16 research outputs found

    Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore the potential value of high-throughput genotyping assays in the analysis of large and complex genomes, we designed two highly multiplexed Illumina bead arrays using the GoldenGate SNP assay for gene mapping in white spruce (<it>Picea glauca </it>[Moench] Voss) and black spruce (<it>Picea mariana </it>[Mill.] B.S.P.).</p> <p>Results</p> <p>Each array included 768 SNPs, identified by resequencing genomic DNA from parents of each mapping population. For white spruce and black spruce, respectively, 69.2% and 77.1% of genotyped SNPs had valid GoldenGate assay scores and segregated in the mapping populations. For each of these successful SNPs, on average, valid genotyping scores were obtained for over 99% of progeny. SNP data were integrated to pre-existing ALFP, ESTP, and SSR markers to construct two individual linkage maps and a composite map for white spruce and black spruce genomes. The white spruce composite map contained 821 markers including 348 gene loci. Also, 835 markers including 328 gene loci were positioned on the black spruce composite map. In total, 215 anchor markers (mostly gene markers) were shared between the two species. Considering lineage divergence at least 10 Myr ago between the two spruces, interspecific comparison of homoeologous linkage groups revealed remarkable synteny and marker colinearity.</p> <p>Conclusion</p> <p>The design of customized highly multiplexed Illumina SNP arrays appears as an efficient procedure to enhance the mapping of expressed genes and make linkage maps more informative and powerful in such species with poorly known genomes. This genotyping approach will open new avenues for co-localizing candidate genes and QTLs, partial genome sequencing, and comparative mapping across conifers.</p

    Activation of the extracellular signal-regulated protein kinase (ERK) cascade by membrane-type-1 matrix metalloproteinase (MT1-MMP)

    Get PDF
    AbstractThe mechanisms underlying membrane-type-1 matrix metalloproteinase (MT1-MMP)-dependent induction of cell migration were investigated. Overexpression of MT1-MMP induced a marked increase in cell migration, this increase being dependent on the presence of the cytoplasmic domain of the protein. MT1-MMP-dependent migration was inhibited by a mitogen-activated protein kinase kinase 1 inhibitor, suggesting the involvement of the extracellular signal-regulated protein kinase (ERK) cascade in the induction of migration. Accordingly, MT1-MMP overexpression induced the activation of ERK, this process being also dependent on the presence of its cytoplasmic domain. MT1-MMP-induced activation of both migration and ERK required the catalytic activity of the enzyme as well as attachment of the cells to matrix proteins. The MT1-MMP-dependent activation of ERK was correlated with the activation of transcription through the serum response element, whereas other promoters were unaffected. Taken together, these results indicate that MT1-MMP trigger important changes in cellular signal transduction events, leading to cell migration and to gene transcription, and that these signals possibly originate from the cytoplasmic domain of the protein

    Data from: Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana)

    No full text
    Picea mariana is a widely distributed boreal conifer across Canada and the subject of advanced breeding programs for which population genomics and genomic selection approaches are being developed. Targeted sequencing was achieved after capturing P. mariana exome with probes designed from the sequenced transcriptome of Picea glauca, a distant relative. A high capture efficiency of 75.9% was reached although spruce has a complex and large genome including gene sequences interspersed by some long introns. The results confirmed the relevance of using probes from congeneric species to perform successfully interspecific exome capture in the genus Picea. A bioinformatics pipeline was developed including stringent criteria that helped detect a set of 97 075 highly reliable in silico SNPs. These SNPs were distributed across 14 909 genes. Part of an Infinium iSelect array was used to estimate the rate of true positives by validating 4267 of the predicted in silico SNPs by genotyping trees from P. mariana populations. The true positive rate was 96.2%, for in silico SNPs compared to a genotyping success rate of 96.7% for a set 1115 P. mariana control SNPs recycled from previous genotyping arrays. These results indicate the high success rate of the genotyping array and the relevance of the selection criteria used to delineate the new P. mariana in silico SNP resource. Furthermore, in silico SNPs were generally of medium to high frequency in natural populations, thus providing high informative value for future population genomics applications

    Genotype_PmGP1_Natural_Population

    No full text
    PmGP1 array genotyping results for all SNP accessions for trees from natural populations: genotypes for all SNPs of PmGP1 for trees from Picea mariana natural populations

    SNP_dataset_GS_reference_mapper_software

    No full text
    SNP dataset from GS reference mapper software: contig number, SNP position, reference and variant alleles, total depth and variant frequency (VarFreq)
    corecore