71 research outputs found

    Systemic lobar shunting induces advanced pulmonary vasculopathy

    Get PDF
    AbstractObjectives: We characterized the morphology and vasomotor responses of a localized, high-flow model of pulmonary hypertension. Methods: An end-to-side anastomosis was created between the left lower lobe pulmonary artery and the aorta in 23 piglets. Control animals had a thoracotomy alone or did not have an operation. Eight weeks later, hemodynamic measurements were made. Then shunted and/or nonshunted lobes were removed for determination of vascular resistance and compliance by occlusion techniques under conditions of normoxia, hypoxia (FIO2 = 0.03), and inspired nitric oxide administration. Quantitative histologic studies of vessel morphology were performed. Results: Eighty-three percent of animals having a shunt survived to final study. Aortic pressure, main pulmonary artery and wedge pressures, cardiac output, blood gases, and weight gain were not different between control pigs and those receiving a shunt. Six of 9 shunted lobes demonstrated systemic levels of pulmonary hypertension in vivo. Arterial resistance was higher (24.3 ± 12.0 vs 1.3 ± 0.2 mm Hg · mL–1 · s–1, P =.04) and arterial compliance was lower (0.05 ± 0.01 vs 0.16 ± 0.03 mL/mm Hg, P =.02) in shunted compared with nonshunted lobes. Hypoxic vasoconstriction was blunted in shunted lobes compared with nonshunted lobes (31% ± 13% vs 452% ± 107% change in arterial resistance, during hypoxia, P <.001). Vasodilation to inspired nitric oxide was evident only in shunted lobes (34% ± 6% vs 1.8% ± 8.2% change in arterial resistance during administration of inspired nitric oxide, P =.008). Neointimal and medial proliferation was found in shunted lobes with approximately a 10-fold increase in wall/luminal area ratio. Conclusions: An aorta–lobar pulmonary artery shunt produces striking vasculopathy. The development of severe pulmonary hypertension within a short time frame, low mortality, and localized nature of the vasculopathy make this model highly attractive for investigation of mechanisms that underlie pulmonary hypertension. (J Thorac Cardiovasc Surg 2000; 120:88-98

    Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic perturbations arising from malignant transformation have not been systematically characterized in human lung cancers <it>in situ</it>. Stable isotope resolved metabolomic analysis (SIRM) enables functional analysis of gene dysregulations in lung cancer. To this purpose, metabolic changes were investigated by infusing uniformly labeled <sup>13</sup>C-glucose into human lung cancer patients, followed by resection and processing of paired non-cancerous lung and non small cell carcinoma tissues. NMR and GC-MS were used for <sup>13</sup>C-isotopomer-based metabolomic analysis of the extracts of tissues and blood plasma.</p> <p>Results</p> <p>Many primary metabolites were consistently found at higher levels in lung cancer tissues than their surrounding non-cancerous tissues. <sup>13</sup>C-enrichment in lactate, Ala, succinate, Glu, Asp, and citrate was also higher in the tumors, suggesting more active glycolysis and Krebs cycle in the tumor tissues. Particularly notable were the enhanced production of the Asp isotopomer with three <sup>13</sup>C-labeled carbons and the buildup of <sup>13</sup>C-2,3-Glu isotopomer in lung tumor tissues. This is consistent with the transformations of glucose into Asp or Glu via glycolysis, anaplerotic pyruvate carboxylation (PC), and the Krebs cycle. PC activation in tumor tissues was also shown by an increased level of pyruvate carboxylase mRNA and protein.</p> <p>Conclusion</p> <p>PC activation – revealed here for the first time in human subjects – may be important for replenishing the Krebs cycle intermediates which can be diverted to lipid, protein, and nucleic acid biosynthesis to fulfill the high anabolic demands for growth in lung tumor tissues. We hypothesize that this is an important event in non-small cell lung cancer and possibly in other tumor development.</p

    Pyruvate Carboxylase Is Critical for Non-Small-Cell Lung Cancer Proliferation

    Get PDF
    Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non-small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5,15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early-stage NSCLC is required for tumor survival and proliferation

    Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells

    Get PDF
    The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the interconversion of pyruvate and lactate, is upregulated in human cancers, and is associated with aggressive tumor outcomes. Here we use an inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by reactivation of mitochondrial function in vitro, but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer-initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC, including cancer stem cell-dependent drug-resistant tumors

    Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.</p> <p>Methods</p> <p>Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.</p> <p>Results</p> <p>Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6–15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.</p> <p>Conclusion</p> <p>Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.</p

    Thoracoscopic Needle Aspiration Biopsy for a Centrally Located Solitary Pulmonary Nodule

    No full text
    • …
    corecore