1,047 research outputs found

    Aluminum Tolerance in the Model Legume \u3cem\u3eMedicago Truncatula\u3c/em\u3e

    Get PDF
    Aluminum (Al) is the most abundant metal found in the earth\u27s crust, comprising up to 7% of its mass. At low pH, Al becomes soluble and available to plants, resulting in inhibition of root elongation and reduced plant growth. Aluminum toxicity associated with acid soils has been a major obstacle in alfalfa (Medicago sativa) production. The objective of this study is to identify genes that are differentially expressed under normal and Al stress conditions in the model legume M. truncatula, with the long term goal of using these genes to improve cultivated alfalfa

    Deciding the Winner of an Arbitrary Finite Poset Game is PSPACE-Complete

    Full text link
    A poset game is a two-player game played over a partially ordered set (poset) in which the players alternate choosing an element of the poset, removing it and all elements greater than it. The first player unable to select an element of the poset loses. Polynomial time algorithms exist for certain restricted classes of poset games, such as the game of Nim. However, until recently the complexity of arbitrary finite poset games was only known to exist somewhere between NC^1 and PSPACE. We resolve this discrepancy by showing that deciding the winner of an arbitrary finite poset game is PSPACE-complete. To this end, we give an explicit reduction from Node Kayles, a PSPACE-complete game in which players vie to chose an independent set in a graph

    Aluminum Tolerance QTL in Diploid Alfalfa

    Get PDF
    Aluminum (Al) toxicity associated with acid soils greatly inhibits alfalfa (Medicago sativa L.) productivity throughout much of the world’s major grassland areas. In this paper, we report the identification of quantitative trait loci (QTL) controlling aluminum tolerance in diploid alfalfa (Medicago sativa L). An in vitro callus growth bioassay was used to select aluminum tolerant and aluminum sensitive parents, and to screen an F2 population for aluminum tolerance. Fifty-eight cDNA probes were mapped to nine linkage groups, and the F2 genotypic classes were contrasted with means from the callus growth bioassay using ANOVA. We also used Mapmaker-QTL to identify markers associated with aluminum tolerance. Four markers, UGAc044, UGAc053, UGAc141, and UGAc782, were found to be associated with aluminum tolerance. UGAc044 had the greatest effect, accounting for 15% (LOD 2.3) of the variation in aluminum tolerance

    Clinically Significant Gains in Skillful Grasp Coordination by an Individual With Tetraplegia Using an Implanted Brain-Computer Interface With Forearm Transcutaneous Muscle Stimulation

    Get PDF
    © 2019 American Congress of Rehabilitation Medicine Objective: To demonstrate naturalistic motor control speed, coordinated grasp, and carryover from trained to novel objects by an individual with tetraplegia using a brain-computer interface (BCI)-controlled neuroprosthetic. Design: Phase I trial for an intracortical BCI integrated with forearm functional electrical stimulation (FES). Data reported span postimplant days 137 to 1478. Setting: Tertiary care outpatient rehabilitation center. Participant: A 27-year-old man with C5 class A (on the American Spinal Injury Association Impairment Scale) traumatic spinal cord injury Interventions: After array implantation in his left (dominant) motor cortex, the participant trained with BCI-FES to control dynamic, coordinated forearm, wrist, and hand movements. Main Outcome Measures: Performance on standardized tests of arm motor ability (Graded Redefined Assessment of Strength, Sensibility, and Prehension [GRASSP], Action Research Arm Test [ARAT], Grasp and Release Test [GRT], Box and Block Test), grip myometry, and functional activity measures (Capabilities of Upper Extremity Test [CUE-T], Quadriplegia Index of Function-Short Form [QIF-SF], Spinal Cord Independence Measure–Self-Report [SCIM-SR]) with and without the BCI-FES. Results: With BCI-FES, scores improved from baseline on the following: Grip force (2.9 kg); ARAT cup, cylinders, ball, bar, and blocks; GRT can, fork, peg, weight, and tape; GRASSP strength and prehension (unscrewing lids, pouring from a bottle, transferring pegs); and CUE-T wrist and hand skills. QIF-SF and SCIM-SR eating, grooming, and toileting activities were expected to improve with home use of BCI-FES. Pincer grips and mobility were unaffected. BCI-FES grip skills enabled the participant to play an adapted “Battleship” game and manipulate household objects. Conclusions: Using BCI-FES, the participant performed skillful and coordinated grasps and made clinically significant gains in tests of upper limb function. Practice generalized from training objects to household items and leisure activities. Motor ability improved for palmar, lateral, and tip-to-tip grips. The expects eventual home use to confer greater independence for activities of daily living, consistent with observed neurologic level gains from C5-6 to C7-T1. This marks a critical translational step toward clinical viability for BCI neuroprosthetics

    Early precipitated micropyrite in microbialites: A time capsule of microbial sulfur cycling

    Get PDF
    Microbialites are organosedimentary rocks that have occurred throughout the Earth’s history. The relationships between diverse microbial metabolic activities and isotopic signatures in biominerals forming within these microbialites are key to understanding modern biogeochemical cycles, but also for accurate interpretation of the geologic record. Here, we performed detailed mineralogical investigations coupled with NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) analyses of pyrite S isotopes in mineralising microbial mats from two different environments, a hypersaline lagoon (Cayo Coco, Cuba) and a volcanic alkaline crater lake (Atexcac, Mexico). Both microbialite samples contain two distinct pyrite morphologies: framboids and euhedral micropyrites, which display distinct ranges of δ34S values1. Considering the sulfate-sulfur isotopic compositions associated with both environments, micropyrites display a remarkably narrow range of Δpyr (i.e. Δpyr ≡ δ34SSO4 − δ34Spyr) between 56 and 62‰. These measured Δpyr values agree with sulfate-sulfide equilibrium fractionation, as observed in natural settings characterised by low microbial sulfate reduction respiration rates. Moreover, the distribution of S isotope compositions recorded in the studied micropyrites suggests that sulfide oxidation also occurred at the microbialite scale. These results highlight the potential of micropyrites to capture signatures of microbial sulfur cycling and show that S isotope composition in pyrites record primarily the local micro-environments induced by the microbialite

    Effect of maternal panic disorder on mother-child interaction and relation to child anxiety and child self-efficacy

    Get PDF
    To determine whether mothers with panic disorder with or without agoraphobia interacted differently with their children than normal control mothers, 86 mothers and their adolescents (aged between 13 and 23 years) were observed during a structured play situation. Maternal as well as adolescent anxiety status was assessed according to a structured diagnostic interview. Results showed that mothers with panic disorder/agoraphobia showed more verbal control, were more criticizing and less sensitive during mother-child interaction than mothers without current mental disorders. Moreover, more conflicts were observed between mother and child dyadic interactions when the mother suffered from panic disorder. The comparison of parenting behaviors among anxious and non-anxious children did not reveal any significant differences. These findings support an association between parental over-control and rejection and maternal but not child anxiety and suggest that particularly mother anxiety status is an important determinant of parenting behavior. Finally, an association was found between children’s perceived self-efficacy, parental control and child anxiety symptoms
    corecore