25 research outputs found

    Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees

    No full text
    International audienceAbstract. Black-carbon-containing particles strongly absorb light, causing substantial radiative heating of the atmosphere. The climate-relevant properties of black carbon (BC) are poorly constrained in high-altitude mountain regions, where many complex interactions between BC, radiation, clouds and snow have important climate implications. This study presents 2-year measurements of BC microphysical and optical properties at the Pic du Midi (PDM) research station, a high-altitude observatory located at 2877 m above sea level in the French Pyrenees. Among the long-term monitoring sites in the world, PDM is subject to limited influence from the planetary boundary layer (PBL), making it a suitable site for characterizing the BC in the free troposphere (FT). The classification of the dominant aerosol type using aerosol spectral optical properties indicates that BC is the predominant aerosol absorption component at PDM and controls the variation in single-scattering albedo (SSA) throughout the 2 years. Single-particle soot photometer (SP2) measurements of refractory BC (rBC) show a mean mass concentration (MrBC) of 35 ng m−3 and a relatively constant rBC core mass-equivalent diameter of about 180 nm, which are typical values for remote mountain sites. Combining the MrBC with in situ absorption measurements, a rBC mass absorption cross-section (MACrBC) of 9.2 ± 3.7 m2 g−1 at λ=880 nm has been obtained, which corresponds to an absorption enhancement (Eabs) of ∌2.2 compared to that of bare rBC particles with equal rBC core size distribution. A significant reduction in the ΔMrBC/ΔCO ratio when precipitation occurred along the air mass transport suggests wet removal of rBC. However we found that the wet removal process did not affect the rBC size, resulting in unchanged Eabs. We observed a large seasonal contrast in rBC properties with higher MrBC and Eabs in summer than in winter. In winter a high diurnal variability in MrBC (Eabs) with higher (lower) values in the middle of the day was linked to the injection of rBC originating from the PBL. On the contrary, in summer, MrBC showed no diurnal variation despite more frequent PBL conditions, implying that MrBC fluctuations are rather dominated by regional and long-range transport in the FT. Combining the ΔMrBC/ΔCO ratio with air mass transport analysis, we observed additional sources from biomass burning in summer leading to an increase in MrBC and Eabs. The diurnal pattern of Eabs in summer was opposite to that observed in winter with maximum values of ∌2.9 observed at midday. We suggest that this daily variation may result from a photochemical process driving the rBC mixing state rather than a change in BC emission sources. Such direct 2-year observations of BC properties provide quantitative constraints for both regional and global climate models and have the potential to close the gap between model-predicted and observed effects of BC on the regional radiation budget and climate. The results demonstrate the complex influence of BC emission sources, transport pathways, atmospheric dynamics and chemical reactivity in driving the light absorption of BC

    Sensitivity analysis of an aerosol-aware microphysics scheme in Weather Research and Forecasting (WRF) during case studies of fog in Namibia

    No full text
    International audienceAerosol-aware microphysics parameterisation schemes are increasingly being introduced into numerical weather prediction models, allowing for regional and case-specific parameterisation of cloud condensation nuclei (CCN) and cloud droplet interactions. In this paper, the Thompson aerosol-aware microphysics scheme, within the Weather Research and Forecasting (WRF) model, is used for two fog cases during September 2017 over Namibia. Measurements of CCN and fog microphysics were undertaken during the AErosols, RadiatiOn and CLOuds in southern Africa (AEROCLO-sA) field campaign at Henties Bay on the coast of Namibia during September 2017. A key concept of the microphysics scheme is the conversion of water-friendly aerosols to cloud droplets (hereafter referred to as CCN activation), which could be estimated from the observations. A fog monitor 100 (FM-100) provided cloud droplet size distribution, number concentration (N t), liquid water content (LWC), and mean volumetric diameter (MVD). These measurements are used to evaluate and parameterise WRF model simulations of N t , LWC, and MVD. A sensitivity analysis was conducted through variations to the initial CCN concentration, CCN radius, and the minimum updraft speed, which are important factors that influence droplet activation in the microphysics scheme of the model. The first model scenario made use of the default settings with a constant initial CCN number concentration of 300 cm −3 and underestimated the cloud droplet number concentration, while the LWC was in good agreement with the observations. This resulted in droplet size being larger than the observations. Another scenario used modelled data as CCN initial conditions, which were an order of magnitude higher than other scenarios. However, these provided the most realistic values of N t , LWC, MVD, and droplet size distribution. From this, it was concluded that CCN activation of around 10 % in the simulations is too low, while the observed appears to be higher reaching between 20 % and 80 %, with a mean (median) of 0.55 (0.56) during fog events. To achieve this level of activation in the model, the minimum updraft speed for CCN activation was increased from 0.01 to 0.1 m s −1. This scenario provided N t , LWC, MVD, and droplet size distribution in the range of the observations, with the added benefit of a realistic initial CCN concentration. These results demonstrate the benefits of a dynamic aerosol-aware scheme when parameterised with observations

    Unexpected biomass burning aerosol absorption enhancement explained by black carbon mixing state

    Get PDF
    International audienceDirect and semi‐direct radiative effects of biomass burning aerosols (BBA) from southern and central African fires are still widely debated, in particular because climate models have been unsuccessful in reproducing the low single scattering albedo in BBA over the eastern Atlantic Ocean. Using state‐of‐the‐art airborne in‐situ measurements and Mie scattering simulations, we demonstrate that low single scattering albedo in well‐aged BBA plumes over southern West Africa results from the presence of strongly absorbing refractory black carbon (rBC), whereas the brown carbon contribution to the BBA absorption is negligible. Coatings enhance light absorption by rBC‐containing particles by up to 210%. Our results show that accounting for the diversity in black carbon mixing state by combining internal and external configurations is needed to accurately estimate the optical properties, and henceforth the shortwave direct radiative effect and heating rate of BBA over southern West Africa

    The influence of urban emissions on cloud condensation nuclei properties over West Africa

    No full text
    International audienceSouthern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. These aerosols have the potential to act as cloud condensation nuclei (CCN), thereby impacting cloud development, cloud microphysics and precipitation. Precise quantification of the CCN number concentration is crucial for understanding aerosol indirect effects in the region and characterizing these effects in models. In this work, we present a set of observations of aerosol and CCN properties over southern West Africa (SWA) in the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project. An unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure vertical distributions of CCN and particle number concentrations, size distribution and chemical composition simultaneously. An evaluation of various methods for CCN parameterization for use in models is carried out based on these situ measurements

    The influence of urban emissions on cloud condensation nuclei properties over West Africa

    No full text
    International audienceSouthern West Africa (SWA) is a region highly vulnerable to climate change. Emissions of anthropogenic pollution have increased substantially over the past decades in the region and are projected to keep increasing. These aerosols have the potential to act as cloud condensation nuclei (CCN), thereby impacting cloud development, cloud microphysics and precipitation. Precise quantification of the CCN number concentration is crucial for understanding aerosol indirect effects in the region and characterizing these effects in models. In this work, we present a set of observations of aerosol and CCN properties over southern West Africa (SWA) in the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project. An unprecedented field campaign took place in summer 2016 in West Africa. The ATR-42 research aircraft operated by SAFIRE performed twenty flights to sample the local air pollution from maritime traffic and coastal megacities, as well as regional pollution from biomass burning and desert dust. The aircraft was equipped with state of the art in situ instrumentation to measure vertical distributions of CCN and particle number concentrations, size distribution and chemical composition simultaneously. An evaluation of various methods for CCN parameterization for use in models is carried out based on these situ measurements
    corecore