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Abstract. Integrating formal methods enhances their power as an intel-
lectual tool in modelling and design. This holds regardless of automation,
but a fortiori if software tools are conceived in an integrated framework.

Among the many approaches to integration, most valuable are those
with the widest potential impact and least obsolescence or dependency on
technology or particular tool-oriented paradigms. From a practical view,
integration by unifying models leads to more uniform, wider-spectrum,
yet simpler language design in automated tools for formal methods.

Hence this paper shows abstractions that cut across levels and bound-
aries between disciplines, help unifying the growing diversity of aspects
now covered by separate formal methods and mathematical models, and
even bridge the gap between “continuous” and “discrete” systems. The
abstractions also yield conceptual simplification by hiding non-essential
differences, avoiding repeating the same theory in different guises.

The underlying framework, not being the main topic, is outlined quite
tersely, but enough for showing the preferred formalism to express and
reason about the abstract paradigms of interest. Three such paradigms
are presented in sufficient detail to appreciate the surprisingly wide scope
of the obtained unification. The function extension paradigm is useful
from signal processing to functional predicate calculus. The function tol-
erance paradigm spans the spectrum from analog filters to record types,
relational databases and XML semantics. The coordinate space para-
digm covers modelling issues ranging from transmission lines to formal
semantics, stochatic processes and temporal calculi. One conclusion is
that integrated formal methods are best served by calculational tools.

Keywords. Abstraction, continuous, discrete, hybrid systems, data-
bases, filters, formal methods, function extension, function tolerance, in-
tegration, predicate calculus, quantification, semantics, signal processing,
transmission lines, unification, XML.

1 Introduction: motivation, choice of topic and

overview

Applying formal methods to complex systems may involve modelling different
aspects and views that are often expressed by different paradigms. Insofar as
complexity is due mainly to quantitative elements (e.g., size of the state space),
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past decades have seen impressive progress in the capabilities of automated tools,
where we single out model checking as a representative example [20, 32, 45].

However, when complexity is due to the need for combining different mod-
elling viewpoints [3, 28, 44], tools are too domain-specific, each reflecting a partic-
ular paradigm in a way not well-suited towards conceptual combination. More-
over, automation always carries a certain risk of entrenching ad hoc paradigms
and poor conceptualizations, the equivalent of legacy software in programming.
Both the tool developer and the user tend to preserve the invested effort, and
successes with near-term design solutions curtail incentive for innovation. Hence
much existing tool support fails to exploit the advantages that formality brings.

Integration is not in the first place a matter of tools, but of careful thinking
about concepts, abstractions and formalisms before starting to think about tools.

From an engineering perspective, there is an instructive analogy with auto-
mated tools in classical engineering disciplines, such as mechanics and electron-
ics. These disciplines are mainly based on physical phenomena, which are best
modelled by methods from (linear) algebra and analysis or calculus. The use of
well-known automated tools such as Maple, Mathematica, MATLAB, Mathcad
(and more specialized ones such as SPICE) is very widespread, comparatively
much more so than the use of tools for formal methods in software engineering.
We attritubute this to two major factors, namely

a. The abstractions: for modelling physical phenomena, algebra and analysis
have tremendous power of abstraction. For instance, one differential equation
can model vastly different phenomena, yielding effortless integration.

b. The formalisms1: the notation and rules supported by software tools are
those that have proven convenient for human communication and for pencil-
and-paper calculations that are essentially formal2. Still, this only refers to
calculating with derivatives and integrals; the logical arguments in analysis
are quite informal, causing a severe style breach (addressed below).

So tool design follows well-designed abstractions and formalisms. Wide-scope
abstractions, formalisms that are convenient for formal calculation by hand (not
just when automated) and style continuity are hallmarks of mature integration.

In computing (hardware, software), formal logic has always been the basis
for mathematical modelling, and is now supported by good formal tools [40, 42].
Although these tools conceptually have a wider scope than, say, model checking,
they do not play the same role as those mentioned for classical engineering.

a. The abstractions: the level where the generality of formal logic is exercised
differs from that of algebra and analysis. In fact, there is a strong case for
using formal logic in analysis to eliminate the style breach, which is now made
possible in an attractive way by advances in calculational logic. However, this

1 A formalism is a language/notation together with rules for symbolic manipulation.
2 This means manipulating expressions on the basis of their form, using precise rules,

unlike the common way based on meaning (intuitive interpretation). In this way, the
shape of the expressions provides guidance in calculations and proofs.
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only shows that logic by itself does not constitute the desired wide-spectrum
paradigm, but needs to be complemented by other mathematical concepts.

b. The formalisms: logics supported by current tools are by no means conve-
nient for pencil-and-paper calculation or human communication3. Here also
is a severe style breach: the mathematics used in studying principles and
algorithms for the tools themselves is highly informal (e.g., the use of quan-
tifiers and set comprehension reflects all the deficiencies outlined in section 2)
and the proofs in even the best treatments are mere plausibility arguments.

Here the tools impose the abstractions and formalisms, often quite narrow ones.
As an aside: Lamport [35] correctly observes that, for systems specification,

mathematics is more appropriate than program-like notation. The latter misses
the power of declarativity (necessary for abstraction and going beyond discrete
processes) and convenience for pencil-and-paper calculation (for which it is too
verbose). Integrating formal methods and tools makes similar demands.

The theme description for this conference explicitly mentions the following
approaches to integrating different viewpoints: creating hybrid notations, ex-
tending existing notations, translating between notations, incorporating a wider
perspective by innovative use of existing notation.

Of course, these are not mutually exclusive. The approach used here contains
some flavour of all, but most emphatically the latter. Referring to aforementioned
elements (abstractions and formalisms), it is characterized as follows.

a. A wider perspective is offered by abstractions that unify paradigms from the
continuous and the discrete world, often in surprising and inspiring ways. The
basis is functional predicate calculus [15] and generic functionals [16]; the
latter is the main layer of mathematical concepts complementing logic.

b. Existing notation is embedded in a general formalism that eliminates am-
biguities and inconsistencies, provides useful new forms of expression at no
extra cost, and supports formal calculation, also “by hand”. It fully elimi-
nates the style breach in classical mathematics as well as in formal methods.

The unification also entails considerable conceptual simplification. We shall
see how the concepts captured by our abstractions are usually known only in var-
ious different guises, the similarities hidden by different notations, and properties
derived separately for each of these guises. Abstractions allow doing the work
once and for all. As observed in [5], Relief [in coping with monumental growth
of usable knowledge] is found in the use of abstraction and generalization [using]
simple unifying concepts. This process has sometimes been called “compression”.
This very effective epistemological process also reduces fragmentation.

Overview The underlying framework is not the main topic here, but a rather
terse outline is given in section 2 to provide the wider context.

The main part of the paper deals with abstractions and paradigms, the for-
mer being formalized versions of the latter, stripped from their domain-specific

3 Auxiliary tools translating proofs into text are only a shallow patch, making things
worse by adding verbosity, not structure. The real issue is a matter of proof style.
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connotations. We select some of the most typical unifying abstractions from
which the general approach emerged. The topics chosen uncover insights derived
from the continuous world which reveal surprising similarities with seemingly
disparate discrete concepts, not vaguely, but in a prescise mathematical form.

For each topic, we start with a modelling aspect of analog systems, extend it
in a direct way to a general abstraction, and then show modelling applications
in the discrete world of computing. The first topic (section 3) goes from analog
adders and modulators in signal processing and automatic control via a func-
tion extension operator to predicate calculus. The second one (section 4) goes
from analog filter characteristics via a functional generalization of the Cartesian
product to record types, databases and XML semantics. The third one (section
5) goes from distributed systems via lumped ones to program semantics.

Related subjects and ramifications are pointed out along the way. We con-
clude with notes on the advantages of such far-reaching unifications in the theory
and practice of formal methods, tool design, and education in CS and EE.

2 The basic formalism as outlined in the Funmath LRRL

This section explains the formalism used in the sequel. Yet, we shall mostly use
our syntax in the conservative mode of synthesizing only common and familiar
notations. In this way, most of the notation from section 3 onward will appear
entirely familiar, unless (with due warning) the extra power of expression is used.

Hence readers uninterested in formalisms may gloss over section 2, and come
back later. Others may also be interested in the wider context. Indeed, the
formalism is designed to cover both continuous and discrete mathematics in
a formal way with (a) a minimum of syntactic constructs (b) a set of rules for
formal calculational reasoning (by hand, as in [21, 24–27]). Therefore this section
gives a first idea of how item (a) of this rather ambitious goal is achieved, while
item (b) is the main topic of a full course [15]. Since the best compact outline
is the “Funmath Language Rationale and Reference Leaflet”, we reproduce here
its main portion, taken verbatim (without frills) from an annex to [15].

Rationale A formal mathematical language is valuable insofar as it supports the
design of precise calculation rules that are convenient in everyday practice.

In this sense, mathematical conventions are strong in Algebra and Analysis
(e.g., rules for

∫
in every introductory Analysis text), weaker in Discrete Math-

ematics (e.g., rules for
∑

only in very few texts), and poor in Predicate Logic
(e.g., disparate conventions for ∀ and ∃, rules in most logic texts impractical).
This is reflected in the degree to which everyday calculation in these areas can
be called “formal”, and inversely proportional to the needs in Computer Science.

Entirely deficient are the conventions for denoting sets. Common expressions
such as {m ∈ N | m < n} and {2 ·n | n ∈ Z} seem innocuous, but exposing their
structure as {v ∈ X | p} and {e | v ∈ X} (with the metavariables below) reveals
the ambiguity: {n ∈ N | n ∈ Z} matches both. Calculation rules are nonexistent.

Funmath (Functional Mathematics) is not “yet another computer language”
but an approach to structure formalisms by conceiving mathematical objects
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as functions whenever convenient — which is quite more often than common
practice reflects. Four constructs suffice to synthesize most (all?) common con-
ventions without their ambiguities and inconsistencies, and also yield new yet
useful new forms of expression, such as point-free expressions. This leaflet covers
only syntax and main definitions; calculation rules are the main topic of [15].

Syntax To facilitate adopting this design in other formalisms, we avoid a formal
grammar. Instead, we use metavariables: i for a (tuple of) identifiers, and for
expressions: v, w: (tuple of) variable(s); d, e: arbitrary; p, q, r: boolean; X , Y :
set; f , g: function; P , Q: predicate; F , G: family of functions; S, T : family of sets.
By “family of X” we mean “X-valued function”. Here are the four constructs.

0. An identifier can be any (string of) symbol(s) except markers (binding colon
and filter mark, abstraction dot), parentheses ( ), and keywords (def, spec).

Identifiers are declared by bindings i :X ∧. p, (“i in X satisfying p”). The
filter ∧. p (or with p) is optional, e.g., n :N and n :Z∧. n ≥ 0 are the same.

Definitions, of the form def binding , declare constants, with global scope.
Existence and uniqueness are proof obligations, which is not the case for spec-
ifications, of the form spec binding . Example: def roto : R≥0 with roto2 = 2.
Well-established symbols (e.g., B, ⇒, R, +,

√
) are predefined constants.

1. An abstraction (binding . expression) denotes a function. The identifiers de-
clared are variables, with local scope. Writing f for v :X ∧. p . e, the domain
axiom is d ∈ D f ≡ d ∈ X∧p[vd and the mapping axiom d ∈ D f ⇒ f d = e[vd.
Here e[vd is e with d substituted for v. Example: n : Z . 2 · n.

2. A function application has the form f e in the default prefix syntax. When
binding a function identifier, dashes can specify other conventions, e.g., —⋆—
for infix. Prefix has precedence over infix. Parentheses are used for overriding
precedence rules, never as an operator. Application may be partial: if ⋆ is
an infix operator, then (a⋆) and (⋆b) satisfy (a⋆) b = a ⋆ b = (⋆b) a. Variadic
application, of the form e ⋆ e′ ⋆ e′′ ⋆ e′′′, is explained below.

3. Tupling, of the form e, e′, e′′ (any length n), denotes a function with domain
0..n − 1 and mapping illustrated by (e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ etc.

Macros can define shorthands in terms of the basic syntax, but few are needed.
Shorthands are de for d ↑ e (exponent) and de for d ↓ e (filtering, see below).
Sugaring macros are e | v : X ∧. p for v : X ∧. p . e and v : X | p for v : X ∧. p . v, and
finally v := e for v : ι e. The singleton set injector ι has axiom d ∈ ι e ≡ d = e.

Functions A function f is defined by its domain D f and its mapping (unique
image for every domain element). Skipping a technicality [15], equality is axiom-
atized by f = g ⇒ D f = D g ∧ (e ∈ D f ∩D g ⇒ f e = g e) and its converse, the
inference rule D f = D g∧ (v ∈ D f ∩D g ⇒ f v = g v) f = g (new variable v).

Example: the constant function definer • with X • e = v : X . e (v not free in
e); near-trivial, but very useful. Special instances: the empty function ε := ∅ • e
(any e, by equality) and the one-point function definer 7→ with d 7→ e = ι d • e.

Predicates are B-valued functions. Here B = {0, 1}, some prefer B = {f,t}.
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Pragmatics We show how to exploit the functional mathematics principle and
synthesise common notations, issues that are not evident from mere syntax.

(a) Elastic operators originally are functionals designed to obviate common
ad hoc abstractors like

∑
n
i=m, ∀ v : X , limx→a, but the concept is more general.

The quantification operators (∀, ∃) are defined by ∀P ≡ P = DP • 1 and
∃P ≡ P 6= D P • 0. Observe synthesis of familiar forms in ∀P ≡ ∀x :DP . P x
and ∀x : R . x2 ≥ 0 but also new forms as in ∀ (p, q) = p ∧ q and ∃ (p, q) = p ∨ q.

For every infix operator ⋆ an elastic extension E is designed such that x⋆y =
E (x, y). Evident are

⋃
and

⋂
for ∪ and ∩ (e.g., e ∈ ⋂

S ≡ ∀x :D S . e ∈ S x),
more interesting are

∑
for + (see [15]) and the next extensions for = and 6=.

The predicate con (constancy) with con f ≡ ∀x :D f . ∀ y :D f . f x = f y
and inj (injectivity) with inj f ≡ ∀x :D f . ∀ y :D f . f x = f y ⇒ x = y follow the
same design principle. Properties are con (d, e) ≡ d = e and inj (d, e) ≡ d 6= e.

The (function) range operator R has axiom e ∈ R f ≡ ∃x :D f . f x = e.
Using {—} as a synonym for R synthesizes set notations such as {m :N | m < n}
and {2 · n | n : Z}. We never abuse ∈ for binding, so {n :N | n ∈ Z} has no
ambiguity. Expressions like {e, e′, e′′} also have their usual meaning. Rules are
derived via ∃. We use R in defining the function arrow → by f ∈ X →Y ≡
D f = X ∧R f ⊆ Y . For the partial arrow, f ∈ X →/ Y ≡ D f ⊆ X ∧R f ⊆ Y .

Variadic function application is alternating an infix operator with arguments.
We uniformly take this as standing for the application of a matching elastic
operator to the argument list. Examples: p∧q∧r ≡ ∀ (p, q, r) and e = e′ = e′′ ≡
con (e, e′, e′′). An example of a new opportunity is e 6= e′ 6= e′′ ≡ inj (e, e′, e′′).

Traditional ad hoc abstractors have a “range” attached to them, as in
∑

n
i=m.

Elastic operators subsume this by the domain of the argument. This domain
modulation principle is supported by the generic function/set filtering operator
↓ defined by fP = x :D f ∩D P ∧. P x . f x and XP = {x : X ∩D P | P x}.

(b) Generic functionals [16] extend often-used functionals to arbitrary func-
tions by lifting restrictions. For instance, function inversion f− traditionally
requires inj f and composition f ◦ g traditionally requires R g ⊆ D f . We discard
all restrictions on the argument functions by defining the domain of the result
function such that its image definition is free of out-of-domain applications, e.g.,
f ◦ g = x :D g ∧. g x ∈ D f . f (g x). For the main generic functionals, see [16].

3 From signal processing to predicate calculus: the

function extension paradigm

a. Introduction of the paradigm by example First, operations defined on instanta-
neous values are extended formally to signals, in order to express the behaviour
of memoryless components. Next, we generalize this by including domain infor-
mation to obtain a generic functional applicable to all kinds of functions. Thirdly,
we illustrate its use in a functional variant of predicate calculus.

(i) The starting point is the description of the behaviour of certain systems in
terms of signals, i.e., functions of type T→A (or SA) where T is a time domain
and A a set of instantaneous values.
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In communications engineering [19] and automatic control [23], the simplest
basic blocks are memoryless devices realizing arithmetic operations. Usually the
extension of arithmetic operators to signals done implicitly by writing (x+y) t =
x t + y t. However, we shall see it pays off using an explicit direct extension
operator ,̂ e.g., for signals x and y with (x +̂ y) t = x t + y t.

(ii) The generalization step consists in making ̂ generic [16], i.e., applicable
to all infix operators ⋆ and all functions f and g by suitably defining f ⋆̂ g. The
criterion for suitability, as motivated in [14], is that the domain for f ⋆̂ g must
be defined such that the image definition does not contain any out-of-domain
applications. It is easy to see that this requirement is satisfied by defining

x ∈ D (f ⋆̂ g) ≡ x ∈ D f ∩ D g ∧ (f x, g x) ∈ D (⋆)

x ∈ D (f ⋆̂ g) ⇒ (f ⋆̂ g)x = (f x) ⋆ (g x). (1)

A noteworthy example is equality : (f =̂ g) = x :D f ∩ D g . f x = g x, hence
f =̂ g is a predicate on D f ∩ D g.

(iii) The particularization step to applications in predicate and quantifier
calculus uses the fact that our predicates are functions taking values in {0, 1}.
We shall also use the constant function specifier •: for any set X and any e,

D (X • e) = X and x ∈ X ⇒ (X • e)x = e. (2)

Our quantifiers ∀ and ∃ are predicates over predicates: for any predicate P ,

∀P ≡ P = DP • 1 and ∃P ≡ P 6= DP • 0. (3)

These simple definitions yield a powerful algebra with dozens of calculation rules
for everyday practical use [15]. Here we mention only one theorem illustrating
the role of ̂, namely ∀P ∧ ∀Q ⇒ ∀ (P ∧̂ Q). Here is a calculational proof.

∀P ∧ ∀Q ≡ 〈Def. ∀〉 P = DP • 1 ∧ Q = DQ • 1

⇒ 〈Leibniz〉 ∀ (P ∧̂ Q) ≡ ∀ (D P • 1 ∧̂ DQ • 1)

≡ 〈Def. 〉̂ ∀ (P ∧̂ Q) ≡ ∀x :DP ∩ DQ . (D P • 1)x ∧ (DQ • 1)x

≡ 〈Def. •)〉 ∀ (P ∧̂ Q) ≡ ∀x :DP ∩ DQ . 1 ∧ 1

≡ 〈∀ (X • 1)〉 ∀ (P ∧̂ Q) ≡ 1

This theorem has a conditional converse: D P = DQ ⇒ ∀ (P ∧̂ Q) ⇒ ∀P ∧ ∀Q.

b. Some clarifying remarks on predicates It is not always customary in logic to
view propositions (formulas) as boolean expressions, or predicates as boolean
functions. However, this view is common in programming languages, and gives
booleans the same status as other types. In fact, we make a further unification
with the rest of mathematics, viewing booleans as a restriction of arithmetic
to {0, 1}, as in [13]. In a similar approach, Hehner [30] prefers {−∞, +∞}. We
chose {0, 1} because it merges with modulo 2 arithmetic, facilitates counting and
obviates characteristic functions in combinatorial and word problems.

Introducing the constants {0, 1} (or {f,t}) in traditional logic is somewhat
confusing at first, because p ≡ 1 is exchangeable with p. This seeming difficulty
disappears, however, be pondering the associativity of ≡ in p ≡ (p ≡ 1).
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Another issue, raised also by Lamport [35, page 14] is that x > 1, taken out
of context, can be either a formula depending on x, or a (provable) statement
depending on the hypotheses. In metamathematics, one often uses to make
explicit that provability is meant. However, as Lampson notes, in regular (yet
careful) mathematical discourse, symbols like are not used since the intent
(formula versus statement) is clear from the context.

Finally, note that our functional ∀ does not “range” over variables but is a
predicate (boolean function) over predicates, as in ∀P . The familiar variables
enter the picture when P is an abstraction of the form x : X . p, where p is a
formula, so ∀x : X . p has familiar form and meaning. Using functionals (like ∀)
rather than ad hoc abstractors (like ∀x) is the essence of our elastic operators.

c. Final remarks on direct extension More recently, the basic concept of direct
extension also appears in programming. In the program semantics of Dijkstra
and Scholten [21], operators are assumed extended implicitly to structures, e.g.,
the arithmetic + extends to structures, as in (x + y).n = x.n + y.n. This applies
even to equality, i.e. if x and y are structures, then x = y does not denote
equality of x and y but a function with (x = y).n ≡ x.n = y.n. The concept of
polymorphism in the graphical programming language LabVIEW [6] designates
a similar implicit extension. Implicit extension is reasonable in a restricted area
of discourse, but it is overly rigid for general practice. An explicit operator offers
more flexibility and allows generalization according to our design principles by
specifying the result types.

We mention also that function composition (◦) is made generic according to
the same requirement by defining, for any functions f and g,

x ∈ D (f ◦ g) ≡ x ∈ D g ∧ g x ∈ D f

x ∈ D (f ◦ g) ⇒ (f ◦ g)x = f (g x). (4)

The (simplex) direct extension (—) for extending single argument functions can
now be defined by f g = f ◦ g.

Observe also that, since tuples are functions, f ◦ (x, y) = f x, f y. This prop-
erty subsumes the “map” operator for functional programming.

All these operators entail a rich collection of algebraic laws that can be
expressed in point-free form, yet preserve the intricate domain refinements (as
can be verified calculationally). Examples are f ◦ (g ◦h) = (f ◦ g) ◦h and h ◦ g =
h ◦ g and (⋆̂) = (⋆) ◦ (&). Elaboration is beyond the scope of this paper.

4 From analog filters to record types: the function

tolerance paradigm

a. Introduction of the paradigm by example Starting with the usual way of speci-
fying the frequency/gain characteristic of a RF filter, we formalize the concept of
tolerance for functions and generalize it to arbitrary sets. The resulting generic
functional, when particularized to discrete domains, subsumes the familiar Carte-
sian product with a functional interpretation. Combination with enumeration
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types expresses record types (in a way quite different from, but “mappable” to,
the formulation with projection or selector functions used in Haskell). It is suf-
ficiently general for capturing all types necessary to describe abstract syntax,
directory structures, and XML documents. Again we proceed in three steps.

(i) The starting point is the specification of analog filter characteristics, for
instance gain as a function of frequency. For continuous systems, accuracy of
measurements and tolerances on components are an important issue. To extend
this notion to functions in a formal way, it suffices to introduce a tolerance
function T that specifies, for every value x in its domain (e.g., frequency), the
set T x of allowable values (e.g., for the filter gain). More precisely, we say that
a function f (e.g., a specific filter characteristic) meets the tolerance T iff

D f = D T ∧ ∀x :D f ∩D T . f x ∈ T x.

This principle, illustrated in Fig. 1, provides the setting for the next two steps.

6Gain

-Frequency�
�
�
�
�
� A

A
A
A
A
A�

�
�
�� A

A
A
AA

6

?

x

��� T x

� f xq

Fig. 1. A bandpass filter characteristic

(ii) The (small) generalization step is admitting any (not just “dense”) sets
for D T . This suggests defining an operator × such that, if T is a set-valued
function, ×T is the set of functions meeting tolerance T :

f ∈×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x (5)

Observe the analogy with the definition of function equality:

f = g ≡ D f = D g ∧ ∀x :D f ∩ D g . f x = g x.

With the axiom x = y ≡ x ∈ ι y for the singleton set injector ι , this yields
calculationally f = g ≡ f ∈×(ι ◦ g), hence ×can also specify exactly.

(iii) Particularization step: Instantiate (5) with T :=A, B (two sets). Then

f ∈×(A, B) ≡ D f = B ∧ f 0 ∈ A ∧ f 1 ∈ B

by calculation. Hence ×(A, B) = A×B, the usual Cartesian product (con-
sidering tuples as functions). This also explains the notation × and the name
generalized functional Cartesian product (abbreviated funcart product).

As usual,×defines variadic shorthand for ×, as in A×B ×C =×(A, B, C).
Applied to abstractions, as in×a : A . B a, it covers so-called dependent types [29],
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in the literature often denoted by ad hoc abstractions like
∏

a∈A B a. We also

introduce the suggestive shorthand A ∋ a→B a for ×a : A . B a, which is espe-
cially convenient in chained dependencies, e.g. A ∋ a→B a ∋ b→C a b.

b. Important properties In contrast with ad hoc abstractors like
∏

a∈A B a,

the operator × is a genuine functional and has many useful algebraic prop-
erties. Most noteworthy is the inverse. By the axiom of choice, ×T 6= ∅ ≡
∀x :D T . T 6= ∅. This also characterizes the bijectivity domain of × and, if×T 6= ∅, then ×− (×T ) = T . For the usual cartesian product this implies
that, if A 6= ∅ and B 6= ∅, then ×− (A×B) = A, B, hence ×−(A×B) 0 = A
and ×−(A×B) 1 = B. Finally, an explicit image definition is

×− S = x :Dom S . {f x | f : S} (6)

for any nonempty S in the range of ×, where Dom S is the common domain of
the functions in S (extracted, e.g., by Dom S =

⋂
f : S .D f).

In fact, the funcart operator is the “workhorse” for typing all structures
unified by functional mathematics [12, 13]. Obviously, A→B =×(A • B), so it
covers all “ordinary” function types as well.

c. Aggregate data types and structures Let n = {m :N | m < n} for n in
N′ := N∪ι∞. For any set A and n in N′, define A ↑n (or An) by A ↑n = n→A,
hence An =×( n •A), the n-fold product. We also define A∗ =

⋃
n :N . An.

Apart from sequences, the most ubiquitous aggregate data type are records
in the sense of PASCAL [34].

One approach for expressing records functionally is using selector functions
corresponding to the field labels, where the records themselves appear as argu-
ments. We have explored this alternative some time ago in a different context [8],
and it is also currently used in Haskell [33]. However, it does not make records
themselves into functions and has a rather heterogeneous flavor.

Therefore our preferred alternative is the × operator from (5), whereby
records are defined as functions whose domain is a set of field labels constituting
an enumeration type. For instance

Person :=×(name 7→A
∗ ∪· age 7→N),

where name and age are elements of an enumeration type, defines a function
type such that the declaration employee :Person specifies employee name ∈ A∗

and employee age ∈ N. The syntax can be made more attractice by defining, for
instance, an elastic type definition operator Record with RecordF = ×(

⋃
· F ),

so we can write Person :=Record (name 7→A
∗, age 7→N).

Observe the use of function merge ∪· . A full discussion of this operator [16]
is beyond the scope of this paper. However, it suffices to know that, if f c© g,
then D (f ∪· g) = D f ∪ D g and x ∈ D f ⇒ (f ∪· g)x = f x (similarly for g).
Compatibility for functions is defined by f c© g ≡ ∀x ∈ D f ∩ D g . f x = g x.

As mentioned, other structures are also defined as functions. For instance,
trees are functions whose domains are branching structures, i.e., sets of sequences
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describing the path from the root to a leaf in the obvious way. This covers any
kind of branch labeling. For instance, for a binary tree, the branching structure is
a subset of B

∗. Classes of trees are characterized by restrictions on the branching
structures. The ×operator can even specify types for leaves individually.

Aggregates defined as functions inherit all elastic operators for which the
images are of suitable type. For instance,

∑
s sums the fields or leaves of any

number-valued record, tree or other structure s.

d. Application to relational databases Database systems are intended to store
information and present a convenient interface to the user for retrieving the
desired parts and for constructing and manipulating “virtual tables” containing
precisely the information of interest in tabular form.

Code Name Instructor Prerequisites
CS100 Basic Mathematics for CS R. Barns
MA115 Introduction to Probability K. Jason MA100
CS300 Formal Methods in Engineering R. Barns CS100, EE150
· · · · · · · · ·

A relational database presents the tables as relations. One can view each row as
a tuple, and a collection of tuples of the same type as a relation.

However, in the traditional nonfunctional view of tuples, components can be
accessed only by a separate indexing function using natural numbers. This is less
convenient than, for instance, the column headings. The usual patch consists in
“grafting” onto the relational scheme so-called attribute names corresponding to
column headings. Disadvantages are that the mathematical model is not purely
relational any more, and that operators for handling tables are ad hoc.

Viewing the table rows as records in functional sense as before allows em-
bedding in a more general framework with useful algebraic properties and in-
heriting the generic operators. For instance, the table shown can be declared as
GCI :P CID , a set of course information descriptors whose type is defined by

def CID := Record (code 7→Code, name 7→A
∗, inst 7→Staff , prrq 7→Code∗).

Since in our formalism table rows are functions, queries can be constructed by
functionals. As an example, we show how this is done for the most subtle of the
usual query constructs in database languages, the (“natural”) join.

We define the operator ⋊⋉ combining tables S and T by uniting the domains
of the elements (i.e., the field names), but keeping only those records for which
the same field name in both tables have the same contents, i.e., only compatible
records are combined. In other words,

S ⋊⋉ T = {s∪· t | (s, t) : S ×T ∧. s c© t}

e. Application to XML documents The following is a simple example of a DTD
(Document Type Definition) and a typical instance (here without attributes).
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<?xml version = "1.0"?>

<!ELEMENT book (title, author*,year?> <book>

<!ELEMENT title (#PCDATA)> <title>Trees</title>

<!ELEMENT author (#PCDATA)> <author>V. Green</author>

<!ELEMENT year (#PCDATA)> <year>2003</year>

</book>

The DTD semantics and the instance can be expressed mathematically as fol-
lows, with minor tacit simplifications (a complete discussion is given in [46]).

booktype = Record (title 7→A
∗, author 7→ (A∗)∗, year 7→ ι unspecified ∪ A

∗)

bookinst =
⋃
· (title 7→ “Trees”, author 7→ τ “V. Green”, year 7→ “2003”)

The operator τ , for expressing sequences of length 1, is defined by τ x = 0 7→x.

5 From transmission lines to program semantics: the

coordinate space paradigm

a. Introduction of the paradigm by example Starting with the well-known tele-
graphists’ equation for transmission lines, we impose a structuring on the para-
meters involved (voltage, curent, time, space), and show how discretization of
the space coordinate covers the usual models for lumped circuits and the notion
of state in formal semantics. As mentioned earlier, we do this in three steps.

(i) The starting point is the typical modelling of dynamical systems in physics
and engineering. The example chosen is the simplest model of a transmission line
consisting of two wires, with a load at one end, as depicted in Fig. 2. Voltage v

6
v x t

+

−

�x 0

d A d

d B d

ZL

-i x t

Fig. 2. Introducing the coordinate space paradigm

and current i, with the conventions shown, are functions of type S→T→U where
S is the spatial coordinate space (say, R≥0, for the distance from the load), T is
the temporal coordinate space (R≥0 or R, as desired) and U is the instantaneous
value space (voltage, current, typically R). With these conventions, v x t and i x t
denote the voltage and the current at location x at time instant t.

Our formulation as higher-order functions (Currying) facilitates defining in-
tegral transforms, e.g. for a lossless line, in terms of incident and reflected wave:

v x t =
→
v 0 (t + x/c) +

←
v 0 (t − x/c)

V x f =
→

V 0 f · ej·kf ·x +
←

V 0 f · e−j·kf ·x
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Here V : S→R→C is the Fourier transform of v with V x f = F (v x) f , and
kf = 2 · π · f/c. However, it is the time domain formulation S→T→U that
provides the setting for the following two steps.

(ii) The (small) generalization step consists in admitting any (not only dense)
coordinates, e.g. refining the above model by introducing a set W := {A, B} of
names for the wires and new functions for the potential and the current.

v′— : W →R≥0 →T→V related to v by v′A x t − v′B x t = v x t

i′— : W →R≥0 →T→ I related to i by i′A x t = i x t ∧ i′B x t = −(i x t)

Discrete coordinates are used in systems semantics [10, 11] to express the
semantics of a language for describing lumped adirectional systems [12].

The order of appearance of the space and time coordinates is a matter of
convenience. In electronics, one often uses the more “neutral” Cartesian product,
writing v : S×T→V and v (x, t). Higher-order functions support 2 variants:

– The signal space formulation: a signal is a function from T to U, and quan-
tities of interest are described by functions of type S→T→U.

– The state space formulation: a state is a function from S to U, and quantities
of interest are described by functions of type T→ S→U.

Here U denotes the universe of values of interest (voltages in our example).
(iii) The particularization step to program semantics now simply consists in

defining the spatial coordinate space S to be the set of identifiers introduced
in the declarations as variables, T to be a suitable discrete space for the locus
of control (in the syntax tree of the program) and U the value space specified
in the declarations. We define the state space S := S→U or, as a refinement
expressing dependence on the type declared for each variable, S := S ∋ v→Uv.

For instance, if x, y and z are declared as variables, then S = {x, y, z}. We can
express the effect of a given command by an equation for the dynamical function
st : T→S to express the relationship between the state at the (abstract) time t
of execution and the state at time next t after execution. E.g., for the assignment

‘z := x + y’

the function st : T→ S→U satisfies the equation4

st (next t) v = (v = z) ? st t x + st t y st t v. (7)

We can eliminate v by two general-purpose axiliary operators . Function over-
riding (>©) is defined as follows. For any functions f and g, the domain of f >©g
is given by D (f >©g) = D f ∪ D g, and the image for any x in this domain by
(f >©g)x = x ∈ D f ? g x g x. The operator 7→ allows writing a function whose
domain consists of the single element d, having image e, as d 7→ e. As expected,
((d 7→ e) >©g)x = (x = d) ? e g x for any x in ι e ∪D g. Hence (7) becomes

st (next t) = (z 7→ st t x + st t y) >© st t. (8)

4 The conditional of the form c ? b a, read: “if c then b else a”, is self-explanatory.
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Since st (next t) depends on t only via st t (this is the case in general, not just
in this example), one can conveniently eliminate time by expressing the effect
of every command as a state transformation, viz. a function of type S →S. We
combine these functions into one by including the command as a parameter and
defining a meaning function C : C →S →S, where C is the set of commands. For
instance, the semantics of our assigment is expressed by

C ‘z := x + y’ s = (z 7→ s x+ s y) >©s. (9)

This is the familiar formulation of denotational semantics [39, 48].
Dependence of the locus of control on data can be conveniently expressed by

adapting a simple technique from hydrodynamics (relating paths to streamlines)
to abstract syntax trees (not elaborated here), whereas environments can be
formulated as coordinate transformation.

b. Other applications along the way Viewing variables as coordinate values raises
the question: are they really variables? From the unifying viewpoint (and in
denotational semantics) they are not: only the state varies with time!

This is clarified by the following example, which also illustrates the ramifi-
cations for hardware description languages. Consider the digital device (a gate)
and the analog device (an operational amplifier) from Fig. 3.

What is the role of the labels x y z and x′ y′ z′ on the terminals?

z �
�
�∧ � y

� x
z′ � ���

HHH−
� y′

+� x′

Fig. 3. Devices with labelled terminals

Many choices are possible, for instance

– Names of terminals (just labels in an alphabet).
– Instantaneous values, e.g., boolean ones in z = x∧y, real ones in z′ = x′−y′.
– Signals (time functions), e.g., of type T→B in z t = x t ∧ y t and of type

T→R in z′ t = x′ t + y′ t.

Observe that the interpretations are mutually incompatible, e.g., the possibil-
ity of x = y as values conflicts with the obvious fact that x 6= y as terminals.
Furthermore, using, for instance, x′ and y′ as function names may require let-
ting x′ = sin for one gedanken experiment (or real experiment) and x′ = cos
in another. Such “context switching” looks more like assignment in imperative
programming than mathematics. Although often harmless, it limits expression.

The way to support all these views without conflict is the coordinate par-
adigm. In addition to the space coordinate space S, the time coordinate space
T and the instantaneous value space U, we consider an experiment index space
Z, which supports distinguishing between experiments, but can often be left im-
plicit. As before, we have the signal space formulation sg : Z →S→T→U and
the state space formulation st : Z →T→ S→U.
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In the example of Fig. 3, names of terminals figure as space coordinates. For
instance, using the signal space formulation and leaving Z implicit, we make the
following typical conventions:

– for the AND-gate: S = {x, y, z} and T = N and U = B

– for the op amp: S
′ = {x′, y′, z′} and T

′ = R and U
′ = R

The two families of signals s : S→T→U and s′ :S′→T′→U′ satisfy respectively

s z n = s xn + s y n and s′ z′ t = s′ x′ t + s′ y′ t. (10)

or, equivalently, using direct extensions: s z = s x ∧̂ s y and s′ z′ = s′ x′ +̂ s′ y′.
Direct extension is a topic for later; all that needs to be understood now is that it
“extends“ an operator ⋆ over instantaneous values to an operator ⋆̂ over signals
by (f ⋆̂ g) t = f t ⋆ g t. This is such standard practice in communications and
control engineering [19, 23] that the extension operator (̂ ) is usually left implicit.

c. Defining stochastic processes with the coordinate paradigm Consider the signal
space formulation

sg : Z → S→T→U

and assume a probability measure on Z is defined

Pr :P Z → [0, 1].

Then Z (seen as the index set for all possible experiments) will be called a sample
description space as in [43].

The transpose5, of sg , namely sgT , is of type S→Z →T→U and will be
called a family of stochastic processes. For every x in S there is one such process
sgT x, of type Z →T→U. The distribution function, assuming U := R, is then
defined in the following fashion, where the image definition is the familiar one
from the theory of stochastic processes [36, 41].

def F— : S→T→U→ [0, 1] with Fx t η = Pr {ζ : Z | sg ζ x t ≤ η}

For hardwired systems, S is the set of (real or conceptual) terminals, and the
model coincides with the classical one. In program semantics, letting S be the set
of variables and defining a probability measure on Z yields stochastic semantics.

c. Functional temporal calculus We show how the formulation from [9] fits into
the coordinate space paradigm. Again letting sg : Z → S→T→U where Z is an
index set for all possible experiments, we call the transpose sgT a family of
temporal variables. Each temporal variable sgT x (for given x in S) is a function
of type Z →T→U. A temporal operator is a function of type

O := (Z →T→U)→ (Z →T→W)

5 Transposition is another generic operator not discussed here; for the special case
f : A→B →C, the transpose fT is of type B →A→C and satisfies fT b a = f a b.
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i.e. from temporal variables to temporal variables. We consider two kinds of
temporal operators.

A temporal mapping g : O is defined such that g v ζ t = f (v ζ t) for some
f : U→W. It can be used to model the input/output behaviour of a memoryless
system. Typical temporal mappings are direct extensions of arithmetic (+, −
etc.), propositional (∧, ∨ etc.) and other operators of interest.

A temporal combinator is a temporal operator that is not a temporal map-
ping. Typical temporal combinators are the next ( f), always (�) and sometime
(♦) operators defined such that, for every temporal variable v : Z →T→U, every
ζ : Z and every t : T (where T is assumed ordered) by

fv ζ t = v ζ (next t) (e.g., next t = t + 1 for T := N)

� v ζ t = ∀ t′ : T≥t . v ζ t′ (hereU = W = B)

♦ v ζ t = ∃ t′ : T≥t . v ζ t′ (hereU = W = B)

Various choices for T (discrete, continuous, partial orderings, “branching”) and
matching definitions are possible, depending on the aspect to be modelled. For
instance, for discrete T with a next operator and t′ ≥ t ≡ ∃n : N . t′ = nextn t,
clearly � v ζ t = ∀n :N . v ζ (nextn t).

Since all these operators are defined as higher-order functions, they can be
used in the point-free style with respect to the dummies in Z and T, resulting
in expressions of the form (omitting )̂

� (w ⇒ fw) ⇒ w ⇒ � w.

Hence we can eliminate all explicit reference to time, but also refer to time when
systems modelling requires doing so.

The formulas without reference to time are formally identical to those in
certain variants of temporal logic [37]. Temporal logic is more abstract in the
sense that a given variant may have several models, whereas temporal calculus
is a single model in itself. On the other hand, for certain applications pertaining
to concrete systems, working within a concrete model may be necessary to keep
an explicit relationship with other system aspects. For instance, it is shown in [9]
how the next operator fcan be directly related to the z-transform, an important
technique in discrete signal processing and control systems engineering [23, 36].

An extension of the functional temporal calculus with a collection of auxiliary
functionals [17] is currently being applied to formally specify so-called patterns
in Bandera [22], a system for modelling concurrent programs written in Java.

6 Concluding remarks

We have shown how suitable abstractions unify concepts in very disparate fields.
As one referee aptly observed, the mathematics often seems far removed

from the area of discourse (e.g., without our explanation, ×T seems unrelated
to analog filters) and reasoning amounts to “playing with mathematics”.
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This is related to a phenomenon that Wigner calls the “unreasonable effec-
tiveness of mathematics” [47]. For instance, the “mechanical” differential equa-
tion m ·D2 x+ k ·x = 0 (for mass m, spring constant k) and the “electrical” one
L · D2 i + i/C = 0 (for inductor L, capacitor C) are both captured by the form
a · D2 f + c · f = 0. The particulars of the domain of discourse disappear, and
one can reason mathematically without distraction by irrelevant concerns.

The “unreasonable effectiveness of mathematics” is directly useful to formal
methods. Indeed, rather than designing different methods particular to various
application domains (reflecting their idiosyncrasies), unifying models remove ir-
relevant differences and suggest more generic formal methods whereby the de-
signer can concentrate on exploiting the reasoning power of mathematics.

Admittedly, this goes against the grain of some trends in tool design advocat-
ing “being as close as possible to the language of the application domain”. How-
ever, it has taken physics a few thousand years to realize the advantages of the
opposite way: translating the concepts from the application domain into mathe-
matics (Goethe notwithstanding). Computer science is considerably younger but
need not wait a thousand years: once the example has been set, the learning time
can be shortened. In fact, much useful mathematics is already there.

Anyway, unification by abstraction provides an important intellectual asset,
but when it is also applied to the design of automated tools to support formal
methods, it can lead to considerably more commonality and wider scope.

Regarding the preferable style of such tools, consider the following calculation
examples taken from two typical engineering textbooks, namely [7] and [18].

1

n

∑

x

pn(x|θ)ln(x)

≤ 1

n

∑

x

pn(x|θ)[1 − log qn(x)]

=
1

n
+

1

n
L(pn;qn) + Hn(θ)

=
1

n
+

1

n
d(pn,G) + Hn(θ)

≤ 2

n
+ Hn(θ)

F (s) =

∫ +∞

−∞

e−|x|e−i2πxsdx

= 2

∫ +∞

0

e−x cos 2πxs dx

= 2 Re

∫ +∞

0

e−xei2πxsdx

= 2 Re
−1

i2πs − 1

=
2

4π2s2 + 1
.

The style is calculational, and in the second example even purely equational,
since only equality occurs. Not surprisingly, this is also the most convenient
style to formally manipulate expressions in the various unifying system models.

By contrast, tools for logic nearly all use variants of classical formal logic,
which amounts to quite different styles such as “natural” reasoning, sequent cal-
culus, tableaux and so on. These styles are acceptable for internal representation
but are not suited (nor systematically used) for hand calculation. As pointed out
in [26], this seriously hampers their general usefulness. We could add the com-
ment that the best choice of language or style for any automated tool is one
whose formal manipulation rules are convenient for hand calculation as well.
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An aside observation is the following Turing-like test for integration: well-
integrated formal methods can formally describe not only target systems but also
the concepts and implementations of various tools in a way that is convenient
for exposition, formal reasoning and proving properties about these tools.

Work by Dijkstra [21], Gries [24–27] and others shows conclusively that cal-
culational logic meets this criterion. Its style is similar to the preceding engi-
neering calculation examples, with ≡ and ⇒ as logical counterparts of = and ≤.
Thereby formal logic becomes a practical tool for everyday use, which explains
why it has has found wide acceptance in the computing science community dur-
ing the recent years. Its usefulness would even gain from automated support but,
as pointed out in [38], considerable work remains to be done in this direction.

While developing our unifying models, we found calculational logic to merge
“seamlessly” with classical algebra and analysis (as used in more traditional
physics-based engineering models), thereby closely approximating Leibniz’s ideal.
The resulting common ground not only increases the scope, but also consider-
ably lowers the threshold for introduction in industry. This should perhaps be a
major consideration in designing tools to support formal engineering methods.

Such a tool could have a core based on substitution and equality (Leibniz’s
rule of “equals for equals”) and including function abstraction, surrounded by
a layer of propositional calculus, generic functionals [16] and functional predi-
cate calculus [15], and a second layer implementing mathematical concepts as
developed in this paper for unifying system models.

Part of this rationale also underlies B [2]. Differences are our use of generic
functions, the functional predicate calculus, and the application to “continuous”
mathematics. Similarly, the scope of inification in Hoare and Jifeng’s Unified
Theories of Programming [31] is the discrete domain of programming languages.

The concepts presented are also advantageous in education. Factoring out
common aspects avoids unnecessary replication, while stimulating the ability to
think at a more abstract level. As a fringe benefit, this creates additional room for
other topics, which is necessary in view of the rapid technological developments
and the limited time available in most curricula, or even the reduction in time
as imposed by the Bachelor/Master reform throughout Europe.
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