3,266 research outputs found
Combinatorics of Hard Particles on Planar Graphs
We revisit the problem of hard particles on planar random tetravalent graphs
in view of recent combinatorial techniques relating planar diagrams to
decorated trees. We show how to recover the two-matrix model solution to this
problem in this purely combinatorial language.Comment: 35 pages, 20 figures, tex, harvmac, eps
The hidden burden of adult allergic rhinitis : UK healthcare resource utilisation survey
Funding Funding for this survey was provided by Meda Pharma.Peer reviewedPublisher PD
Three osculating walkers
We consider three directed walkers on the square lattice, which move
simultaneously at each tick of a clock and never cross. Their trajectories form
a non-crossing configuration of walks. This configuration is said to be
osculating if the walkers never share an edge, and vicious (or:
non-intersecting) if they never meet. We give a closed form expression for the
generating function of osculating configurations starting from prescribed
points. This generating function turns out to be algebraic. We also relate the
enumeration of osculating configurations with prescribed starting and ending
points to the (better understood) enumeration of non-intersecting
configurations. Our method is based on a step by step decomposition of
osculating configurations, and on the solution of the functional equation
provided by this decomposition
ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
European Innovation Partnership on Active and Healthy Ageing Reference Site MACVIA-France, EU Structural and Development Fund Languedoc-Roussillon, ARIA.Peer reviewedPublisher PD
Planar maps and continued fractions
We present an unexpected connection between two map enumeration problems. The
first one consists in counting planar maps with a boundary of prescribed
length. The second one consists in counting planar maps with two points at a
prescribed distance. We show that, in the general class of maps with controlled
face degrees, the solution for both problems is actually encoded into the same
quantity, respectively via its power series expansion and its continued
fraction expansion. We then use known techniques for tackling the first problem
in order to solve the second. This novel viewpoint provides a constructive
approach for computing the so-called distance-dependent two-point function of
general planar maps. We prove and extend some previously predicted exact
formulas, which we identify in terms of particular Schur functions.Comment: 47 pages, 17 figures, final version (very minor changes since v2
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
- …