250 research outputs found

    PLA scaffolds production from Thermally Induced Phase Separation: effect of process parameters and development of an environmentally improved route assisted by supercritical carbon dioxide

    Get PDF
    In this work, a relatively large scale of PLA scaffolds was produced using thermally induced phase separation (TIPS) combined with a supercritical carbon dioxide (SC-CO2) drying step as a green alternative. For the TIPS step, the phase separation of PLA and 1,4-dioxane solvent was controlled by adjusting the process conditions such as the polymer concentration and molecular weight, the 1,4-dioxane solvent power and the cooling conditions. The scaffolds morphology was analyzed by scanning electron microscopy. Their structural and mechanical properties were correlated together with the possibility to tune them by controlling the process conditions. An environmental analysis using the Life Cycle Assessment (LCA) methodology confirmed a reduction of at least 50% of the environmental impact of the whole process using the SC-CO2 drying compared to the traditional freeze-drying technology. This work is the first known attempt to conduct the LCA methodology on TIPS process for the PLA scaffolds production

    Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide

    Get PDF
    Free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate was carried out in supercritical carbon dioxide (scCO2) in the presence of stabilisers based on polyethylene oxide (PEO) and poly(heptadecafluorodecyl acrylate) (PFDA). Different architectures of copolymers (random, palm-tree and diblock) were tested for their surface tension, cloud point and as a stabilising agent. The diblock architecture was found to be the best candidate resulting in poly(HEMA) spherical particles with a size of 316 nm. Furthermore, the effect of the CO2-phobic block (PEO) in the diblock architecture was investigated by using three different chain lengths (1000, 2000, 5000 g mol−1). By optimizing the stabiliser composition and structure, mild reaction conditions have been identified allowing us to obtain well-defined spherical cross-linked poly(HEMA) particles with a mean diameter of unprecedented low size (216 nm) at a temperature as low as 35 °C

    Vibrational Instability of Metal-Poor Low-Mass Main-Sequence Stars

    Full text link
    We find that low-degree low-order g-modes become unstable in metal-poor low-mass stars due to the ε\varepsilon-mechanism of the pp-chain. Since the outer convection zone of these stars is limited only to the very outer layers, the uncertainty in the treatment of convection does not affect the result significantly. The decrease in metallicity leads to decrease in opacity and hence increase in luminosity of a star. This makes the star compact and results in decrease in the density contrast, which is favorable to the ε\varepsilon-mechanism instability. We find also instability for high order g-modes of metal-poor low-mass stars by the convective blocking mechanism. Since the effective temperature and the luminosity of metal-poor stars are significantly higher than those of Pop I stars, the stars showing γ\gamma Dor-type pulsation are substantially less massive than in the case of Pop I stars. We demonstrate that those modes are unstable for about 1 M⊙1\,M_\odot stars in the metal-poor case.Comment: 4 pages, 4 figures, To be published in Astrophysics and Space Science Proceedings series (ASSP). Proceedings of the "20th Stellar Pulsation Conference Series: Impact of new instrumentation and new insights in stellar pulsations", 5-9 September 2011, Granada, Spai
    • …
    corecore