
This is a repository copy of The computation of multiple roots of a Bernstein basis 
polynomial.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/154150/

Version: Published Version

Article:

Bourne, M., Winkler, J. and Su, Y. (2020) The computation of multiple roots of a Bernstein 
basis polynomial. SIAM Journal on Scientific Computing, 42 (1). A452-A476. ISSN 
1064-8275 

https://doi.org/10.1137/18M1219904

© 2020 Society for Industrial and Applied Mathematics. Reproduced in accordance with 
the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


SIAM J. SCI. COMPUT. c© 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. A452–A476

THE COMPUTATION OF MULTIPLE ROOTS OF A BERNSTEIN

BASIS POLYNOMIAL∗

MARTIN BOURNE† , JOAB WINKLER† , AND YI SU‡

Abstract. This paper describes the algorithms of Musser and Gauss for the computation of
multiple roots of a theoretically exact Bernstein basis polynomial f̂(y) when the coefficients of its
given form f(y) are corrupted by noise. The exact roots of f(y) can therefore be assumed to be
simple, and thus the problem reduces to the calculation of multiple roots of a polynomial f̃(y) that
is near f(y), such that the backward error is small. The algorithms require many greatest common
divisor (GCD) computations and polynomial deconvolutions, both of which are implemented by a
structure-preserving matrix method. The motivation of these algorithms arises from the unstructured
and structured condition numbers of a multiple root of a polynomial. These condition numbers have
an elegant interpretation in terms of the pejorative manifold of f̂(y), which allows the geometric
significance of the GCD computations and polynomial deconvolutions to be considered. A variant of
the Sylvester resultant matrix is used for the GCD computations because it yields better results than
the standard form of this matrix, and the polynomial deconvolutions can be computed in several
different ways, sequentially or simultaneously, and with the inclusion or omission of the preservation
of the structure of the coefficient matrix. It is shown that Gauss’ algorithm yields better results than
Musser’s algorithm, and the reason for these superior results is explained.

Key words. Bernstein basis polynomials, Sylvester resultant matrix, Sylvester subresultant
matrices, greatest common divisor, multiple roots
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1. Introduction. A multiple root of a polynomial is ill-conditioned because a
perturbation in its coefficients causes it to break up into simple roots, and standard
methods for their computation yield unsatisfactory results because they may return
simple roots. This has led to the development of new methods for the computation of
multiple roots of a polynomial, many of which involve greatest common divisor (GCD)
computations and polynomial deconvolutions [6, 16, 20, 23, 26, 28, 29, 30, 31]. Both
these operations are ill-conditioned, and thus simple methods for these calculations
yield bad results.

The Bernstein basis is used in geometric modeling for the representation of curves
and surfaces, and an important calculation is the determination of their points of
intersection, which reduces to the calculation of the roots of a polynomial. Multiple
roots are of particular interest because they define tangential intersections (blends),
which are required for the reduction of high stresses at sharp corners and for aesthetic
appeal. It may be thought that a Bernstein basis polynomial can be transformed to
its power basis form, which would allow a root solver for power basis polynomials
to be used. This transformation is, however, ill-conditioned [11], and this paper
therefore discusses a method for the computation of multiple roots of a Bernstein basis
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polynomial such that the power basis is not used and all computations are performed
on the Bernstein basis. This basis conversion can be avoided by the computation
of the eigenvalues of the companion matrix of a Bernstein basis polynomial [21],
but problems arise because of the accuracy with which multiple eigenvalues can be
computed by the QR decomposition. For example, the function roots in MATLAB
returns {1.0002, 1.0000± 0.0002i, 0.9998} for the polynomial f(y) = (y − 1)4.

Several methods for the computation of the roots of a Bernstein basis polynomial
and the algorithms of Musser [16] and Gauss [20] are discussed in section 2. The
numerical factorization of multivariate polynomials is considered by Wu and Zeng
[28], and the suite of MATLAB programs NAClab which was developed by Zeng
[31] for numerical algebraic computations is considered in [32]. The algorithms of
Musser and Gauss use GCD computations and polynomial deconvolutions, and they
are motivated by the unstructured and structured condition numbers of a multiple
root of a polynomial. These condition numbers are considered in section 3, and
their difference explains the suitability of the algorithms of Musser and Gauss for the
computation of multiple roots of a polynomial. This discussion on condition numbers
leads to section 4, which considers the pejorative manifold of a polynomial that has
multiple roots, and it is shown that it provides an elegant geometric interpretation of
the algorithms of Musser and Gauss.

The Sylvester resultant matrix is frequently used for the computation of the GCD
of two polynomials, and it is considered in section 5. Many methods have been devel-
oped for this computation for two power basis polynomials [2, 8, 10, 13, 14, 19], but
much less work has been done on this computation for two Bernstein basis polynomi-
als [3, 4, 9, 27]. The data in practical problems is corrupted by noise and it is therefore
necessary to consider an approximate greatest common divisor (AGCD) of two poly-
nomials, and this is discussed in section 6. Polynomial deconvolution is considered
in section 7, and it is shown it can be performed in several ways, which differ in the
manner in which the deconvolutions are performed (sequentially or simultaneously)
and the preservation, or otherwise, of the structure of the coefficient matrix in the
linear algebraic equation. The complexity of the algorithms of Musser and Gauss is
considered in section 8, and section 9 contains examples of these algorithms for the
computation of multiple roots of a Bernstein basis polynomial. Section 10 contains a
summary of the paper.

There are several novel aspects of the paper:
1. The polynomial root solver in NAClab is for power basis polynomials, but this

paper considers a polynomial root solver for Bernstein basis polynomials.
2. The polynomial root solver in NAClab and the polynomial root solver de-

scribed in this paper use the Sylvester matrix and its subresultant matrices.
These matrices have a well-defined structure, and this structure is preserved
in the polynomial root solver described in this paper, but the method of
non-linear least squares is used in NAClab for the refinement of the solution.

3. The combinatorial terms in the Bernstein basis functions introduce computa-
tional difficulties because they cause the entries of the Sylvester matrix and
its subresultant matrices to span many orders of magnitude. These difficul-
ties, which do not arise when power basis polynomials are considered, are
mitigated by the use of a modified form of these matrices.

The application of NAClab to the computation of the roots of a Bernstein basis
polynomial requires a parameter substitution, but it yields bad results. These bad
results arise from numerical difficulties associated with the parameter substitution,
and they are not caused by theoretical and computational issues with NAClab, which
yields very good results for power basis polynomials.
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2. Methods for computing multiple roots of a Bernstein polynomial.

The properties of the Bernstein basis have been used for the computation of the
roots of a polynomial f(y) in this basis. For example, Lane and Riesenfeld [15] use
bisection and the variation diminishing property of the Bernstein basis to isolate
and approximate the real roots of f(y) in a given interval, but it is shown in [5]
that problems arise with double roots and higher order roots. Another method for
computing the roots of f(y) is Bézier clipping [1, 7, 18], but it is designed for first
order tangent intersections, and its performance degrades for higher order tangencies.
The need arises, therefore, for a method for the computation of high order multiple
roots of a Bernstein basis polynomial.

2.1. Methods that use GCD computations and polynomial deconvolu-

tions. The methods for the computation of multiple roots of a power basis polynomial
that use GCD computations and polynomial deconvolutions can be implemented in
the Bernstein basis, but significant complications exist such that their simple repro-
duction in the Bernstein basis is not possible. In particular, numerical difficulties
arise from the combinatorial terms in the Bernstein basis functions which are, for a
polynomial of degree m,

φi(y) =

(

m

i

)

(1− y)m−iyi, i = 0, . . . ,m,(1)

because the entries in the matrices that arise in the computations may span several
orders of magnitude. Also, the Sylvester matrix and its subresultant matrices, which
are used for the GCD computations, for two power basis polynomials are formed by
the concatenation of two Tœplitz matrices, but these matrices for two Bernstein basis
polynomials do not have this structure [3, 4, 24], from which it follows that algorithms
that require the Sylvester matrix and its subresultant matrices are more complicated
for Bernstein basis polynomials.

The algorithms of Musser and Gauss are most easily understood if the polynomial
f(y) is written as the product of factors of degrees one, two, three, etc.,

f(y) =

m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi = s1(y)s
2
2(y)s

3
3(y) · · · s

r
r(y),(2)

where s1(y) is the product of all the linear factors of f(y), s22(y) is the product of all
the quadratic factors of f(y) and in general, sii(y) is the product of all the factors of
degree i of f(y). If f(y) does not contain a factor of degree k, then sk(y) is set equal
to a constant, which can be assumed to be unity.

The algorithms of Musser and Gauss are shown in Algorithms 1 and 2, respec-
tively, and it is seen that they differ because Gauss’ algorithm requires several GCD
computations of a polynomial and its derivative, but Musser’s algorithm requires only
one computation of this type. These algorithms contain two stages that make them
suitable for the computation of multiple roots of a polynomial and distinguish them
from methods that fail to yield satisfactory results for this computation:

Stage 1. Calculate the multiplicity of each distinct root.
Stage 2. Calculate the value of each distinct root.
It follows from (2) that the multiplicities of the distinct roots of f(y) are defined

by the indices i in thewhile loop in Musser’s algorithm (lines 7–13) and in the for loop
in Gauss’ algorithm (lines 13–16). The multiplicity i of each distinct root is therefore
specified before the values of the roots with this multiplicity are calculated, assuming
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Algorithm 1. Musser.

1: f0(y)← f(y)
2: % Perform the first GCD computation and polynomial deconvolution

3: f1(y)← GCD
(

f0, f
(1)
0

)

= s2(y)s
2
3(y) · · · s

r−1
r (y)

4: h1(y)←
f0(y)
f1(y)

= s1(y)s2(y) · · · sr(y)
5: i← 1
6: % Perform the remaining GCD computations and polynomials deconvolutions
7: while deg hi(y) > 0 do

8: hi+1(y)← GCD(fi, hi) = si+1(y)si+2(y) · · · sr(y)

9: fi+1(y)←
fi(y)

hi+1(y)
= si+2(y)s

2
i+3(y) · · · s

r−i−1
r (y)

10: w(y)← hi(y)
hi+1(y)

= si(y)

11: Solve w(y) = 0. If α is a root of w(y), it is a root of multiplicity i of f(y).
12: i← i+ 1
13: end while

Algorithm 2. Gauss.

1: f0(y)← f(y)
2: i← 0
3: % Perform several GCD computations of a polynomial and its derivative
4: while deg fi(y) > 0 do

5: fi+1(y)← GCD
(

fi, f
(1)
i

)

= si+2(y)s
2
i+3(y) · · · s

r−i−1
r (y)

6: i← i+ 1
7: end while

8: r ← i
9: % Compute the polynomials hi(y), i = 1, . . . , r

10: for i← 1, r do

11: hi(y)←
fi−1(y)
fi(y)

= si(y)si+1(y) · · · sr(y)

12: end for

13: for i← 1, r − 1 do

14: w(y)← hi(y)
hi+1(y)

= si(y)

15: Solve w(y) = 0. If α is a root of w(y), it is a root of multiplicity i of f(y).
16: end for

17: wr(y)← hr(y)
18: Solve wr(y) = 0. If α is a root of wr(y), it is a root of multiplicity r of f(y).

the roots exist, that is, w(y) = si(y) is not a polynomial of degree zero. It also follows
from (2) that the roots of the polynomials w(y) and wr(y) (in Gauss’ algorithm) are
simple, and these algorithms are therefore divide-and-conquer algorithms.

NAClab is a suite of MATLAB programs for computations on power basis poly-
nomials. Although the transformation between the power and Bernstein bases is
not recommended because it is ill-conditioned, a change of variable allows a power
basis polynomial root solver to be implemented for Bernstein basis polynomials. In
particular, the substitution

t = y/(1− y), y 6= 1,(3)
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in f(y) yields the power basis polynomial g(t) whose coefficients are ai
(

m
i

)

,

g(t) =
1

(1 + t)m

m
∑

i=0

ai

(

m

i

)

ti, t 6= −1,

and thus if t0 is a root of multiplicity p of g(t), then y0 = t0/(1 + t0) is a root of
multiplicity p of f(y). Although this substitution is simple, it follows from (3) that it
suffers from numerical problems when y0 ≈ 1 because t0 is then sensitive to a small
change in y0. Also, it follows from the presence of the combinatorial terms

(

m
i

)

in
the coefficients of g(t) that the numerical problems discussed above with respect to
the Bernstein basis may occur when the substitution (3) is used. This substitution
allows NAClab, and more generally other root solvers for power basis polynomials, to
be used for the computation of multiple roots of a Bernstein basis polynomial, but
the results in section 9 show that it yields bad results. As noted in section 1, these
bad results are due to numerical difficulties associated with the substitution (3), and
not the theoretical basis of, and software implementation in, NAClab.

3. Condition numbers of a multiple root of a polynomial. Sections 1 and
2 considered traditional methods, and the algorithms of Musser and Gauss, respec-
tively, for the calculation of multiple roots of f(y). The traditional methods do not
use the properties of multiple roots, but these properties are exploited in methods
that use GCD computations and polynomial deconvolutions, which therefore yield
significantly better results. These differences in the results are explained by consider-
ing unstructured and structured condition numbers of a multiple root of f(y), which
are considered in Theorems 3.1 [22] and 3.2, respectively. The continuity of the roots
of a polynomial due to a perturbation in its coefficients is assumed, so that small
perturbations in the coefficients yield small variations in the roots.

Theorem 3.1. Let the polynomial g(y) have real coefficients bi, i = 0, . . . ,m, with
respect to the Bernstein basis, which is defined in (1),

g(y) =

m
∑

i=0

biφi(y),

and let the coefficients bi be perturbed to bi + δbi, where

|δbi| ≤ ε |bi| , i = 0, . . . ,m.

Let the real root α of g(y) have multiplicity r, and let one of these r roots be perturbed

to α+δα due to the perturbations in the coefficients. The unstructured componentwise

condition number of α is

κ (α) = max
|δbi|≤ε|bi|

|δα|

|α|

1

ε
=

1

ε1−
1
r

1

|α|

(

r!
∣

∣g(r) (α)
∣

∣

m
∑

i=0

|biφi(α)|

)
1
r

.(4)

The structured condition number requires that g(y) be written in terms of its roots
α̃ = {αi}

p
i=1, αj 6= αk, because this condition number is defined by the preservation

of the multiplicity mk of each distinct root αk in its perturbed form,

g(y, α̃) =

p
∏

i=1

(

θ(y, αi)
)mi

=

p
∏

i=1

(

(1− αi)y − αi(1− y)
)mi

,

p
∑

i=1

mi = m.(5)
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The expansion of the second product yields a polynomial expressed in terms of the
basis functions (1 − y)m−iyi, i = 0, . . . ,m, that is, the Bernstein basis functions (1)
after the combinatorial terms are moved from the basis functions to the coefficients.
The perturbed form of g(y, α̃) due to a change δαi in each root αi, i = 1, . . . , p, is

g(y, α̃+ δα̃) =

p
∏

i=1

(

θ(y, (αi + δαi))
)mi

≈ g(y, α̃) +

p
∑

i=1

∂g(y, α̃)

∂αi

δαi,(6)

to first order, and (5) and (6) lead to Theorem 3.2.

Theorem 3.2. The structured condition number of a root αk of multiplicity mk

of g(y, α̃) is

ρ(αk) =
‖θ(y, αk)‖

mk |αk|
,(7)

where θ(y, αk) is defined in (5),

ρ(αk) =
∆αk

∆g(y, α̃)
, ∆αk =

|δαk|

|αk|
, and ∆g(y, α̃) =

‖δg(y, α̃)‖

‖g(y, α̃)‖
.

The unstructured condition number κ(α) is a function of the upper bound of the
relative error ε in the coefficients, but ρ(αk) is independent of ε.

Example 3.3. Consider a Bernstein basis polynomial of degree m that has one
root α of multiplicity m,

g(y) =
(

− α(1− y) + (1− α)y
)m

=

m
∑

i=0

bi

(

m

i

)

(1− y)m−iyi.

If m is sufficiently large, the unstructured condition number (4) of the root α is
independent of m and inversely proportional to the upper bound of the relative error
in the coefficients,

κ(α) ≈
1

ε |α|
.

The structured condition number ρ(α) is easily obtained from (7),

ρ(α) =

(

α2 + (1− α)2
)

1
2

m |α|
,

where ‖ · ‖ = ‖ · ‖2, and thus unlike κ(α), ρ(α) is independent of ε. Also, ρ(α) is a
function of the multiplicity m of α, but the calculation of m is not trivial because it
reduces to the determination of the rank loss of a matrix [3, 25].

Example 3.3 is an example of the stability of a multiple root of a polynomial
with respect to a perturbation that preserves its multiplicity. It follows that if the
multiplicity of each distinct root αk of f(y), which is defined in (2), is calculated
initially, and the method for the computation of the values of the roots satisfies the
constraint that their multiplicities be preserved, then the condition number ρ(αk)
shows that the method is numerically stable. It was shown in section 2 that this
procedure is adopted in the algorithms of Musser and Gauss.
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4. The pejorative manifold of a polynomial. The pejorative manifold [12]
of a polynomial provides a geometric interpretation of the conditions for which the
perturbations of the coefficients of f(y) (a) cause its multiple roots to break up into
simple roots, which are therefore unstable, and (b) cause its multiple roots to retain
their multiplicities, which are therefore stable. These conditions correspond to the
unstructured and structured condition numbers, respectively.

Let f(y) have p distinct roots αi, i = 1, . . . , p, such that the multiplicity of αi is
mi,

f(y) =

m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi =

p
∏

i=1

(

αi(1− y)− (1− αi)y
)mi

,

where

a0 =

p
∏

i=1

αmi

i , am =

p
∏

i=1

(

− (1− αi)
)mi

, and

p
∑

i=1

mi = m.

The pejorative manifold of a polynomial is defined by the multiplicities of its roots, and
it is therefore convenient to consider the monic form g(y) of f(y), which is obtained
by normalizing the coefficients of f(y) by a0,

g(y) =

m
∑

i=0

bi

(

m

i

)

(1− y)m−iyi =

p
∏

i=1

(

(1− y)− λiy
)mi

, b0 = 1,

where

bi =
ai
a0

, bm =

p
∏

i=1

(−λi)
mi , λi =

1− αi

αi

, αi 6= 0.

Definition 4.1 (pejorative manifold). Let µ = {m1, . . . ,mp} be the set of mul-

tiplicities of the roots of the polynomial g(y). The pejorative manifold M(µ) ⊂ R
m

is the set of real coefficients {b1, . . . , bm} such that g(y) has p distinct roots whose

multiplicities are equal to µ.

Example 4.2. Consider the cubic Bernstein basis polynomial f(y) that has real
roots α1, α2, and α3,

f(y) = α1α2α3

(

3

0

)

(1− y)3 −
(α1α2β3 + α2α3β1 + α3α1β2)

(

3
1

)

(

3

1

)

(1− y)2y

+
(α1β2β3 + α2β3β1 + α3β1β2)

(

3
2

)

(

3

2

)

(1− y)y2 − β1β2β3

(

3

3

)

y3,

where βi = 1 − αi, i = 1, 2, 3. The configurations of the roots of f(y) that include
multiple roots are (a) one cubic root and (b) one double root and one simple root,
and each configuration defines a pejorative manifold.

Consider initially the case in which f(y) has a real triple root α := α1 = α2 = α3,

f(y) =
(

α(1− y)− (1− α)y
)3

=

3
∑

i=0

(−1)iα3−i(1− α)i
(

3

i

)

(1− y)3−iyi,
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whose monic form is

g(y) =

3
∑

i=0

(−λ)
i

(

3

i

)

(1− y)3−iyi, λ =
1− α

α
, α 6= 0.

The coefficient of (1− y)3 is one, and if the other coefficients are (X(λ), Y (λ), Z(λ)),
then the pejorative manifoldM(3) of a cubic Bernstein basis polynomial that has one
real cubic root is the curve C, which is parameterized by λ,

C :
(

X(λ) Y (λ) Z(λ)
)

=
(

−λ λ2 −λ3
)

.

Consider now the situation in which f(y) has a real double root α1 and a real simple
root α2,

f(y) = α2
1α2

(

3

0

)

(1− y)3 −

(

α2
1(1− α2) + 2α1α2(1− α1)

)

(

3
1

)

(

3

1

)

(1− y)2y

+

(

2α1(1− α1)(1− α2) + α2(1− α1)
2
)

(

3
2

)

(

3

2

)

(1− y)y2

−(1− α1)
2(1− α2)

(

3

3

)

y3.

The monic form of f(y) is considered by defining λ and µ as

λ =
1− α1

α1
and µ =

1− α2

α2
, α1, α2 6= 0,

and thus the pejorative manifold M(2,1) of a cubic Bernstein basis polynomial that
has one real simple root and one real double root is obtained from the second, third,
and fourth coefficients of the monic form of f(y),

S :
(

X(λ, µ) Y (λ, µ) Z(λ, µ)
)

=
(

−(2λ+µ)
3

λ(λ+2µ)
3 −λ2µ

)

.

The curve C and surface S are shown in Figure 1, where C is defined by the condition
λ = µ. If r is the position vector of an arbitrary point on S, then

r =
[

−(2λ+µ)
3

λ(λ+2µ)
3 −λ2µ

]

,

and thus the normal vector to S is

∂r

∂λ
×

∂r

∂µ
= −

[

2λ2(λ−µ)
3

2λ(λ−µ)
3

2(λ−µ)
9

]

.

It follows that the normal vector to S is not defined when λ = µ, and thus, as shown
in Figure 1, the curve C is defined by the sharp edge in S.

Every point in the space (X(λ, µ, ), Y (λ, µ), Z(λ, µ)) defines a cubic Bernstein
basis polynomial with real roots, and points on C and S define polynomials f(y) with
the restricted root structures of a real cubic root, and a real simple root and a real
double root, respectively. The geometric implications of the difference between the
structured and unstructured condition numbers of a multiple root α, ρ(α) and κ(α),
respectively, follow from the manifolds C and S in Example 4.2. In particular, the
small value of ρ(α) implies that a small displacement from a point P on C or S to
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Z(λ, µ)

X(λ, µ)

Y (λ, µ)

-10000

-20

-15

400
-10

300

200-5

-5000

100
0 0

0

C

S

Fig. 1. The curve C and surface S, where X(λ, µ) =
−(2λ+µ)

3
, Y (λ, µ) =

λ(λ+2µ)
3

, Z(λ, µ) =

−λ2µ, for Example 4.2.

a neighboring point on the same manifold causes a small change in the value of the
root α, and its multiplicity is unchanged. If, however, the displacement occurs from
P to a point that does not lie on a manifold, then α breaks up into simple roots and
the large value of κ(α) implies that the errors in the roots of f(y) are large. This
connection between condition numbers and the pejorative manifold of a polynomial
will be extended in section 4.1, where it will be shown that the pejorative manifold of
a polynomial provides an elegant geometric interpretation of the algorithms of Musser
and Gauss for the computation of its multiple roots.

The intersection of two or more manifolds that have the same number of distinct
roots is empty. For example, the roots of the polynomial with root structure π =
(2, 2, 2) (three double roots) cannot merge to form a polynomial with root structure
π = (3, 2, 1) (one cubic root, one double root, and one simple root). Manifolds of
this type must therefore contain a separating surface, and Example 4.3 considers the
equation of this surface for the manifoldsM(4,1) andM(3,2).

Example 4.3. Let g1(y) and g2(y) be real monic Bernstein basis polynomials of
degree five with root structures π = (4, 1) and π = (3, 2), respectively,

g1(y) =
5
∑

i=0

b1,i

(

5

i

)

(1− y)5−iyi and g2(y) =
5
∑

i=0

b2,i

(

5

i

)

(1− y)5−iyi,

where b1,0 = b2,0 = 1. If b1 and b2 are the vectors,

b1 =
[

b1,1 b1,2 b1,3 b1,4 b1,5
]

and b2 =
[

b2,1 b2,2 b2,3 b2,4 b2,5
]

,

then b1 ∈M(4,1) and b2 ∈M(3,2), and the following statements hold:
1. The function

s(b1,1, b1,2, b1,3, b1,4) = 5b1,4 − 20b1,1b1,3 + 30b1,2b
2
1,1 − 15b41,1

is negative for all points on M(4,1) and zero on M(5), the manifold defined
by one root of multiplicity five.

2. The function

s(b2,1, b2,2, b2,3, b2,4) = 5b2,4 − 20b2,1b2,3 + 30b2,2b
2
2,1 − 15b42,1

is positive for all points onM(3,2) and zero onM(5).



MULTIPLE ROOTS OF A BERNSTEIN BASIS POLYNOMIAL A461

0-50
b

2
-100-2000-10000b

3

1000

0

5

10

×104

b
4

(a)
(c)

(b)

Fig. 2. (a) The manifold M(3,2), [b2, b3, b4] = [b2,2, b2,3, b2,4], (b) the manifold M(4,1),

[b2, b3, b4] = [b1,2, b1,3, b1,4], and (c) their separating plane, for a monic Bernstein polynomial of

degree five and b1,1 = b2,1 = 0.2.

Table 1

The stages in the algorithms of Musser and Gauss, and the correspondence of their numerical

and geometric operations, for the computation of multiple roots of f(y).

Stage Numerical operation Geometric operation

Computation of the GCD computations and Identification of the
multiplicities of the polynomial deconvolutions pejorative manifold M

roots of f(y)
Computation of the Computation of the roots Identification of the
values of the distinct of polynomial equations. point on M that
roots of f(y) All the roots are simple. defines f(y)

It follows that the surface s(c) = 0 is a separating surface ofM(4,1) andM(3,2), where
c = [c1, c2, c3, c4].

Figure 2 shows the manifolds M(4,1) and M(3,2), and their separating plane for
b1,1 = b2,1 = 0.2. Each manifold lies strictly on one side of the separating plane, which
is tangential to the manifolds at the point that defines the manifold M(5) because
the distinct roots in each manifoldM(4,1) andM(3,2) coalesce at this point to form
a root of multiplicity five.

4.1. The algorithms of Musser and Gauss, and the pejorative manifold.

It was shown in section 3 that the difference between the unstructured and structured
condition numbers of a multiple root of a polynomial provides numerical justification
for the algorithms of Musser and Gauss. The first stage in these algorithms requires
GCD computations and polynomial deconvolutions, and the second stage requires the
solution of a set of polynomial equations, all of whose roots are simple. It was shown
that the indices i in the while loop in lines 7–13 in Musser’s algorithm, and in the for
loop in lines 13–16 in Gauss’ algorithm, define the multiplicities of the roots of f(y)
and therefore also the pejorative manifold on which f(y) lies. This correspondence
between the numerical and geometric operations in the algorithms of Musser and
Gauss is shown in Table 1.

If the polynomial f(y) is exact, then it is represented by a point on a pejorative
manifoldM, and the GCD computations and polynomial deconvolutions can be com-
puted exactly. If, however, the coefficients of f(y) are inexact, it can be assumed all
its roots are simple and it is therefore not represented by a point onM. In this case,



A462 MARTIN BOURNE, JOAB WINKLER, AND YI SU

the GCD computations are replaced by AGCD computations, and these computations
and the polynomial deconvolutions define a series of projections onto a manifoldM∗

that is justified by the given inexact polynomial. This manifold is not necessarily the
manifold on which the theoretically exact form of the given polynomial lies, but the
values and multiplicities of the roots computed from M∗ are legitimate solutions if
their backward error is acceptable.

5. The Sylvester matrix and GCD computations. The GCD computations
in the algorithms of Musser and Gauss, and NAClab, use the Sylvester matrix and its
subresultant matrices, and it is therefore appropriate to consider these matrices for
the polynomials f(y) and g(y),

f(y) =

m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi and g(y) =

n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi.(8)

The Sylvester subresultant matrix Sk(f, g), k = 1, . . . ,min(m,n), of f(y) and g(y) is
a matrix of order (m+ n− k + 1)× (m+ n− 2k + 2) [3, 4, 24],

Sk(f, g) = D−1
k Tk(f, g),(9)

where D−1
k ∈ R

(m+n−k+1)×(m+n−k+1) is given by

D−1
k = diag

[

1

(m+n−k

0 )
1

(m+n−k

1 )
. . . 1

(m+n−k

m+n−k)

]

,(10)

Tk(f, g) ∈ R
(m+n−k+1)×(m+n−2k+2) is given by

Tk(f, g) =































a0
(

m
0

)

b0
(

n
0

)

a1
(

m
1

) . . . b1
(

n
1

) . . .
...

. . . a0
(

m
0

) ...
. . . b0

(

n
0

)

...
. . . a1

(

m
1

) ...
. . . b1

(

n
1

)

am
(

m
m

) . . .
... bn

(

n
n

) . . .
...

. . .
...

. . .
...

am
(

m
m

)

bn
(

n
n

)































=
[

Fk(f) Gk(g)
]

,(11)

and Fk(f) ∈ R
(m+n−k+1)×(n−k+1) and Gk(g) ∈ R

(m+n−k+1)×(m−k+1) are Tœplitz
matrices whose entries are the coefficients of f(y) and g(y), scaled by their combi-
natorial terms. The Sylvester matrix S(f, g) is defined by k = 1, S(f, g) = S1(f, g).
The application of the matrices Sk(f, g), k = 1, . . . ,min(m,n), to the calculation of
the degree of the GCD of f(y) and g(y) is considered in Theorem 5.1 [3].

Theorem 5.1. The degree t of the GCD of f(y) and g(y) is equal to the largest

integer k such that Sk(f, g) is rank deficient,

rank Sk(f, g) < m+ n− 2k + 2, k = 1, . . . , t,
rank Sk(f, g) = m+ n− 2k + 2, k = t+ 1, . . . ,min(m,n),

(12)

and the rank loss of S(f, g),

t = m+ n− rank S(f, g).(13)
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Furthermore, the quotient polynomials vk(y) and uk(y), which are of degrees n−k and

m − k, respectively, satisfy f(y)vk(y) = g(y)uk(y), k = 1, . . . , t, and their coefficient

vectors are computed from vectors that lie in the nullspace of Sk(f, g),

Sk(f, g)pk = 0, pk = Qkrk 6= 0, k = 1, . . . , t,

where rk, k = 1, . . . , t, contains the coefficients of vk(y) and uk(y),

rk =
[

−vk,0 −vk,1 · · · −vk,n−k uk,0 uk,1 · · · uk,m−k

]T
,

and

Qk = diag
[

(

n−k
0

) (

n−k
1

)

· · ·
(

n−k
n−k

) (

m−k
0

) (

m−k
1

)

· · ·
(

m−k
m−k

)

]

.(14)

The calculation of the degree t of the GCD in (12) is valid for the Sylvester matrix
and its subresultant matrices Sk(f, g) = D−1

k Tk(f, g), and their variants,

{

Tk(f, g), D−1
k Tk(f, g), Tk(f, g)Qk, D−1

k Tk(f, g)Qk

}

, k = 1, . . . ,min(m,n),

(15)

because D−1
k and Qk, which are defined in (10) and (14), respectively, are nonsingular.

It is shown in [3, 4] that the best form of the Sylvester matrix and its subresultant
matrices is D−1

k Tk(f, g)Qk because it yields significantly better results than the other
forms in (15) for the degree and coefficients of the GCD of f(y) and g(y). This result
follows from consideration of the combinatorial terms, which are of the forms

(

m
i

)

and
(

n
j

)

for Tk(f, g),

(mi )
(m+n−k

p )
and

(nj)
(m+n−k

q )
for D−1

k Tk(f, g),

(

m
i

)(

n−k
p−i

)

and
(

n
j

)(

m−k
q−j

)

for Tk(f, g)Qk,

(mi )(
n−k

p−i)
(m+n−k

p )
and

(nj)(
m−k

q−j )
(m+n−k

q )
for D−1

k Tk(f, g)Qk,

(16)

where i = 0, . . . ,m, p = i, . . . , n − k + i, and j = 0, . . . , n, q = j, . . . ,m − k + j.
The minimum range of magnitude (the ratio of the maximum value to the minimum
value) of these combinatorial terms for the values of (i, p) and (j, q) occurs for the
form D−1

k Tk(f, g)Qk, which is therefore the preferred form, but this range may still be
significant such that numerical problems may still occur. These numerical problems
of the matrices in (15) can be reduced by processing f(y) and g(y) by three operations
before the matrices are formed, but differences between them still exist such that some
matrices yield better results than other matrices [3, 4]. These three preprocessing
operations are:

First operation. The normalization of the nonzero entries in the left partition
of the matrices (15), that is, the partition that contains the coefficients ai of
f(y), by their geometric mean, and similarly, the normalization of the nonzero
entries in the right partition (the partition that contains the coefficients bi of
g(y)) by their geometric mean.

Second operation. The replacement of g(y) by αg(y) where α is a constant. This
operation follows from the scale invariance property of the GCD of f(y) and
g(y), GCD(f, g) ∼ GCD(f, αg), where ∼ denotes equivalence to within an
arbitrary nonzero scalar multiplier.
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Third operation. A change in the independent variable from y to w,

y = θw,(17)

where θ is a constant and the optimal values of α and θ are obtained from
the solution of a linear programming problem.

These operations yield revised polynomials f̃k(w) and g̃k(w), k = 1, . . . ,min(m,n),

f̃k(w) =

m
∑

i=0

(

ãiθ
i
k

)

(

m

i

)

(1− θkw)
m−iwi, ãi =

ai
λk

,

g̃k(w) = αk

n
∑

i=0

(

b̃iθ
i
k

)

(

n

i

)

(1− θkw)
n−iwi, b̃i =

bi
νk

,

where λk and νk are the geometric means calculated in the first preprocessing opera-
tion, and the subscript k is included in these means, and in αk and θk, to emphasize
that they must be calculated for each subresultant matrix, that is, for each value of
k. The GCD computations are therefore performed using the matrices (15) that are
functions of the polynomials (f̃k(w), g̃k(w)), rather than the polynomials (f(y), g(y)).
The application of these matrices to the computation of an AGCD of f̃(w) = f̃1(w)
and g̃(w) = g̃1(w) is discussed in section 6.

The data in practical problems is inexact, and thus the GCD computations must
be replaced by AGCD computations. An AGCD of two or more polynomials is not
unique, and it therefore differs from their GCD, which is unique up to a nonzero scalar
multiplier. An AGCD of two polynomials is considered in section 6.

6. An AGCD of two polynomials. The definition of an AGCD of two or
more polynomials includes some or all of the concepts of nearness, maximum degree,
and minimum distance [30]. These properties are included in the following definition
of an AGCD of the polynomials p(y) and q(y) [14].

Definition 6.1 (an AGCD). A polynomial d(y) of degree t is an AGCD of

p(y) and q(y) if it is the polynomial of maximum degree that is an exact divisor of

p(y) + p̃(y) and q(y) + q̃(y) for perturbations ‖p̃‖ ≤ εp and ‖q̃‖ ≤ εq, and ‖p̃‖
2 + ‖q̃‖2

is minimized over all polynomials of degree t.

Two methods for the calculation of the degree t of an AGCD of f̃(w) and g̃(w)
are described [3, 25]. In particular, t can be computed from their Sylvester matrix
and subresultant matrices, as shown in (12), or from the singular value decomposition
of the matrices in the set (15) for k = 1, as shown in (13). The methods that use
subresultant matrices define a measure µk for the distance to singularity of each sub-
resultant matrix, and the maximum change in µk between two successive subresultant
matrices is calculated. This leads to the following expression for the calculation of t,

t = arg max
k=1,...,min(m,n)−1

κ(Sk(f̃k, g̃k))

κ(Sk+1(f̃k+1, g̃k+1))
,(18)

where κ(X) is the condition number of X. This expression for the degree of an
AGCD is stated in terms of the Sylvester matrix and its subresultant matrices, but
it is clear that this matrix can be replaced by any of the matrices in the set (15).
The best matrix is determined by the effectiveness with which computations can be
performed on matrices whose entries vary widely in magnitude and its insensitivity
to perturbations in the coefficients of the polynomials.
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Example 6.2. Consider the Bernstein forms of the polynomials f(y) and g(y)
whose GCD d(y) is of degree 23,

f(y) = (y − 0.10)6(y − 0.56)8(y − 0.75)10(y − 0.82)3(y + 0.27)3(y − 1.37)3 ×

(y − 1.46)2,

g(y) = (y − 0.10)2(y − 0.56)8(y − 0.75)10(y − 0.99)4(y − 2.12)(y − 1.20)3 ×

(y − 1.37)3.

Uniformly distributed random noise was added to the coefficients ai and bj of, respec-
tively, f(y) and g(y), such that the upper bound of the relative error in each coefficient
was a uniformly distributed random variable in the interval I = [10−10, 10−8],

δai = airiεi, i = 0, . . . , 35,(19)

δbj = bjrjεj , j = 0, . . . , 31,(20)

where εi, εj ∈ I, and ri and rj are uniformly distributed random variables in the
interval [−1, 1]. The nonconstant value of the upper bound of the relative error in
the coefficients ai and bj makes it difficult to impose a threshold for the determination
of the rank of each matrix in the set (15), and it therefore provides a stringent test
for the numerical methods that implement Theorem 5.1.

The polynomials f(y) and g(y) were preprocessed, as described above, and each of
the matrices in (15) was formed. Figure 3 shows the singular values of D−1

k Tk(f̃k, g̃k),

k = 1, . . . , 31, and it is clear that (a) the matrix D−1
1 T1(f̃1, g̃1) is ill-conditioned and

of full rank and thus (13) is not satisfied, and (b) the change in the condition number
of successive subresultant matrices, as shown in (18), returns the correct degree of the
GCD, t = 23.

Figure 4 shows the singular values of the matrices D−1
k Tk(f̃k, g̃k)Qk, and they

yield better results than the matrices D−1
k Tk(f̃k, g̃k) because (a) the rank loss of

D−1
1 T1(f̃1, g̃1)Q1 is 23, which is the degree of the GCD of f(y) and g(y), and (b)

the maximum change in the condition number of the subresultant matrices occurs
when k = 23. The matrices Tk(f̃k, g̃k) and Tk(f̃k, g̃k)Qk yielded unsatisfactory results
because (12) and/or (13) were not satisfied.

5 10 15 20 25 30
k

-10

-5

0

5

10

15

20

lo
g 
σ

i

k=23

Fig. 3. The singular values σi of D−1
k

Tk(f̃k, g̃k), k = 1, . . . , 31, with the inclusion of the three

preprocessing operations, for Example 6.2.
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k
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lo
g 
σ

i
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-5

0

5
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15

k=23

i=43

i=1

The kth column has 44-k large singular values, k=1,...,23

The kth column has 24-k small singular values, k=1,...,23

Fig. 4. The singular values σi of D−1
k

Tk(f̃k, g̃k)Qk, k = 1, . . . , 31, with the inclusion of the

three preprocessing operations, for Example 6.2.

Several other points are noted:
1. The superior results obtained with the matrices D−1

k Tk(f̃k, g̃k)Qk are consis-
tent with the results in [3].

2. The matrices D−1
k Tk(f̃k, g̃k)Qk are the most robust in the presence of noise

because a higher noise level can be imposed on the coefficients of f(y) and
g(y) before incorrect results are obtained.

3. The clear gap between the subresultant matrices that are, and are not, rank
deficient in Figure 4 does not require a threshold for its determination, even
though the upper bound of the relative error in the coefficients of f(y) and
g(y) is a random variable that spans two orders of magnitude, as shown in
(19) and (20). This is a measure of the efficacy of D−1

k Tk(f̃k, g̃k)Qk for the
calculation of the degree of the GCD of f(y) and g(y).

The results in Figures 3 and 4 are typical of the results obtained from many other
examples, and the best form of the Sylvester matrix and its subresultant matrices for
GCD computations is thus D−1

k Tk(f̃k, g̃k)Qk. These results are therefore consistent
with the numerical considerations of the range of magnitudes of the combinatorial
terms (16) in the variants of the Sylvester matrix and its subresultant matrices.

The calculation of the degree of the GCD of f(y) and g(y) from (12) requires that
a change in the rank of two successive subresultant matrices exist, but this change
does not occur in the following situations:

1. The polynomials f(y) and g(y) are coprime, in which case all the subresultant
matrices have full rank.

2. If GCD (f, g) = f(y) or GCD (f, g) = g(y), all the subresultant matrices are
rank deficient.

The first case arises when all the roots of the given polynomial are simple, a situation
that is not considered in this paper because the algorithms of Musser and Gauss are
explicitly designed for the computation of multiple roots and they do not have any
advantages, with respect to traditional methods, for the computation of simple roots.
The second case reveals an important difference between the algorithms of Musser
and Gauss, and it is considered in detail in the examples in section 9.
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6.1. Bounds on the degree of the GCD of a polynomial and its de-

rivative. The algorithm of Gauss requires many computations of the GCD of a

polynomial fi(y) and its derivative f
(1)
i (y),

fi+1(y) = GCD
(

fi, f
(1)
i

)

, i = 0, 1, 2, . . . ,(21)

and an essential part of this computation is the determination of the degree of fi+1(y).
If fi(y) is of degree p, then Theorem 5.1 suggests that the rank deficiency, or otherwise,
of p − 1 subresultant matrices must be determined, but Theorem 6.3 shows that
significantly fewer subresultant matrices need be considered because bounds on the
degree of fi+1(y) in terms of the degree of fi(y) can be established.

Theorem 6.3. Let the polynomials fi(y), i = 0, 1, 2, . . . , satisfy (21), and let the

degree of fi(y) be Mi. The degree Mi+1 of fi+1(y) satisfies

2Mi −Mi−1 ≤Mi+1 ≤Mi − 1, i = 1, 2, . . . ,(22)

which defines lower and upper bounds for the orders of the subresultant matrices that

need be considered for the GCD computations (21).

Proof. Let the polynomial fi(y) have di distinct roots αj , j = 1, . . . , di, such that
αj is of multiplicity mj ,

fi(y) = (y − α1)
m1(y − α2)

m2 . . . (y − αdi
)mdi ,

di
∑

j=1

mj = Mi,

since fi(y) is of degree Mi. It follows that

f
(1)
i (y) = (y − α1)

m1−1(y − α2)
m2−1 . . . (y − αdi

)mdi
−1hi(y),

where hi(y) is of degree di − 1, and thus from (21),

fi+1(y) = (y − α1)
m1−1(y − α2)

m2−1 . . . (y − αdi
)mdi

−1.

It follows that

Mi+1 =

di
∑

j=1

(mj − 1) = Mi − di,(23)

and since 1 ≤ di ≤ di−1, lower and upper bounds on Mi+1 can be established:

Mi − di−1 ≤Mi+1 ≤Mi − 1.

It follows from (23) that di−1 = Mi−1 −Mi, and substitution of this equation into
the lower bound for Mi+1 yields (22).

Example 6.4. Consider the Bernstein form of the polynomial f0(y),

f0(y) = (y − 0.17523547)5(y − 1.50)7(y + 0.75)10(y − 0.10)3(y + 1.2354)3,

and the polynomials fi+1(y) = GCD(fi, f
(1)
i ), i = 0, . . . , 10,
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Fig. 5. The minimum singular value σk of (a) D−1
k

Tk(f̃2,k, f̃
(1)
2,k)Qk and (b) D−1

k
Tk(f̃3,k,

f̃
(1)
3,k)Qk, for Example 6.4. The lower and upper bounds of the degree of the GCD, and the degree of

the GCD, are marked in the figures.

fi(y) =











































(

(y − 0.17523547)5−i(y − 1.50)7−i(y + 0.75)10−i ×

(y − 0.10)3−i(y + 1.2354)3−i
)

, i = 0, 1, 2,

(y − 0.17523547)5−i(y − 1.50)7−i(y + 0.75)10−i, i = 3, 4,

(y − 1.50)7−i(y + 0.75)10−i, i = 5, 6,

(y + 0.75)10−i, i = 7, 8, 9,

1, i = 10.

The polynomials f0(y) and f
(1)
0 (y) were preprocessed, thereby yielding the polynomi-

als f̃0(w) and f̃
(1)
0 (w). Figures 5(a) and 5(b) show the minimum singular values σk

of D−1
k Tk(f̃2,k, f̃

(1)
2,k )Qk and D−1

k Tk(f̃3,k, f̃
(1)
3,k )Qk, respectively, where f̃i,k = f̃i,k(w)

denotes the ith polynomial in the set {fi(y), i = 0, . . . , 10} in the kth subresultant
matrix, after it has been preprocessed. The lower and upper bounds of the degree of
the GCD, and the degree of the GCD, are shown in the figures, and it is clear that
the bounds reduce the range over which the degree of the GCD is sought.

6.2. The coefficients of an AGCD. The calculation of the degree t of an
AGCD d(y) of f(y) and g(y) was considered in sections 6 and 6.1, and it allows the
coefficients of d(y) to be determined. It is shown in [4] that these coefficients can be
computed by applying a nonlinear structure-preserving matrix method to an equation
of the form Ax = b, where A and b are derived from the tth subresultant matrix. The
reference includes details on the theoretical development of the equation to be solved,
the iterative method for its solution, and computational results.

7. Deconvolution. The algorithms of Musser and Gauss require that several
polynomial deconvolutions be performed, and this section considers this operation.

The polynomials f(y) and g(y) are defined in (8), and let the coefficients of the
polynomial h(y) = f(y)g(y) be ci, i = 0, . . . ,m + n. The deconvolution of f(y) from
h(y) can be written as

(

D−1T (f)
)

b = c,(24)

where

D−1 = diag

[

1
(

m+n
0

)

1
(

m+n
1

) · · ·
1

(

m+n
m+n

)

]

∈ R
(m+n+1)×(m+n+1),
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T (f) ∈ R
(m+n+1)×(n+1) is a Tœplitz matrix whose entries are the scaled Bernstein

coefficients ai
(

m
i

)

, and

b =
[

b0
(

n
0

)

b1
(

n
1

)

· · · bn
(

n
n

)]

∈ R
n+1,

c =
[

c0 c1 · · · cm+n

]

∈ R
m+n+1.

Previous work [27] and the formation of the modified form of the Sylvester matrix
and its subresultant matrices D−1

k Tk(f̃k, g̃k)Qk, as discussed in section 5, show that
it is advantageous to express b as the product of a diagonal matrix Q ∈ R

(n+1)×(n+1)

and a vector p ∈ R
n+1 of the coefficients bi,

b = Qp, Q = diag
[(

n
0

) (

n
1

)

· · ·
(

n
n

)]

, p =
[

b0 b1 · · · bn
]T

,

and thus (24) can be written as
(

D−1T (f)Q
)

p = c,(25)

where D−1T (f)Q is of order (m+ n+ 1)× (n+ 1).
Line 10 in Musser’s algorithm and lines 11 and 14 in Gauss’ algorithm consist of

sequences of deconvolutions,

hi(y) =
fi−1(y)

fi(y)
and si(y) =

hi(y)

hi+1(y)
, i = 1, 2, . . . ,(26)

and there is therefore coupling between successive deconvolutions. This leads to sev-
eral methods for performing these deconvolutions:

Method 1: Separate deconvolutions. The simplest method of performing
each deconvolution is least squares, such that the coupling between suc-
cessive deconvolutions is not imposed. Each deconvolution is therefore in-
dependent and of the form (25).

Method 2: Batch deconvolution. The deconvolutions (26) are written in a
form that combines the individual deconvolutions in Method 1 into one
equation. For example, the first set of deconvolutions in (26) can be written
as

(

Pi(fi)
)

hi = fi−1, Pi(fi) = D−1
i T (fi)Qi, i = 1, 2, . . . , r,

where r is the number of deconvolutions, Di and Qi are diagonal matrices
of combinatorial terms, and T (fi) is a Tœplitz matrix whose entries are
the coefficients of fi(y). This leads to a linear algebraic equation whose
coefficient matrix is block-diagonal,
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P2(f2)

. . .

Pr(fr)
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h2

...
hr











=











f0
f1
...

fr−1











.(27)

This equation is solved by the method of least squares.
Method 3: Batch deconvolution with structure. The polynomials fi(y)

may be inexact, and an improved solution of (27) can therefore be obtained
by the preservation of the Tœplitz structure of the matrices T (fi). This
preservation is implemented by the method of structured total least norm
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(STLN) [17], which requires the addition of perturbations to the polynomi-
als fi(y) such that the perturbed form of (27) has an exact solution. The
application of the method of STLN to (27) therefore yields the equation

Ax = b,(28)

where

A = diag
[

P1(f1 + z1) P2(f2 + z2) · · · Pr(fr + zr)
]

,

x =
[

h̄1 h̄2 · · · h̄r

]T
,

b =
[

f0 + z0 f1 + z1 · · · fr−1 + zr−1

]T
,

and zi = zi(y), i = 0, . . . , r, are polynomials such that the degree of zi(y)
is less than or equal to the degree of fi(y). The polynomials zi(y) that
constrain (28) to have an exact solution are not unique, but uniqueness is
imposed by selecting the polynomials zi(y) of minimum norm. This leads
to a least squares equality problem, which can be solved by the QR decom-
position.

Method 4: Batch deconvolution with constraints. This method is an ex-
tension of Method 2 because constraints are imposed on the polynomials
hi(y) in (27).

Example 7.1. Consider the polynomial

f(y) = (y − 2)7(y − 3)12,

for which the polynomials hi(y) in line 11 in Gauss’ algorithm satisfy

h1(y) = h2(y) = · · · = h7(y) = (y − 2)(y − 3),(29)

h8(y) = h9(y) = · · · = h12(y) = y − 3.(30)

Some of the polynomials in the solution vector in (27) are therefore equal,
and thus this equation can be written as
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.(31)

It cannot be guaranteed that the solution of (27) satisfies (29) and (30), but
this problem does not exist when these constraints are imposed.

Method 5: Constrained batch deconvolution and STLN. The combina-
tion of Methods 3 and 4 enables the method of STLN to be applied to (31).

Example 7.2 considers the different forms of deconvolution when they are applied
to a sequence of polynomials fi(y) that yield the polynomials hi(y),

fi+1(y) = GCD
(

fi, f
(1)
i

)

, hi+1(y) =
fi(y)

fi+1(y)
, i = 0, 1, . . .(32)
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It was shown in section 5 that f(y) and g(y) must be processed before computations
are performed on their Sylvester matrix and its subresultant matrices. The objective
of the third preprocessing operation (17) is a reduction in the ratio of the maximum
entry to the minimum entry of the variants of the Sylvester matrix and its subresul-
tant matrices (15), and an identical reduction is required for the coefficient matrix
D−1T (f)Q in (25) because of the combinatorial terms in each matrix in this product.

Example 7.2. Noise was added to the Bernstein form of the polynomial

f(y) = (y − 2.1234565487)(y − 1.589212457)4(y − 0.7213)10

× (y − 6.5432)7(y + 0.72)20,

such that the upper bound of the relative error in each coefficient was 10−8, and the
polynomials hi(y) were generated from (32) using the five methods for deconvolution
discussed above. The experiment was performed with and without the preprocessing
operation, and the relative error in each polynomial hi(y) was computed.

Figures 6 and 7 show the relative error of each polynomial hi(y) with and without
preprocessing, respectively. The figures show that the inclusion of the preprocessing
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Fig. 6. The error in the polynomial hi(y) against i, with preprocessing, for Example 7.2.
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Fig. 7. The error in the polynomial hi(y) against i, without preprocessing, for Example 7.2.
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operation (17) yields improved results for small values of i, but the difference between
the results obtained with and without preprocessing decreases as i increases.

8. Complexity. The algorithms of Musser and Gauss contain many AGCD com-
putations and polynomial deconvolutions. The AGCD computations on Bernstein
basis polynomials are more complicated than their equivalents for power basis poly-
nomials because the Tœplitz structure of the matrices that arise in the power basis
is not preserved in the Bernstein basis, as shown in (9), (10), and (11). Many com-
putations showed that the best variant of the set (15) is D−1

k Tk(f̃k, g̃k)Qk because
the adverse effects of the combinatorial terms are minimized, but the development of
fast algorithms that exploit the complicated structure of these matrices is not trivial.
It follows from (25) that these comments are also appropriate for the polynomial de-
convolutions because the Tœplitz structure of the coefficient matrix for power basis
computations is not retained when Bernstein basis polynomials are considered. It
follows that generic algorithms must be used for computations on Bernstein basis
polynomials, which increases the complexity of the algorithms of Musser and Gauss.

9. Examples. This section contains examples in which the results from Musser’s
algorithm, Gauss’ algorithm, and NAClab are compared. The preprocessing opera-
tions are implemented for Musser’s and Gauss’ algorithms, and thus all computations
are formed on the polynomial f̃0(w) rather than the given polynomial f0(y). The
substitution (3) is required for NAClab in order to transform the given Bernstein
basis polynomial to a power basis polynomial.

Example 9.1. Noise was added to each coefficient ai of the Bernstein basis form
of the polynomial f0(y),

f0(y) =

32
∑

i=0

ai

(

32

i

)

(1− y)32−iyi = (y − 0.10)15(y − 0.20)15(y + 0.50)2,

such that the relative error in each coefficient was a uniformly distributed random
variable in the interval I = [10−10, 10−8],

δai = airiεi, i = 0, . . . , 32,(33)

where εi ∈ I and ri is a uniformly distributed random variable in the interval [−1, 1].

The matrices D−1
k Tk(f̃i, f̃

(1)
i )Qk were used for the AGCD computations, and the

deconvolutions were performed using Method 5 (see section 7). The computed roots
from Gauss’ algorithm are shown in Table 2, and it is seen that the multiplicities are
correct and their relative errors are small. Also, the backward error of the computed
roots is 6.16× 10−10.

The experiment was repeated, but Tk(f̃i, f̃
(1)
i )Qk and D−1

k Tk(f̃i, f̃
(1)
i ) were used

for the AGCD computations, and the same method (Method 5) was used for the

Table 2

The results using Gauss’ algorithm with the matrices D−1
k

Tk(f̃i, f̃
(1)
i )Qk for the AGCD com-

putations and Method 5 for the deconvolutions, for Example 9.1.

Exact Computed root Exact and computed Relative error
root multiplicities of root

0.10 0.100000000474675 15, 15 4.75× 10−9

0.20 0.200000000940534 15, 15 4.70× 10−9

−0.50 −0.500000012859648 2, 2 2.57× 10−8
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Table 3

The results using Gauss’ algorithm with the matrices Tk(f̃i, f̃
(1)
i )Qk for the AGCD computa-

tions and Method 5 for the deconvolutions, for Example 9.1.

Exact Computed root Exact and computed Relative error
root multiplicities of root

0.10 0.100000115526782 15, 15 1.16× 10−6

0.20 0.200000033021166 15, 15 1.65× 10−7

−0.50 −0.499997632965895 2, 2 4.73× 10−6

Table 4

The results using Gauss’ algorithm with the matrices D−1
k

Tk(f̃i, f̃
(1)
i ) for the AGCD computa-

tions and Method 5 for the deconvolutions, for Example 9.1.

Exact Computed root Exact and computed Relative error
root multiplicities of root

0.10 0.144336829837851 15, 25 0.44

0.20 0.166258286195648 15, 5 0.17

−0.50 −0.480417676698209 2, 2 0.04

deconvolutions. The results are shown in Tables 3 and 4, respectively, and it is

seen that, unlike the matrices Tk(f̃i, f̃
(1)
i )Qk, the matrices D−1

k Tk(f̃i, f̃
(1)
i ) have not

preserved the multiplicity structure of the roots. Furthermore, the backward errors of

the roots using Tk(f̃i, f̃
(1)
i )Qk and D−1

k Tk(f̃i, f̃
(1)
i ) were 1.61× 10−7 and 5.85× 10−3,

respectively, and thus D−1
k Tk(f̃i, f̃

(1)
i ) returned unsatisfactory results.

The roots and multiplicities computed by Musser’s algorithm were, respectively,
(−0.25585, 0.14516, 0.43464) and (5, 5, 22), and the backward error was 1.97, which is
unsatisfactory and therefore requires that the algorithm be considered. In particular,
lines 3, 4, and 8 in the algorithm return the polynomials f̃1(w), h̃1(w), and h̃2(w),

f̃1(w) = GCD
(

f̃0, f̃
(1)
0

)

= (w − 0.10)14(w − 0.20)14(w + 0.5),

h̃1(w) =
f̃0(w)

f̃1(w)
= (w − 0.10)(w − 0.20)(w + 0.5),

h̃2(w) = GCD
(

f̃1, h̃1

)

= h̃1(w).

All the subresultant matrices for this GCD computation are therefore rank deficient,
and thus a change from rank deficiency to full rank of these matrices does not exist,
which is the problem mentioned in section 6. It is therefore very difficult to determine
the degree of h̃2(w), and furthermore, this problem occurs for other values of i in line
8 of Musser’s algorithm.

Example 9.2. Noise was added to each coefficient ai of the Bernstein form of the
polynomial f0(y),

f0(y) = (y − 1.50)7(y − 0.17523547)5(y − 0.10)3(y + 0.75)10(y + 1.2354)3,

such that the relative error in ai was a uniformly distributed random variable in the
interval I = [10−10, 10−9]. The perturbations δai therefore satisfied (33), except for
the change in I. The roots and their multiplicities obtained from Gauss’ algorithm

are shown in Table 5. The matrices D−1
k Tk(f̃i, f̃

(1)
i )Qk were used for the AGCD com-

putations, and the deconvolutions were performed using Method 5. The multiplicities
of the roots were correct and the backward error was 9.59× 10−4.
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Table 5

The results using Gauss’ algorithm with the matrices D−1
k

Tk(f̃i, f̃
(1)
i )Qk for the AGCD

computations and Method 5 for the deconvolutions, for Example 9.2.

Exact Computed root Exact and computed Relative error
root multiplicities of root

1.50 1.499 618 583 628 316 7, 7 5.49× 10−4

0.175 235 47 0.175 241 655 501 572 5, 5 1.14× 10−4

0.10 0.099 993 088 983 664 3, 3 1.21× 10−4

−0.75 −0.749 333 600 186 529 10, 10 9.46× 10−4

−1.2354 −1.233 964 468 230 947 3, 3 1.20× 10−3

Table 6

The results using Gauss’ algorithm with the matrices D−1
k

Tk(f̃i, f̃
(1)
i )Qk for the AGCD

computations and Method 5 for the deconvolutions, for Example 9.3.

Exact root Computed root Exact and computed Relative error
multiplicities of root

0.10 0.099987910107710 5, 5 1.21× 10−4

0.30 0.299963076284371 4, 4 1.23× 10−4

0.50 0.500107437647762 3, 3 2.15× 10−4

0.70 0.699982235427634 4, 4 2.54× 10−5

0.90 0.899984758853522 5, 5 1.69× 10−5

The experiment was repeated but Method 4 (batch deconvolution with con-
straints) was used for the deconvolutions, and very similar results were obtained.

The matrices D−1
k Tk(f̃i, f̃

(1)
i ) and Tk(f̃i, f̃

(1)
i )Qk were then used for the AGCD com-

putations, and very similar results were obtained, using Methods 4 and 5 for the
deconvolutions.

Musser’s algorithm returned an unsatisfactory result because all the subresultant
matrices for some or all of the AGCD computations were rank deficient, as shown in
Example 9.1, which makes it very difficult to determine the degree of an AGCD.

Example 9.3. Noise was added to each coefficient ai of the Bernstein form of the
polynomial f0(y),

f0(y) = (y − 0.10)5(y − 0.30)4(y − 0.50)3(y − 0.70)4(y − 0.90)5,

such that the relative error in ai was a uniformly distributed random variable in
the interval [10−10, 10−9], as in Example 9.2. The procedure described in Examples
9.1 and 9.2 was repeated, and the result from Gauss’ algorithm, using the matrices

D−1
k Tk(f̃i, f̃

(1)
i )Qk to perform the AGCD computations and Method 5 for the decon-

volutions, is shown in Table 6. Good results were obtained because the multiplicities
of the roots were retained, even though the roots are separated by 0.2. The backward
error of the computed roots was 1.88× 10−5.

Musser’s algorithm and NAClab returned real simple roots and complex conjugate
pairs of roots. The cause of the failure of Musser’s algorithm to return a satisfactory
result is the rank deficiency of all the subresultant matrices in some of the AGCD
computations, as explained in Example 9.1.

The examples show that Gauss’ algorithm yields better results than Musser’s
algorithm, and this was confirmed by other examples.



MULTIPLE ROOTS OF A BERNSTEIN BASIS POLYNOMIAL A475

10. Summary. This paper has described the algorithms of Musser and Gauss
for the computation of multiple roots of a Bernstein basis polynomial f(y). Their
motivation arises from the structured condition number ρ(α) of a multiple root α of
f(y), and it was shown that this condition number is many orders of magnitude smaller
than the unstructured condition number κ(α). This suggests that if the multiplicities
of the roots of f(y) are computed initially, then a method for the computation of the
values of the distinct roots is stable if the multiplicities of the roots are preserved
in this method. This procedure is adopted in the algorithms of Musser and Gauss,
which require a series of GCD computations and polynomial deconvolutions. It was
shown that the pejorative manifold of a polynomial that has one or more multiple
roots establishes a geometric interpretation of the GCD computations and polynomial
deconvolutions.

Acknowledgment. The authors wish to thank Michael Burr for helpful discus-
sions on the pejorative manifold of a polynomial.
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