340 research outputs found

    Modulating yaw with an unstable rigid body and a course-stabilizing or steering caudal fin in the yellow boxfish (Ostracion cubicus)

    Get PDF
    Despite that boxfishes have a rigid carapace that restricts body undulation, they are highly manoeuvrable and manage to swim with remarkably dynamic stability. Recent research has indicated that the rigid body shape of boxfishes shows an inherently unstable response in its rotations caused by course-disturbing flows. Hence, any net stabilizing effect should come from the fishes' fins. The aim of the current study was to determine the effect of the surface area and orientation of the caudal fin on the yaw torque exerted on the yellow boxfish, Ostracion cubicus, a square cross-sectional shaped species of boxfish. Yaw torques quantified in a flow tank using a physical model with an attachable closed or open caudal fin at different body and tail angles and at different water flow speeds showed that the caudal fin is crucial for controlling yaw. These flow tank results were confirmed by computational fluid dynamics simulations. The caudal fin acts as both a course-stabilizer and rudder for the naturally unstable rigid body with regard to yaw. Boxfishes seem to use the interaction of the unstable body and active changes in the shape and orientation of the caudal fin to modulate manoeuvrability and stability

    Homogeneity of Stellar Populations in Early-Type Galaxies with Different X-ray Properties

    Full text link
    We have found the stellar populations of early-type galaxies are homogeneous with no significant difference in color or Mg2 index, despite the dichotomy between X-ray extended early-type galaxies and X-ray compact ones. Since the X-ray properties reflect the potential gravitational structure and hence the process of galaxy formation, the homogeneity of the stellar populations implies that the formation of stars in early-type galaxies predat es the epoch when the dichotomy of the potential structure was established.Comment: 6 pages, 5 figures, accepted for publication in Ap

    Coalition theories: empirical evidence for dutch municipalities

    Get PDF
    The paper analyzes coalition formation in Dutch municipalities. After discussing the main features of the institutional setting, several theories are discussed, which are classified as size oriented, policy oriented and actor oriented models. A test statistic is proposed to determine the predictive power of these models. The empirical analysis shows that strategic positions as well as some of the distinguished preferences are important in the setting of Dutch municipalities. Especially, the dominant minimum number principle yields highly significant results for coalition formations in the period 1978–1986

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Anatomy of a Merger: A Numerical Model of A754

    Get PDF
    A754 is a well-observed cluster of galaxies which exhibits a variety of morphological peculiarities. These include a bar of X-ray emission that is offset significantly from the galaxy distribution, an elongated X-ray surface brightness distribution extending between two distinct peaks in the galaxy distribution, and an extremely non-isothermal and asymmetric intracluster medium (ICM) temperature morphology. Using these observational constraints, we present a numerical Hydro/N-body model of A754 in which two clusters (2.5:1 mass ratio) have merged nearly in the plane of the sky less than 0.5 Gyrs ago with an impact parameter of ~120 kpc, and an impact velocity of ~2500 km/s (roughly the escape velocity of the primary cluster). Our models allow us to identify the origin of A754's peculiar X-ray and temperature morphologies, the underlying hydrodynamical processes that shape them, and their future evolution. We make detailed predictions for future high resolution X-ray spectroscopic observations (e.g. ASTRO-E). We discuss general properties of our models which will be characteristic of off-axis mergers. In particular, we find significant non-thermal pressure support within the central region which could bias cluster mass estimates. We find significant angular momentum imparted on the gas distribution in the cluster. We find that mixing of the subcluster gas components is an inefficient process, particularly at large radii. Finally, we find that subsequent dark matter core passages result in an extended relaxation timescale.Comment: 27 pages, including tables and figures. Latex, 10 postscript figures. Figures 2, 6, and 7 are color, but will also print as B/W. Accepted for publication in the Astrophysical Journa

    The annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlGaAs heterostructures

    Get PDF
    Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures are often realized by annealing of AuGe/Ni/Au that is deposited on its surface. We studied how the quality of this type of ohmic contact depends on the annealing time and temperature, and how optimal parameters depend on the depth of the 2DEG below the surface. Combined with transmission electron microscopy and energy-dispersive X-ray spectrometry studies of the annealed contacts, our results allow for identifying the annealing mechanism and proposing a model that can predict optimal annealing parameters for a certain heterostructure.Comment: 9 pages, 4 figure

    Establishment of Protein Delivery Systems Targeting Podocytes

    Get PDF
    Podocytes are uniquely structured cells that are critical to the kidney filtration barrier. Their anatomic location on the outer side of the glomerular capillaries expose podocytes to large quantities of both plasma and urinary components and thus are reachable for drug delivery. Recent years have made clear that interference with podocyte-specific disease pathways can modulate glomerular function and influence severity and progression of glomerular disease.Here, we describe studies that show efficient transport of proteins into the mammalian cells mouse 3T3 fibroblasts and podocytes, utilizing an approach termed profection. We are using synthetic lipid structures that allow the safe packing of proteins or antibodies resulting in the subsequent delivery of protein into the cell. The uptake of lipid coated protein is facilitated by the intrinsic characteristic of cells such as podocytes to engulf particles that are physiologically retained in the extracellular matrix. Profection of the restriction enzyme MunI in 3T3 mouse fibroblasts caused an increase in DNA degradation. Moreover, purified proteins such as beta-galactosidase and the large GTPase dynamin could be profected into podocytes using two different profection reagents with the success rate of 95-100%. The delivered beta-galactosidase enzyme was properly folded and able to cleave its substrate X-gal in podocytes. Diseased podocytes are also potential recipients of protein cargo as we also delivered fluorophore labeled IgG into puromycin treated podocytes. We are currently optimizing our protocol for in vivo profection.Protein transfer is developing as an exciting tool to study and target highly differentiated cells such as podocytes

    Investigation of KIT gene mutations in women with 46,XX spontaneous premature ovarian failure

    Get PDF
    BACKGROUND: Spontaneous premature ovarian failure presents most commonly with secondary amenorrhea. Young women with the disorder are infertile and experience the symptoms and sequelae of estrogen deficiency. The mechanisms that give rise to spontaneous premature ovarian failure are largely unknown, but many reports suggest a genetic mechanism in some cases. The small family size associated with infertility makes genetic linkage analysis studies extremely difficult. Another approach that has proven successful has been to examine candidate genes based on known genetic phenotypes in other species. Studies in mice have demonstrated that c-kit, a transmembrane tyrosine kinase receptor, plays a critical role in gametogenesis. Here we test the hypothesis that human KIT mutations might be a cause of spontaneous premature ovarian failure. METHODS AND RESULTS: We examined 42 women with spontaneous premature ovarian failure and found partial X monosomy in two of them. In the remaining 40 women with known 46,XX spontaneous premature ovarian failure we evaluated the entire coding region of the KIT gene. We did this using polymerase chain reaction based single-stranded conformational polymorphism analysis and DNA sequencing. We did not identify a single mutation that would alter the amino acid sequence of the c-KIT protein in any of 40 patients (upper 95% confidence limit is 7.2%). We found one silent mutation at codon 798 and two intronic polymorphisms. CONCLUSION: Mutations in the coding regions of the KIT gene appear not to be a common cause of 46,XX spontaneous premature ovarian failure in North American women
    • …
    corecore