498 research outputs found

    Linear systems with adiabatic fluctuations

    Full text link
    We consider a dynamical system subjected to weak but adiabatically slow fluctuations of external origin. Based on the ``adiabatic following'' approximation we carry out an expansion in \alpha/|\mu|, where \alpha is the strength of fluctuations and 1/|\mu| refers to the time scale of evolution of the unperturbed system to obtain a linear differential equation for the average solution. The theory is applied to the problems of a damped harmonic oscillator and diffusion in a turbulent fluid. The result is the realization of `renormalized' diffusion constant or damping constant for the respective problems. The applicability of the method has been critically analyzed.Comment: Plain Latex, no figure, 21 page

    Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis

    Get PDF
    Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities

    Theory of Adiabatic fluctuations : third-order noise

    Full text link
    We consider the response of a dynamical system driven by external adiabatic fluctuations. Based on the `adiabatic following approximation' we have made a systematic separation of time-scales to carry out an expansion in α∣μ∣−1\alpha |\mu|^{-1}, where α\alpha is the strength of fluctuations and ∣μ∣|\mu| is the damping rate. We show that probability distribution functions obey the differential equations of motion which contain third order terms (beyond the usual Fokker-Planck terms) leading to non-Gaussian noise. The problem of adiabatic fluctuations in velocity space which is the counterpart of Brownian motion for fast fluctuations, has been solved exactly. The characteristic function and the associated probability distribution function are shown to be of stable form. The linear dissipation leads to a steady state which is stable and the variances and higher moments are shown to be finite.Comment: Plain Latex, no figures, 28 pages; to appear in J. Phys.

    Conformity of spin fluctuations in alkali-metal iron selenide superconductors inferred from the observation of a magnetic resonant mode in K(x)Fe(2-y)Se(2)

    Full text link
    Spin excitations stemming from the metallic phase of the ferrochalcogenide superconductor K(0.77)Fe(1.85)Se(2) (T_c=32 K) were mapped out in the ab plane by means of the time-of-flight neutron spectroscopy. We observed a magnetic resonant mode at Q_res=(1/2 1/4), whose energy and in-plane shape are almost identical to those in the related compound Rb(0.8)Fe(1.6)Se(2). This lets us infer that there is a unique underlying electronic structure of the bulk superconducting phase K(x)Fe(2)Se(2), which is universal for all alkali-metal iron selenide superconductors and stands in contrast to the doping-tunable phase diagrams of the related iron pnictides. Furthermore, the spectral weight of the resonance on the absolute scale, normalized to the volume fraction of the superconducting phase, is several times larger than in optimally doped BaFe(2-x)Co(x)As(2). We also found no evidence for any additional low-energy branches of spin excitations away from Q_res. Our results provide new input for theoretical models of the spin dynamics in iron based superconductors

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision

    <i>In situ</i> diagnostics of the crystal-growth process through neutron imaging:application to scintillators

    Get PDF
    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∼4×1054\sim4\times 10^{54} erg for a E−2E^{-2} spectrum
    • …
    corecore