6,758 research outputs found

    Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    Get PDF
    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps

    Helicopter roll control effectiveness criteria program summary

    Get PDF
    A study of helicopter roll control effectiveness is summarized for the purpose of defining military helicopter handling qualities requirements. The study is based on an analysis of pilot-in-the-loop task performance of several basic maneuvers. This is extended by a series of piloted simulations using the NASA Ames Vertical Motion Simulator and selected flight data. The main results cover roll control power and short-term response characteristics. In general the handling qualities requirements recommended are set in conjunction with desired levels of flight task and maneuver response which can be directly observed in actual flight. An important aspect of this, however, is that vehicle handling qualities need to be set with regard to some quantitative aspect of mission performance. Specific examples of how this can be accomplished include a lateral unmask/remask maneuver in the presence of a threat and an air tracking maneuver which recognizes the kill probability enhancement connected with decreasing the range to the target. Conclusions and recommendations address not only the handling qualities recommendations, but also the general use of flight simulators and the dependence of mission performance on handling qualities

    How Will the Use of Technology in Translation and Testing Affect Language Learning?

    Get PDF
    Technology has an ever increasing impact on how we work and live. Article adressed the issue of the impact of technology in two key areas of language learning. On the one side learners increasingly used technology to translate. Given this trend, was there any real need to learn a language. On the other side, educational institutions increasingly used technology to rate language proficiency. Given this trend, would the work of the teacher become less and less important. The survey was conducted by using quantitative method. The respondents' age range was 18-25. There were 53 respondents, 35% were male and 65% were female. The instrument was a questionaire having 9 questions describing the students' reliance on computer in translation. It can be concluded that learners of English indicate that they accept and welcome the role of technology in language learning, but there is a doubt that the role and participation of humans in the learning process will be completely replaced. The human element remains an important ingredient. (EE

    Exact vortex nucleation and cooperative vortex tunneling in dilute BECs

    Full text link
    With the imminent advent of mesoscopic rotating BECs in the lowest Landau level (LLL) regime, we explore LLL vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean field features are exposed at filling factors >>1 . Eg near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantising a mean field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number and ellipticity.Comment: 4 pages,4 figure

    The computation of multiple roots of a Bernstein basis polynomial

    Get PDF
    This paper describes the algorithms of Musser and Gauss for the computation of multiple roots of a theoretically exact Bernstein basis polynomial ˆ 5 f(y) when the coefficients of its given form f(y) are corrupted by noise. The exact roots of f(y) can therefore be assumed to be simple, and thus the problem reduces to the calculation of multiple roots of a polynomial f˜(y) that is near f(y), such that the backward error is small. The algorithms require many greatest common divisor (GCD) computations and polynomial deconvolutions, both of which are implemented by a structure-preserving matrix method. The motivation of these algorithms arises from the unstructured and structured condition numbers of a multiple root of a polynomial. These condition numbers have an elegant interpretation in terms of the pejorative manifold of ˆ 12 f(y), which allows the geometric significance of the GCD computations and polynomial deconvolutions to be considered. A variant of the Sylvester resultant matrix is used for the GCD computations because it yields better results than the standard form of this matrix, and the polynomial deconvolutions can be computed in several different ways, sequentially or simultaneously, and with the inclusion or omission of the preservation of the structure of the coefficient matrix. It is shown that Gauss’ algorithm yields better results than Musser’s algorithm, and the reason for these superior results is explained

    Anomalous hydrodynamics and "normal" fluids in rapidly rotating BECs

    Full text link
    In rapidly rotating bose systems we show that there is a region of anomalous hydrodynamics whilst the system is still condensed, which coincides with the mean field quantum Hall regime. An immediate consequence is the absence of a normal fluid in any conventional sense. However, even the superfluid hydrodynamics is not described by conventional Bernoulli and continuity equations. We show there are kinematic constraints which connect spatial variations of density and phase, that the positions of vortices are not the simplest description of the dynamics of such a fluid (despite their utility in describing the instantaneous state of the condensate) and that the most compact description allows solution of some illuminating examples of motion. We demonstrate, inter alia, a very simple relation between vortices and surface waves. We show the surface waves can form a "normal fluid" which absorbs energy and angular momentum from vortex motion in the trap. The time scale of this process is sensitive to the initial configuration of the vortices, which can lead to long-lived vortex patches - perhaps related to those observed at JILA.Comment: 4 pages; 1 sentence and references modifie

    Ten Simple Rules for Getting Help from Online Scientific Communities

    Get PDF
    The increasing complexity of research requires scientists to work at the intersection of multiple fields and to face problems for which their formal education has not prepared them. For example, biologists with no or little background in programming are now often using complex scripts to handle the results from their experiments; vice versa, programmers wishing to enter the world of bioinformatics must know about biochemistry, genetics, and other fields. In this context, communication tools such as mailing lists, web forums, and online communities acquire increasing importance. These tools permit scientists to quickly contact people skilled in a specialized field. A question posed properly to the right online scientific community can help in solving difficult problems, often faster than screening literature or writing to publication authors. The growth of active online scientific communities, such as those listed in Table S1, demonstrates how these tools are becoming an important source of support for an increasing number of researchers. Nevertheless, making proper use of these resources is not easy. Adhering to the social norms of World Wide Web communication—loosely termed “netiquette”—is both important and non-trivial. In this article, we take inspiration from our experience on Internet-shared scientific knowledge, and from similar documents such as “Asking the Questions the Smart Way” and “Getting Answers”, to provide guidelines and suggestions on how to use online communities to solve scientific problems
    • …
    corecore