on all memory

but bad on others

test-pairs test-pairs

Figure 5.1: Relationship Between Continuous Latent Ability and Discrete
Manifest Behavior Based on a Verbatim Trace

In Figure 5.1 the black arrows between the latent variable levels indicate
high probability, the grey arrows indicate lower probability and the light
grey arrows indicate low probability.

A verbatim trace corresponds to a particular probability to answer a
memory test-pair correctly. The success probability of a correct answer to
a test-pair given the verbatim trace level is denoted as P(test-pair|trace
level). The response variable is an observed variable (i.e., a manifest vari-
able). When trace level is low, a child has a probability approximately at
chance level to answer a test-pair correctly. When trace level is high, a
child has a probability close to 1 to answer a test-pair correctly.

The retrieval of verbatim traces enables characteristic performance on
the memory test-pairs. Guessing is likely to lead to bad performance on
memory test-pairs. A temporal position effect is likely to produce good
performance on memory test-pairs presented first or last in a sequence,
and worse performance on the memory test-pairs presented in between. For
example, in a transitive-reasoning task (e.g., Y4 > Yp > Ye > Yp > Yg) in
which the premises are presented in an ordered form (first Y4 > Yp, second
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Y > Y, third Yo > Yp, and finally, Yp > Yg), children remember the
premise relationships Y4 > Yp and Yp > Yp better than Yp > Y and
Yo > Yp. When children retrieve a verbatim trace with the complete
premise information, performance is likely to be good on all memory test-
pairs. Note that verbatim ability level (and accompanying trace levels) is

assumed to have no effect on the performance on transitivity test-pairs.

Fuzzy Ability

Figure 5.2 shows the relationships between fuzzy ability, fuzzy traces and
the performance on memory and transitivity test-pairs. When applied to
transitive reasoning, a fuzzy ability level induces fuzzy traces according to a
particular probability structure (in the context of transitive reasoning three
fuzzy traces were hypothesized). It is hypothesized that P(guessing|ability)
decreases as a function of ability, and is maximal when ability level is
low; P(spatial position|ability) first increases and then decreases as a func-
tion of ability and is maximal when the ability level is intermediate; and
P(complete ordering|ability) increases as a function of ability and is maxi-
mal when ability level is high. In Figure 5.2 the black arrows indicate high
probability, the grey arrows indicate lower probability and the light grey
arrows indicate low probability.

A fuzzy trace corresponds with a particular probability to answer a
test-pair correctly. For example, when pattern information is not available,
children guess on all test-pairs which is likely to result in bad performance’.
When children retrieve a spatial position fuzzy trace, they have higher
success probabilities on the end anchors of the spatial representation than
on the midterms. For example, in a transitive-reasoning task (e.g., Y4 >
Y > Yo > Yp > Yg), in which the objects are positioned from large
to small but the premises are not presented in an ordered way (e.g., first
Ys > Y, second Yp > Yg, third Y4 > Yp, and finally, Yo > Yp) children

use the fuzzy trace “small objects are on the right and large objects are on

'To keep the explanation comprehensive here, we assumed that children will not resort
to verbatim information. In the complete model, this problem is resolved by taking both

verbatim ability and fuzzy ability into account.
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Fuzzy Trace Ability (Latent Variable)
Fuzzy Trace Content (Latent Variable)
Guessing Spatial position Complete Ordering
Observable Behavior (Manifest Variable)
Bad performance Good performance on Good performance
on all transitivity some transitivity test- on all transitivity
test-pairs pairs but bad on others test-pairs

Figure 5.2: Relationship Between Continuous Latent Ability and Discrete

Manifest Behavior Based on a Fuzzy Trace

the left”. They are likely to perform better on the end anchor test-pairs of
the spatial representation (Y4 > Yp, Yp > Yg, Y4 > Yo, Yo > Yg) than on
the midterm test-pairs (Yp > Y, Yo > Yp, Y > Yp). The effect may also
occur at only one end of the ordering; for example, the fuzzy trace is “left-
side objects are large”. According to the unitary trace model (Brainerd
& Kingma, 1984), this spatial position effect occurs both on transitivity
test-pairs and memory test-pairs. When a child uses the appropriate fuzzy

trace, performance is expected to be good on all test-pairs.

Development of Verbatim and Fuzzy Abilities

According to Brainerd and Kingma (1984, 1985), Reyna and Brainerd
(1990), and Reyna (1992) the development of verbatim ability is rather
fast and reaches full development at approximately five years of age. Fuzzy
ability develops slower and is not expected to reach full development dur-
ing childhood (Reyna & Brainerd, 1990; see also Liben & Posnansky, 1977;
Marx, 1985b, 1985a; Perner & Mansbridge, 1983; Stevenson, 1972). Figure

5.3 gives a schematic impression of the development of fuzzy and verbatim
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ability.

fuzzy abilit,

verbatim ability

development

Figure 5.3: Schematic Display of The Development of Fuzzy and Verbatim
Trace Abilities

Both abilities are expected to play an important role in the performance
on the memory and transitivity test-pairs in a transitive-reasoning task.
When crossed completely the three verbatim and fuzzy trace levels lead
to nine theoretical combinations, each of which is characterized by its own
expected performance on the test-pairs. The characteristics of the task are

expected to influence the retrieval of verbatim and fuzzy traces.

5.1.2 Transitive-Reasoning Tasks and Task Manipulations

Transitive-reasoning tasks differ with respect to the cues they provide about
the ordering of the objects. For example, when the objects are positioned
in a linear order and also presented in a linear order, the cues about the
ordering of the objects are obvious. As a consequence, the required fuzzy
ability level is not as high as when, for example, the objects are not po-
sitioned in a linear order or presented in a linear order. In this study, we
used three kinds of tasks, that may be characterized as (1) ordered po-
sition, ordered presentation (OposOpres); (2) ordered position, disordered
presentation (OposDpres); and (3) disordered position, ordered presentation

D,0sOpres). The combination of “disordered position, disordered presen-
posYpr
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tation” was not used because it was expected to be too difficult even for
adults (see Brainerd & Reyna, 1992). In this study, in every task-type
four premise pairs were presented. Next, the child was confronted with
the test-pairs. Each task had four memory test-pairs and three transitivity

test-pairs.

Ordered Position, Ordered Presentation Tasks (Op,sOpres)

In OposOpres tasks, the objects are ordered from small to large or large
to small. The presentation of the premises is also ordered. Thus, first
premise pair (A, B) is presented, followed consecutively by premise pairs
(B,C), (C,D) and (D, FE). Ordered presentation of the ordered objects
makes the use of pattern information from fuzzy traces rather easy. Figure
5.4 shows an example of the four premises of an OpysOpres task. Box 1
presents the first premise pair, box 2 presents the second premise pair, and

so on. The “test-pair” box shows an example of the first memory test-pair.

Test-Pair

Figure 5.4: Ezample of the Premise Presentation of an “Ordered Position,

Ordered Presentation” Task

The expected performance patterns for combinations of verbatim and
fuzzy trace levels on the memory and transitivity test-pairs of OpodOpres
tasks are shown in Table 5.1. When fuzzy trace level is intermediate or
high, the expected performance on all test-pairs is good, because pattern

information can easily be used to infer the relationships in both the memory
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Table 5.1: Ezpected Performance on the Test-Pairs of OposOpres Tasks for

Nine Combinations of Trace Levels

Verbatim Fuzzy Memory Transitivity
My Mz Mz My Tn T T3
low o O (@) [¢] o] (0] @)
low intermediate L] ° ® ® ® ° [ ]
high [ ] ° ° [ ] [ ] ° [ ]
low * o} o * o ] o
intermediate intermediate L] L] ] ] ® [ ] ®
high L] [ [ ] ] L] L] [
low L] L ] [ ] [ ] (@) (e} [e)
high intermediate ] ® [ ] L] ® [ ] ®
high e o o o e o o

O: bad performance; *. moderate performance; ®. good performance

test-pairs and the transitivity test-pairs. When fuzzy trace level is low,
the combination with (1) low verbatim trace level is expected to lead to
guessing, yielding success probabilities at approximately chance level on
all test-pairs; (2) intermediate verbatim trace level is expected to lead
to temporal position effects, yielding moderate performance on the first
and last memory test-pairs (M; and M) and bad performance on all other
test-pairs; and (3) high verbatim trace level is expected to lead to complete
memory of the memory test-pairs, yielding high success probabilities on the
memory test-pairs and low success probabilities on the transitivity test-

pairs.

Ordered Position, Disordered Presentation Tasks (OposDpres)

In OposDpres tasks, the objects are ordered from small to large or large to
small. The presentation of the premises is disordered; for example, in Fig-
ure 5.5 first (C, D) is presented, followed consecutively by (A, B), (D, E),
" and (B, C). The midterm relationships are always presented first and last,
and the end anchors are always presented in between so as to be able to
distinguish a temporal position effect from a spatial position effect (see also
Brainerd & Kingma, 1984). Disordered presentation makes the use of fuzzy

traces more difficult than ordered presentation because it is more difficult
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to recognize the ordering of the objects. The “test-pair” box in Figure 5.5

shows the first transitivity test-pair. The expected performance patterns

Test-Pair

Figure 5.5: Ezample of the Premise Presentation of an “Ordered Position,

Disordered Presentation” Task

for combinations of verbatim and fuzzy trace levels on the memory and
transitivity test-pairs of OposDpres tasks are shown in Table 5.2. When
verbatim trace level is low, the combination with (1) low fuzzy trace level
leads to bad performance on all test-pairs; (2) intermediate fuzzy trace level
leads to a spatial position effect resulting in moderate performance on the
end anchors, (Yp,Yr), (Ya,YB), (Ya,Ye), (Yo,Yr), and bad performance
on the other test-pairs; and (3) high fuzzy trace level leads to good per-
formance on all test-pairs because the ordering information can be used to
solve both memory and transitivity test-pairs. When verbatim trace level
is intermediate, the combination with (1) low fuzzy trace level leads to
temporal position effects, yielding moderate performance on the first and
last memory test-pairs (M; and My) and poor performance on all other
test-pairs; (2) intermediate fuzzy trace level leads to both spatial and tem-
poral position effects resulting in moderate performance on the test-pairs
except T7; and (3) high fuzzy trace level leads to good performance on all
test-pairs. When verbatim trace level is high, the combination with (1)
low fuzzy trace level leads to complete memory of the memory test-pairs,
resulting in high success probabilities on the memory test-pairs and low

success probabilities on the transitivity test-pairs; (2) intermediate fuzzy
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Table 5.2: Ezpected Performance on the Test-Pairs of OposDpres Tasks for
Nine Combinations of Trace Levels

hypothesized probabilities

Verbatim Fuzzy Memory Transitivity
My M; Ms My Tn T T

low (¢] o (¢] (0] o o o

low intermediate (@) * * o (0] ok *
high e o o o e o o

low * (@) o * (0] (@] O

intermediate intermediate * * * * () * *
high e o o o e o o

low [ ] [ ] ® [ ] (o} o e}

high intermediate ® ® [ ] ® (] * *
high L] L] ° ® [ ] ® [ ]

O! bad performance; *. moderate performance; ®: good performance

trace level leads to complete memory and a spatial position effect resulting
in good performance on all memory test-pairs and moderate performance
on the end-anchored transitivity test-pairs (75 and T3); and (3) high fuzzy
trace level leads to good performance on all test-pairs.

Disordered Position, Ordered Presentation Tasks (B5540pres)

In DyosOpres tasks, the objects are positioned disorderly. That is, in Figure
5.6 stick A is in the third position in the box, while stick B is in the
first position. The presentation of the premises is ordered. That is, in
Figure 5.6, first premise pair (A,B) is presented, followed consecutively
by premise pairs (B,C), (C,D) and (D,E). A disordered position requires
both high verbatim and fuzzy ability levels, because positional cues about
the ordering of the objects are not provided. Consequently, not only the
ordering has to be recognized but also the premise information has to be
remembered. The “test-pair” box, in Figure 5.6 shows the first memory
test-pair.

The expected performance patterns for combinations of verbatim and
fuzzy trace levels on the memory and transitivity test-pairs of DposOpres
tasks are shown in Table 5.3. When verbatim trace level is low, the perfor-



122 Chapter 5. Individual Differences and Development

Test-Pair

Figure 5.6: Ezample of the Premise Presentation of a “Disordered Position,
Ordered Presentation” Task

mance is expected to be bad for all test-pairs, independent of fuzzy trace
level. That is, for DyosOpres tasks at least intermediate verbatim ability
is needed to remember the premises or recognize the ordering of the ob-
jects. When verbatim trace level is intermediate, the combination with (1)
low and intermediate fuzzy trace level leads to temporal position effects
resulting in moderate performance on the first and last presented memory
test-pairs (M7, My); and (2) high fuzzy trace level leads to spatial position
effects yielding moderate performance on the end-anchors (M, My, Ty,
and T3). When verbatim trace level is high, the combination with (1) low
and intermediate trace levels leads to complete memory resulting in good
performance on the memory test-pairs but bad performance on transitivity
test-pairs; and (2) high fuzzy trace level leads to good performance on all

test-pairs.

5.1.3 Theoretical Model

The theoretical model of fuzzy trace theory with respect to transitive rea-
soning is displayed in Figure 5.7. The correct and incorrect responses to
the memory (M) and transitivity (') test-pairs of the three kinds of tasks
are at the lowest level of analysis. These responses are determined by the

retrieval of verbatim and fuzzy traces. These traces are at the second level.
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Table 5.3:  Expected Performance on the Test-Pairs of DyposOpres Tasks
for Nine Combinations of Trace Levels

hypothesized probabilities

Verbatim Fuzzy Memory Transitivity
My My Mz My T T T
low @) (2] (0] o (] o o
low intermediate (0] 0] o] ) (e} (] ()
high o o o o o © ©
low x o O * O o o
intermediate intermediate * o o * e} o o
high x*x 0 o % * 0 %
low L] ® [ ] ° (] o O
high intermediate [ ] L} L] ® e} e} le}
high e o o o e o o

O bad performance; *. moderate performance; ®. good performance

The use of the traces is governed by probability processes conditional on
the verbatim and fuzzy ability levels, which are at the third level.

In Figure 5.7 responses to the test-pairs are manifest (i.e., observable)
variables, and the verbatim and fuzzy abilities and verbatim and fuzzy trace
variables are latent (i.e., unobservable) variables. The latent ability vari-
ables are continuous and the latent trace variables are ordered categorical
variables. In this study, the structure of this theoretical model was tested
empirically. When the theoretical model fits, the estimated probability
structure must agree with the hypothesized probabilities in Tables 5.1, 5.2
and 5.3. When this is the case we are able to distinguish groups of children
that differ in their use of verbatim and fuzzy traces when responding to

memory test-pairs and transitivity test-pairs.



OposOpres tasks

e
verbatim fuzzy
traces traces

verbatim
ability

fuzzy
ability

DposOpres tasks

~—

verbatim
traces

fuzzy
traces

verbatim
traces

|

fuzzy
traces

|

Figure 5.7: Theoretical Model of Transitive Reasoning

vel

Juotudo[eAd(] pue SedUaIaPI(] [enpIAIpU] ‘¢ I123dey))



5.1 Introduction 125

5.1.4 Hypotheses

The hypotheses to be tested were divided into three categories. The first
concerns the structure of the theoretical model, the second the interpreta-
tion of the abilities, and the third the relationship between age and ability
level. Together the hypotheses were a test of the fit of the theoretical model

to the empirical data.

I. Structure of Theoretical Model

Hypothesis 1;: TWO ABILITIES EACH INFLUENCING THREE ORDINAL TRACE
LEVELS EXPLAIN PERFORMANCE BETTER THAN ONE ABILITY INFLUENC-
ING A LIMITED NUMBER OF ORDINAL TRACE LEVELS.
Fuzzy trace theory explains the performance on test-pairs by means
of two abilities. Ability level explains the differential use of verba-
tim and fuzzy trace levels. Combination of trace levels governs nine
classes of typical performance. This model is hypothesized to reflect
the data structure better than alternative models which posit one
ability governing either one, two, three, four, or five? ordinal trace
levels yielding one through five typical performance classes.

Hypothesis Is: THREE VERBATIM TRACE LEVELS AND THREE FUZZY TRACE
LEVELS ARE THE OPTIMAL NUMBERS TO DISTINGUISH DIFFERENT PERFOR-
MANCE GROUPS IN TRANSITIVE REASONING.

Both verbatim and fuzzy abilities are continuous. Children differ
considerably with respect to ability level. However, only a limited
number of verbatim and fuzzy trace levels are needed to distinguish
typical performance groups. Thus, children close on verbatim ability
are expected to have the same or nearly the same probability distri-
bution for use of verbatim traces resulting in typical performance on
the test-pairs. We hypothesized that three verbatim trace levels and
three fuzzy trace levels are optimal. This hypothesis is tested against

models having either two or four trace levels.

?Experience with latent class analysis has shown that fitting more than five ordered
classes does not improve the fit of the model anymore (Van Onna, 2002)
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Hypothesis Is: THE MODEL IN WHICH ABILITY HAS — VIA THE TRACE LEV-
ELS — AN INDIRECT EFFECT ON PERFORMANCE EXPLAINS PERFORMANCE
BETTER THAN A MODEL IN WHICH ABILITY HAS A DIRECT EFFECT ON
PERFORMANCE.

According to the theory ability level influences the kind of trace level
that is retrieved, and trace level influences the performance on the
test-pairs. The hypothesis of three levels — ability - trace - perfor-
mance — is tested against a model in which trace level (second level
in Figure 5.7) is left out, indicating a direct effect of ability level on

performance.

II. Interpretation of the Abilities

Hypothesis [1;: THE TWO ABILITIES ARE VERBATIM ABILITY AND FUZZY
ABILITY.
It is hypothesized that the verbatim ability influences, via the re-
trieval of verbatim traces, the performance on memory test-pairs but
not the performance on transitivity test-pairs. The higher the verba-
tim trace level, the better the performance on memory test-pairs. The
fuzzy ability level influences, via the retrieval of fuzzy traces, both the
performance on memory test-pairs and transitivity test-pairs (this is

the unitary trace model; Brainerd & Kingma, 1984).

Hypothesis [I;: THE PERFORMANCE ON THE TEST-PAIRS OF DIFFERENT
TASK TYPES AGREES WITH THE PERFORMANCE PREDICTED IN TABLES
5.1, 5.2 AND 5.3.
The performance on the test-pairs can be predicted by combinations
of verbatim and fuzzy trace levels. Characteristics of the task in-
fluence how easily a trace can be used, and this is reflected by the
expected performance patterns (Tables 5.1, 5.2 and 5.3).

III. Relationship Age and Ability

Hypothesis I11: AGE 1S POSITIVELY RELATED TO VERBATIM AND FUZZY

ABILITY LEVELS.
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The higher the age, the higher the probability of a high ability level
for both verbatim and fuzzy abilities. We hypothesized that the de-
velopment of verbatim ability is fast, in particular, during the first
years of life. After the first five years development progresses slowly
and not remarkably. Fuzzy ability development is hypothesized to

progress later and continue even into adulthood (see Figure 5.3).

5.2 Method

5.2.1 Instruments

A computer test for transitive reasoning, called Tranred?2, was constructed
(Bouwmeester & Aalbers, 2004). Tranred2 is an individual test. The reg-
istration of the test scores during test administration was done by the
program. There were four versions of the test in which the tasks were
presented in different order. These four versions were used to control for
order effects of the task presentation. Based on their order of entry in the

investigation, children were assigned to one of the four versions.

5.2.2 Sample

The transitive reasoning test was administered to 409 children ranging from
5 to 13 years of age. Children came from four elementary schools in the
Netherlands. They were from middle class social-economic status (SES)
families. Table 5.4 gives an overview of the number of children per grade,
and the mean age and the standard deviation of age within each grade.

5.2.3 Design

The three kinds of tasks described earlier were used. Four versions of each
task type were administered. Tasks of the same type differed in the colors
of the sticks and the direction of the ordering or the presentation; that is,
sticks could be ordered from left to right or from right to left, and sticks
could be presented from small to large, or from large to small. One type

of task was always followed by a different kind of task. After the premises



128 Chapter 5. Individual Differences and Development

Table 5.4:  Number of Children, Mean Age in Months (M) and Standard
Deviation (SD) in Each Grade

Grade Number Age

M SD

Kindergarten 39 73.67 4.70
1 65 86.15 4.81

2 70 100.16  5.85

3 60 111.80 5.80

4 63 123.44 5.52

5 58 140.31  7.69

6 54 146.18 6.61

were presented, first the four memory test-pairs were presented and next
the three transitivity test-pairs. The ordering of the memory test-pairs
was always the same as the ordering in which the premises were presented.
A 1-score was assigned when the child clicked on the correct stick; and
a O-score otherwise. So for each child, 7 (test-pair) x 3 (task-type) x 4

(task-type-version) = 84 scores were assigned.

5.2.4 Procedure

The test was administered in a quiet room in the school building. The
experimenter started a short conversation with the child to put her/him
at ease. The child started doing two introductory tasks in which it was
explained that (s)he had to click on the longest stick every time. Next, the
experimenter explained that there were 13 tasks and that the child had to
do them on his/her own. The child did not know that the first of the 13
tasks was another introductory task of which the purpose was to let the
child get used to the idea that (s)he had to work on her/his own now.
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5.2.5 Analyses
From Theoretical Model to Statistical Model

The theoretical model including the latent and manifest variables was fitted
to the test-pair data by means of a multilevel latent class model (Vermunt,
2003). This model was preferred over an analyses of variance (ANOVA)
model for three reasons. Firstly, the manifest, dependent variables are bi-
nary [correct (score 1)/incorrect (score 0)], whereas ANOVA assumes inter-
val measurement level for the dependent variable. Secondly, the theoretical
model contains dependent observations at two levels. At the first level, the
seven test-pair scores within a task — four memory test-pairs and three
transitivity test-pairs — are dependent due to the combinations of trace
levels that are retrieved. For example, when a child retrieves the fuzzy
trace “objects become smaller from right to left”, (s)he is able to infer all
memory test-pairs and transitivity test-pairs correctly. At the second level,
the combination of verbatim and fuzzy traces that is used for solving a par-
ticular task is dependent on the child’s verbatim and fuzzy ability levels. A
multilevel model incorporates these dependencies, whereas a within-subject
ANOVA is unable to do this. Thirdly, the theoretical model encompasses
both manifest and latent variables. An ANOVA model cannot deal with
latent variables, but a multilevel latent class model can. To summarize, a
multilevel latent class models formed an appropriate model to evaluate the
fit and the interpretation of the theoretical model.

An upgraded version of the program Latent Gold (Vermunt & Magid-
son, 2003) was used to estimate the parameters of the model and calculate
fit statistics. For evaluating the fit, the sample was randomly split into two
halves. The first half was used to evaluate the improvement of the fit of
different models. Next the fit of the hypothesized model estimated in the
first half of the sample was compared with the fit of that same model in
the second half. When the fit statistics in both halves are close, the degree

of chance capitalization is small and considerable negligible.
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5.3 Results

5.3.1 Background Analysis

An ANOVA was performed to determine whether the order of the tasks
had an effect on the number-correct score, that is, the number of correct
answers to 84 items [7 (test-pair) x 3 (task-type) x 4 (task-type-version)|.
An ANOVA with number-correct score as dependent variable and test-
version as independent variable showed that the four test versions did not
differ significantly [F'(3,401) = 1.32,p > .05]. Thus the presentation order
of the tasks had no effect on number-correct.

A within-subject ANOVA was used to test whether the four replica-
tions of the three different task-types differed with respect to the number-
correct score. The means (aggregated over test-pairs) and the 95% con-
fidence intervals are given in Table 5.5. For Op,sO,s tasks the replica-
tions differed significantly [F'(2.75,1112.58) = 2.93,p = .037]. The partial
n? (for effect size; Cohen, 1977) was low (.007). The confidence inter-
vals of the replications all overlapped. For OposDpyes tasks the replica-
tions differed significantly [F'(2.641,1069.671) = 15.60,p = .000]. The
partial n? was low (.037). The confidence intervals of the replications
all overlapped. For D,,sOpes tasks the replications differed significantly
[F(2.978,1202.226) = 3.46,p = .016]. The partial n* was low (.007). The
confidence intervals of the replications overlapped.

Although there were some replications which differed significantly with
respect to their average performance, the effect sizes were small and the
confidence intervals showed that the differences between replications were
small in all cases®. Therefore, we used all replications to estimate the model

structure.

*Note that a significant overall F-value does not guarantee that individual groups
differ significantly (Stevens, 1996, pp. 163-164)
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Table 5.5: Means (M, Aggregated over Test-Pairs), Standard Errors (SE)
and 95% Confidence Intervals (CI) for the Replications (A, B, C and D)
of Each of the Three Task Types

OposOpres Opos Dpres DyposOpres
Rep. M SE 95%Crr M SE 95%Crr M SE 95% CI
A 75 .02 7178 .72 01 .68-75 .57 .01  .54-.60
B 78 .01 7481 69 .01  .66-.72 .59 .01  .56-.62
C 79 .01 .76-82 .65 .01  .62-69 .55 .01  .52-.58

D .78 .01 .75-.82 .75 .01 72-.79 .57 .01 .54-.60

* Bonferroni adjustment

5.3.2 Hypotheses Testing
I. Structure of Theoretical Model

All hypotheses with respect to structure — two abilities or one, three trace
levels optimal, two-level dependencies — were confirmed?®. See Table 5.6
for the results. Model B, consisting of one ability and one latent class, fitted
worse than model C, which had one ability influencing five ordered trace
levels [see BIC, AIC3, and decrease in LL (taking into account the difference
in number of parameters) in Table 5.6]. Moreover, the decrease in LL of
Model A relative to Model C, given the increase in number of parameters,
was substantial. This indicates that Model A fits better than Model C
(a formal significance test is hazardous, however; therefore the BIC values
were compared). In Model D the latent trace levels were omitted leading
to a direct effect of ability level on performance. The fit of model D was
worse than the fit of model A in terms of BIC, AIC3, and decrease in LL.
Therefore it was concluded that the trace levels could not be omitted. The
three-trace-level model (A) fitted better than the two-trace-level model (E)
in terms of BIC, AIC3, and decrease in LL.

4One particular pattern of outliers, constituting 0.4% of all patterns, was found which
negatively influenced the fit of the models. For children who produced this pattern the

answers were scored as if they were missing.



Table 5.6: Fit Measures for the Estimated Models

Model Description LL #Par BIC AIC3
A 2 abilities, 3 ordered trace levels -8880.33 69 18298.45 17967.67
B 1 ability, 1 trace level -10043.71 43 20422.56 19958.42
C 1 ability, 5 ordered trace levels -9014.70 45 18395.71 18164.49
D 2 abilities, no trace levels -9259.08 63 19009.18  18707.18
E 2 abilities, 2 trace levels -8914.07 67 18350.34 18029.14
F 2 abilities, 4 ordered trace levels -8848.05 Tl 18249.47 17909.10
Cross Validation 2 abilities, 3 ordered trace levels -9090.06 69

BIC: —2LL + #parameters x In(N) (for N=204)
AIC3: —2LL + 3 x #parameters

¢l
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The four-trace-level model (F) fitted better than the three-trace-level
model in terms BIC, AIC3, and decrease in LL. The interpretation of the
four-class model showed that two of the four classes did not differ concep-
tually. Therefore, it was concluded that three trace levels were optimal to
distinguish relevant groups.

Chance capitalization was evaluated by fitting Model A to the second
random half of the sample (see Table 5.6). Because the numbers of records
(subjects x items per subject) was not exactly the same in both subsamples
(2426 records and 2434 records) due to missing values, we compared the
log-likelihood per record: For the first sample the LL per record equalled
-3.66, and for the second sample it equalled -3.73. This means that Model
A fitted almost equally well in both samples.

It can be concluded that the hypothesized model fitted the data well
in comparison with alternative models. However, a fitting model can only
be accepted when the interpretation of the parameters agrees with the
underlying theory. This interpretation follows below.

II. Interpretation of Estimated Model

Hypothesis 11;: Table 5.7 shows the structure of the estimated success
probabilities for the seven test-pairs per combination of verbatim and fuzzy
trace levels. The estimated success probabilities are summarized in three
categories to keep the presentation of the results orderly. Notation o means
a success probability lower than 0.65; * means a success probability between
0.65 and 0.80; and @ means a success probability higher than 0.80. With
respect to the first trace (given low second trace level), in general, the
success probabilities of the memory test-pairs (M;, Ma, M3, and My) are
low when the trace level is low (rows 1, 2 and 3), higher when the trace
level is intermediate (rows 10, 11, 12) and high when the trace level is high
(rows 19, 20, 21). This pattern was found with the memory test-pairs but
not with the transitivity test-pairs (77, T3, T3). Therefore, the first latent

trace can be interpreted as the verbatim trace.
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With respect to the second latent trace (Table 5.7, second column), the
success probabilities of the transitivity test-pairs (71, 75, and T3) are low
when the trace level is low (rows 1, 2, 3 — 10, 11, 12 — 19, 20, 21), (in
general) higher when the trace level is intermediate (rows 4, 5, 6 — 13, 14,
15 — 22, 23, 24) and (in general) high when the trace level is high (rows
7, 8,9 — 16, 17, 18 — 25, 26, 27). Therefore, the second trace can be
interpreted as the fuzzy trace.

Standard errors of the estimated success probabilities (not tabulated
here) were between 0.000 and 0.077 (mean = 0.027, standard deviation =
0.02). This means that the confidence intervals were relatively small.

Figure 5.8a shows the distribution of latent verbatim trace levels, given
a child’s latent verbatim ability. Figure 5.8a shows that the probability
of using a low verbatim trace level decreases as a function of verbatim
ability and is maximal when ability level is low. The probability of using
an intermediate verbatim trace level first increases and then decreases as

a function of ability and is maximal when the verbatim ability level is

intermediate.
1.0 =g = S —————— 10 s = -
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a. Relationship verbatim ability and b. Relationship fuzzy ability and
verbatim trace levels. fuzzy trace levels.

Figure 5.8: Distribution of Latent Verbatim Trace Levels Given Latent Ver-
batim Ability (Panel a) and Distribution of Latent Fuzzy Trace Levels Given
Latent Fuzzy Ability (Panel b)

Note that along the verbatim ability, the probability of using an in-
termediate verbatim trace level is never higher than the probabilities of
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using a low or a high verbatim trace level. The probability of using a high
verbatim trace level increases as a function of ability and is maximal when
ability level is high.

Figure 5.8b shows the distribution of latent fuzzy trace levels, given a
child’s latent fuzzy ability. The interpretation of the distribution of the
fuzzy trace levels is the same as the interpretation of the verbatim trace
levels. Note that in Figure 5.8b there exists a small region on the fuzzy
ability where the intermediate fuzzy trace level has higher probability than
the low and high fuzzy trace levels.

Hypothesis I15: In Table 5.8, both the hypothesized and the estimated
success probabilities of the test-pairs of OposOpres tasks are shown. The
majority of the estimated success probability patterns agreed with the hy-
pothesized success probability patterns. The pattern in the fourth row
differed in estimated and hypothesized success probabilities with respect
to the memory test-pairs.

Table 5.8: Estimated Success Probability for the Test-Pairs of Tasks
OposOpres for Nine Combinations of Latent Trace Levels

Hypothesized probabilities Estimated probabilities
Verbatim Fuzzy Memory Transitivity Memory Transitivity
My My M3 My Ty T T3 M1 My Mz My T, T, T3
low 0 © O v @ B» O 59 48 38 49 55 56 .50
low interm.® ® ® ® © ©® @ 94 97 95 96 .97 .94 97
high ® e ® ®© e e e 99 10 L0 10 10 .99 1.0
low * @ O & @ O O 93 .95 1.0 .99 49 46 48
interm. interm.® ® ©® ©® @ @ @ .99 1.0 1.0 1.0 97 91 .96
high ®© © ®© @ e e e 1.0 10 10 10 10 .99 1.0
low ®e ¢ ¢ ¢ O O O .99 1.0 1.0 1.0 43 .36 .46
high interm. ® ® © ® © @ @ 1.0 1.0 10 10 .96 .87 .96
high ® © @ @ e o @ 1.0 10 10 10 10 .99 1.0
Ol < .65; %. .65—.79; ®. > .79

It was hypothesized that the intermediate verbatim trace level and the
low fuzzy trace level lead to a temporal position effect, predicting moderate
probabilities for the memory test-pairs presented first and last (M; and M)
and low probabilities for the test-pairs in between (M; and M3). However,
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the results showed complete memory for premises when verbatim trace level
is intermediate and fuzzy trace level is low.

Table 5.9 shows that for OpysDpres tasks the majority of the estimated
success probability patterns agreed with the hypothesized success probabil-
ity patterns. Two patterns (in rows 2 and row 4) differed in hypothesized
and estimated success probabilities. It was hypothesized that intermediate
fuzzy trace level in combination with low verbatim trace level leads to a
spatial position effect resulting in higher success probabilities for the end-
anchored test-pairs (Table 5.9, row 2; note that the end-anchored test-pairs
were My, M3, Ty and T3) than for the mid-term test-pairs. However, the
estimated success probabilities show that this spatial position effect is only
active at one end-anchor leading to high success probabilities for the test-
pairs M3 and T3. Further, it was hypothesized that intermediate verbatim

Table 5.9: Estimated Success Probability for the Test-Pairs of Tasks
OposDpres for Nine Combinations of Latent Trace Levels

Hypothesized probabilities Estimated probabilities

VerbatimFuzzy Memory Transitivity Memory Transitivity
My My M3 Mg Th T, T3 My My Mz My T T Tj
low O O 0O 0O o o o 45 .41 .50 .46 47 44 46
low interm. 0 *x * O O % % T Y .87 82 .79 .79 .89
high © e e e e e e .88 .92 98 96 .94 .95 .99
low * O O % O O O .95 85 .80 .73 45 54 .55
interm. interm.* * * *x O % % 98 96 97 94 .78 8 .92
high ® o e e e e @ 99 99 1.0 99 94 96 .99
low e ¢ ¢ ¢ O O O 1.0 .98 .94 89 .43 63 .64
high interm. ® ® @ @ O % % 1.0 99 99 98 .77 .89 .94
high ®© e e e e o e 1.0 1.0 1.0 1.0 .93 .97 .99

O < .65; % .65 —.79; ®. > .79

trace level in combination with low fuzzy trace level leads to a temporal
position effect (Table 5.9, row 4). However, the estimated success prob-
abilities showed a temporal position effect for the first memory test-pairs
(M; and M>), but not for the last.

Table 5.10 shows that for D,,sO,.s tasks, four estimated success prob-

ability patterns agreed with the hypothesized success probability patterns.
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Five patterns (in rows 3, 4, 5, 6, 8) differed in hypothesized and estimated
success probabilities. Firstly, low success probabilities on all test-pairs were
hypothesized when verbatim trace level was low and fuzzy trace level was
high (Table 5.10, row 3). However, the estimated probabilities showed a
spatial position effect resulting in moderate and high success probabilities
for the test-pairs My, My, Ty, and T3. Secondly, a temporal position effect
was hypothesized when verbatim trace level was intermediate and fuzzy
trace level was low or intermediate (Table 5.10, rows 4 and 5). However,
the estimated success probabilities only showed this effect on the first mem-
ory test-pair but not on the last memory test-pair when fuzzy trace level
was low. A spatial position effect was active (in particular at one side) when

fuzzy trace level was intermediate. Thirdly, for intermediate verbatim trace

Table 5.10:  Estimated Success Probability for the Test-Pairs of Tasks
DyosOpres for Nine Combinations of Latent Trace Levels

Hypothesized probabilities Estimated probabilities

VerbatimFuzzy Memory Transitivity Memory Transitivity
My My; Mz My Tv Tz T3 M, My M3 My T T> T3
low Q0 @ B 8 © o © 50 .24 25 19 B0 .BT 4T
low interm.© © O O O O O .61 .38 32 .39 .66 .56 .62
high © O O O O O O A 54 41 64 .79 .56 .75
low * O O %x O O O .88 .71 63 .52 .61 63 .53
interm. interm.* O O * O O O .92 .83 i | 7 .75 .63 .67
high * O O * % O % .94 .90 .78 .89 .85 .63 .78
low e ©¢ & ® O O O .98 .95 .90 .84 g .69 .58
high interm.® ®© ® ® O O O 99 97 93 93 .82 .69 .71
high ®© e e e e e @ 99 99 95 98 90 .69 .82

0: < .65; %. .65 —.79; @I > .79

level and high fuzzy trace level, a spatial position effect was hypothesized
(Table 5.10, row 6). The estimated probabilities showed a spatial position
effect at only one end-anchor but not at both. Finally, it was hypothesized
that high verbatim trace level and intermediate fuzzy trace level would lead
to high memory test-pair probabilities and low transitivity test-pair proba-
bilities (Table 5.10, row 8). The estimated probabilities for the transitivity
test-pairs were high for the end-anchors.
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ITI. Relationship Age and Ability

Hypothesis 111: Figure 5.9 displays the scatterplots of the verbatim and
fuzzy ability by age. The fit of linear, quadratic and cubic regression curves
did not differ significantly. Thus, the curvature of the hypothesized devel-
opmental curves in Figure 5.3 was not supported by the data. The per-
centages of explained variance of the linear models were .08 for verbatim

ability and .20 for fuzzy ability.
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Figure 5.9: Scatterplots of Verbatim and Fuzzy Ability Scores and Age in
Months (the Larger the Bullets, the More Data Points on the Same Posi-
tion)

5.4 Discussion

In this study, fuzzy trace theory was applied to transitive reasoning. A
theoretical model was set up in which the performance on memory test-
pairs and transitivity test-pairs was explained by the use of verbatim and
fuzzy traces, which were dependent on the verbatim and fuzzy ability levels,
respectively. Age was hypothesized to be related to both abilities. A
multilevel latent class model was used to handle the dependencies between
ability level and trace retrieval on the one hand, and trace retrieval and
performance on the test-pairs on the other hand. Fitting the model had
two aspects. Firstly, we investigated the structure of the empirical data
and concluded that two abilities had to be distinguished. Secondly, we
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investigated whether these abilities could be interpreted as verbatim and
fuzzy abilities, and concluded that this was justified by the results.

This study showed that a high ability to remember premises is not
enough to correctly infer transitive relationships. An important result was
that children who have a high verbatim ability level but a low fuzzy abil-
ity level performed well on the memory test-pairs but at chance-level on
the transitivity test-pairs. This finding disagrees with Trabasso’s linear
ordering theory which assumes that memory of the premises is enough to
infer the transitive relationship. Moreover, the results did not agree with
Piaget’s theory. Piaget’s theory assumes that memory for the premises is
a prerequisite for the capacity of using logical rules and inferring transitive
relationships. The format of the task was not expected to influence the use
of logical rules when the premises could be remembered. We found that
memory for the premises was not a prerequisite for inferring the transitive
relationship and that the format of the task had strong influence on the
success probability of inferring the transitive relationships, even when the
memory test-pairs were correctly remembered. However, the initial aim of
Piaget was not to give such a detailed description of transitive reasoning,
making a comparison between his theory and the present study disputable.

Some relevant deviations from the expected probability patterns of com-
binations of verbatim and fuzzy trace levels were found. These deviations
in particular concerned the finding of temporal position effects only at the
information presented first instead of the information presented first and
last. Spatial position effects in DposOpres tasks were found in particular at
one side of the ordering (containing the longest sticks) but not on both.
This result may be explained by a marking effect. That is, linguistic fac-
tors played a role in the end-anchoring. During the premise presentation
children had to click on the longest stick, which may explain that their
representation of the long-end-anchor is better than the short-end-anchor
(see Riley & Trabasso, 1974; Trabasso et al., 1975; Sternberg, 1980b).

Brainerd and Kingma (1984) showed that the unitary trace model could
well explain performance on memory and transitivity test-pairs. This

model assumes that both memory and transitivity test-pairs are solved by
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means of fuzzy traces. We approached the data from a different angle by
distinguishing strategy groups instead of fixed age groups, and concluded
that different groups can be distinguished which are characterized by dif-
ferential use of verbatim and fuzzy traces. For children having high fuzzy
ability levels, indeed the unitary trace model can explain both performance
on memory and transitivity test-pairs when verbatim ability level is inter-
mediate or high. However, for children having intermediate or low fuzzy
ability level the verbatim trace has a strong influence on the performance
on memory test-pairs, indicating that there is a changing orientation from
the use of verbatim traces to both kinds of traces and, finally, to fuzzy
traces. For tasks in which the position of the objects is not ordered, as in
DposOpres tasks, both high verbatim and fuzzy trace levels were required
to infer the transitive relationship.

We determined the influence of age by means of the relationship be-
tween age and ability level. We used a different perspective than Brainerd
and Kingma (1984), who assumed fixed age groups and investigated the
differences between various age groups in performance. In Brainerd and
Kingma’s (1984) study individual differences within age groups were ig-
nored. We showed that the correlation between age and verbatim ability
was low and between age and fuzzy ability moderate. This result indicated
that age influences performance but that the effect is not strong. Therefore,
it seems more appropriate to study development by distinguishing strategy
groups instead of fixed age groups. In his book, Wohlwill (1973, pp 26-28),
when summarizing Kessen’s (1960) objections to the use of age as a vari-
able in behavioral research, already argued that chronological age is not a
useful variable in statements of functional relationships to behavior, since
there are considerable differences in rates of developmental change.

The results of this study also have implications for the discussion about
developmental stages. With respect to transitive reasoning even five-year
old children may have a substantial probability to retrieve high-level fuzzy
traces and thus infer the complete ordering of a task. Also, 12-year old
children may have a substantial probability to retrieve the lowest trace level

and thus do not recognize any ordering in the task. In other words, it is not



142 Chapter 5. Individual Differences and Development

possible to distinguish clear-cut developmental stages in the development of
transitive reasoning (see also Bouwmeester & Sijtsma, submitted, chapter
3 of this thesis). Because we used a cross-sectional design, no conclusions
could be drawn about the transition from one ability level to another. A
longitudinal design is needed to study such transitions. This requires an
extra level in the multi-level structure to model the dependencies within

individual children’s data over time.

Appendix

Model formulation

Let test pairs be indexed k = 1,..,7; tasks ¢ = 1,..,12; and children j =
1,..,N. Response variable Y;;; = 1 when child j gives a correct response
to test-pair k in task 4, and Y;;; = 0 otherwise. The scores of child j on
task 7 are collected in the vector Y;;, and Y; denotes the scores of child j
on all 12 tasks.

The variant of the multilevel latent class (LC) model we used contains
two ordinal latent variables denoted by X;; and @Q;; representing the ver-
batim and fuzzy traces, respectively, for a particular task ¢. These two
mutually independent latent variables are assumed to have discrete real-
ization between 0 and 1, with equal distances between categories. With
three classes per dimension, z = 0.0, 0.5, or 1.0, and ¢ = 0.0, 0.5, or 1.0.
This yields an LC model with multiple latent variables that Magidson and
Vermunt (2001) called an LC factor model. If we assume that the various
tasks performed by a child are independent of one another, the relevant LC
factor model for Y;; is of the form

7
Yy} = ZZP(XU =z)P(Qi; = q) H Yoin | Xy = 2,Q = ). (5:1)
z g k=1

This equation reveals the basic assumption of a LC model: the scores on
the 7 test-pairs are mutually independent given the latent verbatim and
fuzzy trace levels of child j at task i.

Because of the nesting of tasks within children, the standard assump-

tion of independent observations is not correct for our data. The multiple
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tasks performed by a child can, however, be assumed to be mutually in-
dependent given the child’s latent verbatim and fuzzy abilities. These two
continuous latent variables, which are denoted by W; and V; respectively,
with realization w and v, have the role of random effects in the models for
Xij and Q;; (Vermunt, 2003). The abilities or random effects W; and V;
modify the model for Y;; described in Equation 5.1 as follows:

P(YylWj=wV;=v) = Y 3 P(Xy=2|W; =w) P(Qi; = q|V; =v))
e q
7
H P(}/z]k]Xij = I.Qi]' = q) (52)
k=1

As can be seen, X;; is assumed to depend on W;, and Q;; on V;. Moreover,
the effects of the continuous latent abilities on the responses are assumed
to be fully mediated by the discrete latent trace levels.

The probability associated with all responses of an individual, denoted
by P(Y;), is obtained by taking the product of P(Y;;|W; = w,V; = v)
over the 12 tasks and integrating the two latent ability variables out of the
equation. This yields:

12

PO = [ [ 508 =w) 10 = o) | T POYIW; =,V =) | dwdv. (5.3)
wJv =1
Note that P(Y;;|W; = w,V; = v) has the form described in Equation 5.2,
and f(W; = w)and f(V; = v) are standard normal univariate distributions.
The three types of model probabilities appearing in Equation 5.2 —
P(Xij = z|W; = w), P(Qij = q|V; = v;), and P(Yjjx|Xy; = 2,Qij = q) -
are parameterized as logit models. The probability of a correct response
of child j on test-pair k of task i is restricted by a standard binary logit
model of the form

exp(Boki + Biki - T + Boki - g+ B3ki - T - q)

P(Yijk =1|Xi5 =2,Qi5 = q) = - .
Vo =30 =% = ol 1+ exp(Boki + Piki * T + Baki - q + Baki - T - q)
(5.4)

where [yi; is an intercept, (Bix; and 3o4; are the main effects of verbatim
trace level and fuzzy trace level, respectively, and [(3s3;; is the interaction
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effect of verbatim and fuzzy trace level. The indices k and ¢ indicate that
these parameters differ across test-pairs and tasks. This is, however, not
fully correct since the parameters were restricted to be equal for all four
replications of the same task-type (e.g., Bok.i+3 = Bok.;). This implies that
we have to estimate only three sets of free 3 parameters.

The other two parts of the model, capturing the relative sizes of the
verbatim and fuzzy trace levels given the verbatim and fuzzy ability levels,
are modeled as
exp(Yor +71 - T - w)

P Xz =% ‘/‘/’ —— ] = .
( J ‘Tl 7 u) ZI exp(,yor + YT - UJ)

and
exp(y3q +74- ¢ V)

Y exp(13g +va-q V)

These are adjacent-category ordinal logit models similar to the ones used

P(Qij =4qlV; =v) =

in partial-credit models, which are IRT models for ordinal items. The ~
parameters are assumed to be equal across the 12 tasks.

The multilevel latent class models were estimated by means of maxi-
mum likelihood using an adapted version of the EM algorithm (Vermunt,
2003, 2004). This procedure is implemented in version 4.0 of Latent GOLD
(Vermunt & Magidson, 2003), a Windows-based program for LC analysis,

that is available at www.statisticalinnovations.com.



Epilogue

I started this thesis project believing that the development of transitive
reasoning could be studied by simply letting children perform a transitive
reasoning task and ask them to explain their answer. When children men-
tioned the premises necessary for the transitive inference, this was taken
as evidence that they were capable of transitive reasoning; and when they
did not mention the premises, they were incapable of transitive reasoning.

This was a simple and equally naive idea which I rejected after hav-
ing seen two children perform a transitive reasoning task. These children
explained their answers in several ways, which included information about
either the ordering of the sticks, the colors of the sticks, aspects of the
environment, or the premise information. Some of these explanations were
incorrect, having nothing to do with the task. Among the correct expla-
nations some used the premisses, but others used a strategy that did not
include the premises.

For me, this was the first serious confrontation with a difficult prob-
lem: what exactly is transitive reasoning? Piaget used transitive reasoning
tasks only as tools to study whether children were capable of operational
reasoning. According to his theory, children had to understand and apply
logical rules in concrete tasks like transitive reasoning tasks. However, in
practice it appeared that children used different strategies to infer the tran-
sitive relationship and often these strategies led to correct inferences. As a
result, it seemed implausible to conclude that these children were incapable
of transitive reasoning.

What is transitive reasoning? How does it develop, and how is de-
velopment characterized? What is the role of environmental influences?
These issues formed the fundamental questions of cognitive development
according to Wohlwill (1973).

Wohlwill (1973, pp. 40-42) claimed that the discovery and synthe-
sis of developmental dimensions was the first step in studying cognitive
developmental concepts. In his book “the study of behavioral develop-
ment”, Wohlwill (1973) extensively discussed the questions to be asked

145
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when studying cognitive development and the methods to be used for an-
swering these questions. He explained that methods available at the time
when he wrote his book were suited primarily for analyzing data collected
in an experimental context and, therefore, often inappropriate for studying
developmental change. According to Wohlwill, developmental psychology
requires a differential approach in which changes in behavior are described
within the natural environment in which the emphasis is on response pat-
terns and individual differences.

Modern test theory or item response theory has grown substantially
over the past decades, now offering appropriate and sophisticated analysis
methods to handle differential questions of the type discussed by Wohlwill.
In this thesis, a few of Wohlwill’s developmental issues were discussed in
the context of transitive reasoning and item response theory was used to
clarify these issues.

Often, developmental theories are rather vague or unspecified with re-
spect to the underlying dimensions of constructs and the influence of task
characteristics on children’s performance. Moreover, dimensionality does
not have an absolute meaning and is valuable only to the degree in which
the research is based on a clear and unambiguous operationalization of
the construct of interest. Many theories lack this clarity. Furthermore, the
definition of a psychological dimension does not have a one-to-one relation-
ship with a mathematically defined dimension as represented in statistical
methods such as item response models. The methods used in this thesis for
investigating the dimensionality, assumed slightly different mathematical
definitions of dimensionality which led to somewhat different results and in-
terpretations. This taught us that psychological dimensionality can be ap-
proached from different statistical perspectives which, when used together,
may give a rather complete picture of the psychological dimensionality.

According to Wohlwill (1973, e.g., p. 40), the next step in describ-
ing developmental change was to determine whether behavior changes are
quantitative or qualitative and, corresponding with this, how to interpret
continuity or discontinuity in development. Wohlwill (1973, p. 59) empha-

sized that the answer to this question is mainly determined by the level of
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analysis. Change can be analyzed at many levels of sophistication, each
of which leads to different conclusions about continuity or discontinuity.
Moreover, Wohlwill (1973, p. 25) argued that chronological age is inap-
propriate for detecting discontinuity due to the probabilistic character of
change in behavior.

Nowadays, continuity and discontinuity can be studied effectively by
means of latent class analysis. This method can be used to distinguish
groups of children, which differ with respect to their response patterns to
transitive reasoning tasks. In this thesis, discontinuity was studied on the
basis of the data structure without a priori assuming fixed age groups.
Moreover, latent class analysis made it possible to study relationships be-
tween environmental influences, cognitive behavior, and age in different
latent classes. We emphasize that latent classes identified from the data
only have relative meaning, primarily dependent on the operationalization
of the construct, the level of analysis, and the particular statistical method
used. Without a highly accurate level of specification of the developmental
theory the statistical model cannot offer useful results.

Wohlwill (1973) adviced to study individual differences in development
by means of the changes in individuals’ score patterns produced in response
to the tasks. In chapter 5, fuzzy trace theory was used to explain individual
differences in the development of transitive reasoning in detail. Brainerd
and Kingma (1984, 1985) elaborated fuzzy trace theory but used an ex-
perimental design to test different aspects of the theory. In their research,
these authors were unable to study individual differences, and development
could not be investigated because average age scores were used as the level
of analysis. The availability of new and advanced statistical methods en-
abled us to analyze response patterns and predict the responses processes
on different kinds of transitive reasoning tasks assuming distinct verbatim
and fuzzy ability levels. The recently developed multi-level latent class
model is a sophisticated and powerful tool for testing the hypothesized
structure of the theoretical model and for describing the development of
transitive reasoning at a detailed level of analysis. In future research, this

method may be used in the context of a longitudinal design for studying
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developmental transition processes.

The developmental issues discussed in this thesis are not specific for
transitive reasoning. The issues of dimensionality, qualitative or quantita-
tive change, influence of environmental factors, and development in indi-
vidual response patterns can be generalized to other developmental - often
Piagetian - concepts. Verweij (1994), De Koning (2000), Jansen (2001),
and Hosenfield (2003) already made fruitful contributions. With respect to
transitive reasoning a longitudinal study would be the next step to study
the transition in developmental change.

What did we learn about developmental psychology from the hundreds
of children who performed transitive reasoning tests in this study? In
the introduction, I mentioned the most important differences between Pi-
aget’s theory about cognitive development, information processing theory,
and fuzzy trace theory. In this thesis, the hierarchical nature of Piaget’s
theory, which views children as imperfect adults progressing through the
necessary stages, starting from the sensory-motor stage and ending at the
stage of formal adult thinking, was not supported by the empirical observa-
tions. Thus, the development of children’s reasoning was not characterized
by a shift from functional to operational thinking. Moreover, it was found
that development was neither characterized by an increase in the complete-
ness of a quantitative, symbolic representation of incoming information nor
the efficiency to form such a representation, as is assumed by information
processing theorists. Instead, we found that development seems to be char-
acterized by a growing ability to retrieve information which adequately
matches the task requirements. According to fuzzy trace theory, for solv-
ing a cognitive task children learn to use the fuzziest trace that leads to
success. During development people learn that pattern information is often
better suited than verbatim information because pattern information can
be retrieved longer than verbatim information and new information can be
inferred from the pattern information. However, for some cognitive tasks,
requiring detailed verbatim information, children perform a better job than

many adults!
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Summary

Transitive reasoning is an important construct in developmental psychol-
ogy. According to Piaget operational reasoning is required to infer a tran-
sitive relationship. This operational reasoning is characteristic of the con-
crete operational stage, one of the four stages in Piaget’s theory.

In a transitive reasoning task the unknown relationship between two
elements (transitive relationship) can be inferred from their known rela-
tionships (premises) with a third element. According to Piaget children
have to be capable to understand and apply rules of logic to infer transi-
tive relationships.

Piaget’s theory about transitive reasoning evoked much of discussion
and research was initially focussed at the age of emergence of transitive
reasoning. Later on, attention shifted towards the underlying processes in-
volved in transitive reasoning. Researchers from different theoretical back-
grounds used different definitions and operationalisations of the construct
leading to different conclusions about the processes involved. The most
important purpose of this dissertation was to disentangle the cognitive
processes involved in transitive reasoning and to compare three leading
theories.

Chapter 1 describes the construction of a transitive reasoning test con-
taining 16 transitive reasoning tasks that differed with respect to the pre-
sentation form of the premises, the content of the task and the kind of re-
lationship between the objects used in the tasks. Previous research showed
that these task characteristics influence the difficulty of a task. The test
was administered to 615 children ranging in age from 6 to 13 years old. 15
of the 16 tasks formed a reliable Mokken scale on which the children could
be ordered reliably according to their number-correct score.

In chapter 2 an empirical study is described in which the three leading
theories were compared with respect to dimensionality of the construct of
transitive reasoning and the influence of task characteristics on the diffi-
culty level of the task. Moreover, it was investigated whether the correct /
incorrect explanations the children gave after responding to the task led to
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more valid information about transitive reasoning ability than the correct
/ incorrect responses. Different nonparametric item response techniques
were used to determine the dimensionality of the data. The ability could
be described by one dimension when the correct / incorrect explanations
were used while at least three dimensions were required when the correct /
incorrect responses were used. It was concluded that the correct / incorrect
explanations gave more unambiguous and accurate information about the
transitive reasoning ability than the correct / incorrect responses.

Moreover, the results showed that the dimension could better be in-
terpreted by information processing theory and fuzzy trace theory than
by Piaget’s theory. The distinction between functional and operational
thinking (typical of Piaget’s theory) was not reflected by the results. The
difficulty level of the tasks was especially determined by the degree to
which the premisse information could be reduced into a more patternlike
form (typical of information processing theory and fuzzy trace theory).

In chapter 3 it was investigated whether the development of transitive
reasoning is continuous or discontinuous. First, a number of aspects in-
volved in studying discontinuity were discussed. Second, two latent class
models were compared. The results showed that the binomial mixture
model, which is a common model to study discontinuity in cross-sectional
research, fitted worse than the latent class factor model. Both models
showed that the development of transitive reasoning was discontinuous.
At least two classes could be distinguished in the ability of transitive rea-
soning which could be interpreted by fuzzy trace theory.

In chapter 4 the relationships between age, strategy use and task char-
acteristics were investigated. A latent class regression model was used to
describe the influence of task characteristics on strategy use. Five latent
classes were distinguished in which the influence of task characteristics on
strategy use differed. Young children in particular used irrelevant details
of the task to infer (mostly incorrectly) the transitive relationship. Task
characteristics had little influence on strategy use. For elder children task
characteristics influenced the strategy use considerably.

In chapter 5 fuzzy trace theory was used to described the performance
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of children on three kinds of transitive reasoning tasks in detail. The tasks
differed with respect to the ordering of the objects and the presentation
of the premises. According to fuzzy trace theory information is processed
simultaneously at multiple levels. Fuzzy trace theory distinguishes a verba-
tim ability and a fuzzy ability. According to the theory, only fuzzy ability is
needed to infer transitive relationships. Using this theory the performance
of children on different kinds of task given their verbatim and fuzzy ability
level could be predicted well.

A multi-level latent class model was used to determine whether the
theoretical model fitted the empirical data. The results showed that the
theoretical model fitted well. Both the verbatim and fuzzy ability were
reflected in the data structure and the predicted performance agreed with
the estimated performance to a large extent.

In the epilogue it was concluded that the development of measurement
methods and techniques over the past decades enabled us to study de-
velopmental issues in a differential way. According to Wohlwill (1973) a
differential approach forms the essence of developmental psychology. How-
ever, at the time he wrote his book no adequate statistical methods were
available.

The stages formulated in Piaget’s theory were not supported by our
empirical observations on transitive reasoning. Moreover, it was found
that cognitive development was neither characterized by an increase in the
amount of information processed as assumed by information processing
theory. The results of this thesis in particular showed that cognitive devel-
opment is characterized by an increasing ability to process information at
different levels and to retrieve information that adequately matches task

requirements.
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Samenvatting (summary in Dutch)

Transitief redeneren is een belangrijk begrip in de ontwikkelingspsycholo-
gie. Volgens Piaget is operationeel redeneren nodig om een transitieve
relatie af te kunnen leiden. Operationeel redeneren is kenmerkend voor
het concreet-operationele stadium, één van de vier ontwikkelingsstadia uit
Piaget’s theorie.

In een transitieve redeneertaak kan een onbekende relatie (transitieve
relatie) tussen twee elementen worden afgeleid uit twee bekende relaties
(premissen) tussen deze twee elementen en een derde element. Volgens
Piaget moeten kinderen in staat zijn om logische regels te begrijpen en toe
te passen om de onbekende relatie af te kunnen leiden.

Naar aanleiding van Piaget’s theorie over transitief redeneren is er veel
onderzoek gedaan. Dit onderzoek was in eerste instantie vooral gericht op
de vraag op welke leeftijd kinderen voor het eerst in staat zijn tot transi-
tief redeneren. Later verschoof de aandacht vooral naar de onderliggende
processen betrokken bij transitief redeneren. Onderzoekers uit verschil-
lende onderzoekstradities gebruikten verschillende definities van transitief
redeneren en verschillende operationaliseringen van het begrip in transi-
tieve redeneertaken. Het belangrijkste doel van deze dissertatie was om de
cognitieve processen die een rol spelen bij het transitief redeneren in kaart
te brengen en op deze manier theorieén over transitief redeneren op een
aantal aspecten met elkaar te vergelijken.

Hoofdstuk 1 beschrijft de constructie van een transitieve redeneertest
met zestien transitieve redeneertaken die verschillen wat betreft de aan-
bieding van de premissen, de context, en het soort van relatie tussen de
premissen. Eerder onderzoek heeft aangetoond dat deze taakkenmerken de
prestatie sterk beinvloeden. De test werd voorgelegd aan 615 basisschool
leerlingen van groep vier tot en met groep acht. Het dubbele monotonie
model van Mokken paste op vijftien van de zestien taken. Hieruit kon
geconcludeerd worden dat de taken betrouwbaar geordend konden worden
volgens de totaalscore van de test en dat de taken een invariante ordening
hadden.

In Hoofdstuk 2 wordt een empirische studie beschreven waarin drie
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theorieén werden vergeleken op de dimensionaliteit van het construct tran-
sitief redeneren en de invloed van taakkenmerken op de moeilijkheid van
de taak. Ook werd onderzocht in hoeverre de juist / onjuist verklarin-
gen die kinderen gaven na het beantwoorden van een taak validere infor-
matie opleverden dan alleen de juist / onjuist antwoorden. Verschillende
non-parametrische item response technieken werden gebruikt om de di-
mensionaliteit van de test te beoordelen. Het bleek dat het theoretisch
construct redelijk goed met één dimensie beschreven kon worden wanneer
de juist / onjuist verklaringen werden gebruikt. Om het construct met be-
hulp van de juist / onjuist antwoorden te beschrijven waren drie dimensies
nodig. Hieruit kon geconcludeerd worden dat de juist / onjuist verklaringen
eenduidigere en accuratere informatie opleverden over transitief redeneren
dan de juist / onjuist antwoorden.

Ook bleek dat de gevonden dimensie beter geinterpreteerd kon worden
volgens de informatie-verwerkings theorie en de fuzzy-trace theorie dan vol-
gens Piaget’s theorie. Een onderscheid tussen functioneel en operationeel
redeneren (zoals in Piaget’s theorie) werd niet gevonden. De moeilijkheid
van de taken bleek vooral af te hangen van de mate waarin de gedetailleerde
informatie in taken gereduceerd kon worden tot patrooninformatie (zoals
in informatie-verwerkings theorie en fuzzy-trace theorie).

In Hoofdstuk 3 werd de vraag onderzocht of de ontwikkeling van het
transitief redeneren continu of discontinu verloopt. Eerst werden verschil-
lende onderzoekskwesties die een rol spelen bij het meten van discon-
tinuiteit besproken en vervolgens werden twee latente klassen modellen
met elkaar vergeleken. Het bleek dat het binomiale mixture model, dat
doorgaans wordt gebruikt om discontinuiteit bij cross-sectioneel onderzoek
vast te stellen, slechter paste dan het latent klassen factor model. Beide
modellen lieten zien dat de ontwikkeling van transitief redeneren discon-
tinu was. De vaardigheid van het transitief redeneren bleek op z'n minst
uit twee latent klassen te bestaan die geinterpreteerd konden worden met
behulp van fuzzy trace theorie.

In Hoofdstuk 4 werd de relatie onderzocht tussen leeftijd, strategiege-

bruik en taakkenmerken. Een latente klassen regressie model werd gebruikt
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om de invloed van taakkenmerken op strategiegebruik te beschrijven. Er
werden vijf latente klassen onderscheiden waarbij de relatie tussen strate-
giegebruik en taakkenmerk verschilden. Het bleek dat jonge kinderen vaak
met behulp van irrelevante details de transitieve relatie probeerden af te lei-
den. De taakkenmerken hadden nauwelijks invloed op het strategiegebruik.
Bij oudere kinderen hadden taakkenmerken daarentegen een belangrijke in-
vloed op het strategiegebruik.

In Hoofdstuk 5 tenslotte werd fuzzy-trace theorie gebruikt om een gede-
tailleerde beschrijving te geven van de prestaties van kinderen op drie tran-
sitieve redeneertaken. Deze taken verschilden wat betreft de ordening van
de objecten in de taak en de presentatie van de objecten. Volgens de fuzzy-
trace theorie wordt informatie op tal van niveaus tegelijkertijd verwerkt.
Fuzzy-trace theory onderscheidt een vaardigheid in het verwerken van gede-
tailleerde informatie en een vaardigheid in het verwerken van patroon-
informatie. Volgens de theorie speelt bij het afleiden van transitieve re-
laties vooral het gebruik van patrooninformatie een rol. Vanuit het the-
oretische model konden voorspellingen worden gedaan over de prestaties
van kinderen met een bepaald detailvaardigheidsniveau en patroonvaardig-
heidsniveau op verschillende taken. Een multi-level latente klassen model
werd gebruikt om de te bepalen of de voorspellingen op basis van het
theoretisch model werden teruggevonden in de geobserveerde data. De re-
sultaten lieten zien dat het theoretische model goed paste bij de empirische
data; de twee soorten vaardigheden werden teruggevonden en de voorspelde
prestatie van kinderen kwam goed overeen met de geobserveerde prestatie.

In de Epiloog werd geconcludeerd dat met de nieuw ontwikkelde meet-
methoden en analysetechnieken ontwikkelingsvraagstukken op differentiéle
wijze kunnen worden beantwoord. Volgens Wohlwill (1973) vormt de dif-
ferentiéle benadering de essentie van de ontwikkelingspsychologie maar ont-
braken in de tijd dat hij zijn boek schreef adequate statistische methoden.

Daarnaast werd geconcludeerd dat de stadia geformuleerd in Piaget’s
theorie niet worden teruggevonden bij het transitief redeneren. Ook werd
niet gevonden dat de cognitieve ontwikkeling wordt gekenmerkt door een

steeds completere verwerking van informatie zoals wordt aangenomen door
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de informatie-verwerkings theorie. Uit de resultaten beschreven in dit
proefschrift blijkt vooral dat cognitieve ontwikkeling wordt gekenmerkt
door een groeiende vaardigheid om informatie te verwerken op verschil-
lende niveaus en weer te gebruiken op een niveau dat optimaal aansluit bij

hetgeen de taak vereist.
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