3,266 research outputs found

    Combinatorics of Hard Particles on Planar Graphs

    Full text link
    We revisit the problem of hard particles on planar random tetravalent graphs in view of recent combinatorial techniques relating planar diagrams to decorated trees. We show how to recover the two-matrix model solution to this problem in this purely combinatorial language.Comment: 35 pages, 20 figures, tex, harvmac, eps

    Three osculating walkers

    Full text link
    We consider three directed walkers on the square lattice, which move simultaneously at each tick of a clock and never cross. Their trajectories form a non-crossing configuration of walks. This configuration is said to be osculating if the walkers never share an edge, and vicious (or: non-intersecting) if they never meet. We give a closed form expression for the generating function of osculating configurations starting from prescribed points. This generating function turns out to be algebraic. We also relate the enumeration of osculating configurations with prescribed starting and ending points to the (better understood) enumeration of non-intersecting configurations. Our method is based on a step by step decomposition of osculating configurations, and on the solution of the functional equation provided by this decomposition

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    European Innovation Partnership on Active and Healthy Ageing Reference Site MACVIA-France, EU Structural and Development Fund Languedoc-Roussillon, ARIA.Peer reviewedPublisher PD

    Planar maps and continued fractions

    Full text link
    We present an unexpected connection between two map enumeration problems. The first one consists in counting planar maps with a boundary of prescribed length. The second one consists in counting planar maps with two points at a prescribed distance. We show that, in the general class of maps with controlled face degrees, the solution for both problems is actually encoded into the same quantity, respectively via its power series expansion and its continued fraction expansion. We then use known techniques for tackling the first problem in order to solve the second. This novel viewpoint provides a constructive approach for computing the so-called distance-dependent two-point function of general planar maps. We prove and extend some previously predicted exact formulas, which we identify in terms of particular Schur functions.Comment: 47 pages, 17 figures, final version (very minor changes since v2

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
    corecore