3,466 research outputs found

    Low frequency creep in CoNiFe films

    Get PDF
    The results of an investigation of domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films 1500A to 2000A thick are presented. The results are consistent with those of comparable NiFe films in spite of large differences in film properties. The present low frequency creep data together with previously published results in this and other laboratories can be accounted for by a model which requires that the wall structure change usually associated with low frequency creep be predominately a gyromagnetic process. The correctness of this model is reinforced by the observation that the wall coercive force, the planar wall mobility, and the occurrence of an abrupt wall structure change are the only properties closely correlated to the creep displacement characteristics of a planar wall in low dispersion films

    Do earplugs stop noise from driving critical care patients into delirium?

    Get PDF
    Quality sleep is a problem for the critically ill who are cared for in an environment where interventions night and day are common, staff members are constantly present in relatively high numbers, and treatment is accompanied by a range of changing warning tones and alarms and lights. These critical care units are generally designed without a focus on patient comfort, sleep, and rest and often lack access to appropriate natural daylight. To add to this problem, critical illness, particularly sepsis, disrupts circadian rhythms and sleep patterns, and disruption of circadian rhythms, in turn, impairs immunity and contributes to delirium. In a randomized controlled trial in the previous issue of Critical Care, Van Rompaey and colleagues have intervened to reduce noise, which is a key factor in this disruption, by having patients use earplugs at night. Delirium was assessed by using the NEECHAM (Neelon and Champagne) confusion scale, and sleep perception was assessed by patients' responses to a set of five questions. After the first night, patients reported a better sleep perception and the occurrence of delirium was reduced (hazard ratio of 0.47 for the development of delirium) or was delayed. The study did not quantify adequacy of pain control in post-surgical patients and used patient reporting to assess sleep. Whether patients were receiving respiratory or other organ support was not reported. The potential benefit of earplugs is an important practical finding that could be implemented in most intensive care units

    Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation

    Get PDF
    The chemotaxis system in the bacterium Escherichia coli is remarkably sensitive to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Interactions among receptors are crucial to this sensitivity as is precise adaptation, the return of chemoreceptor activity to prestimulus levels in a constant chemoeffector environment. Precise adaptation relies on methylation and demethylation of chemoreceptors by the enzymes CheR and CheB, respectively. Experiments indicate that when transiently bound to one receptor, these enzymes act on small assistance neighborhoods (AN) of five to seven receptor homodimers. In this paper, we model a strongly coupled complex of receptors including dynamic CheR and CheB acting on ANs. The model yields sensitive response and precise adaptation over several orders of magnitude of attractant concentrations and accounts for different responses to aspartate and serine. Within the model, we explore how the precision of adaptation is limited by small AN size as well as by CheR and CheB kinetics (including dwell times, saturation, and kinetic differences among modification sites) and how these kinetics contribute to noise in complex activity. The robustness of our dynamic model for precise adaptation is demonstrated by randomly varying biochemical parameters

    Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests

    Get PDF
    Insect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top-carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco-friendly strategy that can be used to control hyperparasitoids. Recent advances in the chemical ecology of hyperparasitoid foraging behavior have opened opportunities for manipulating these top-carnivores in such a way that biological pest control becomes more efficient. We propose various infochemical-based strategies to manage hyperparasitoids. We suggest that a push-pull strategy could be a promising approach to ‘push’ hyperparasitoids away from their parasitoid hosts and ‘pull’ them into traps. Additionally, we discuss how infochemicals can be used to develop innovative tools improving biological pest control (i) to restrict accessibility of resources (e.g. sugars and alternative hosts) to primary parasitoid only or (ii) to monitor hyperparasitoid presence in the crop for early detection. We also identify important missing information in order to control hyperparasitoids and outline what research is needed to reach this goal. Testing the efficacy of synthetic infochemicals in confined environments is a crucial step towards the implementation of chemical ecology-based approaches targeting hyperparasitoids. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    How the vision of a clinician and an educator brought the MA Dental Law and Ethics course to life.

    Get PDF
    This paper reflects on an educational development that is Dental Law and Ethics course as the course approaches its 5th anniversary. The authors outline their personal journey into developing and delivering this course as well share best practice in relation to teaching and learning dental postgraduate students who may approach the subject in different ways. It also highlights the vision behind this provision and how it is received by dental practitioners. The paper shares the learners’ perception of topics such as ethics in comparison to law, and it highlights the perspective of both authors in teaching and following the students’ journey in this course

    PIP3-dependent macropinocytosis is incompatible with chemotaxis

    Get PDF
    In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells

    Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties

    Get PDF
    A molecular structural mechanics (MSM) model was developed for F-actins in cells, where the force constants describing the monomer interaction were achieved using molecular dynamics simulations. The MSM was then employed to predict the mechanical properties of F-actin. The obtained Young’s modulus (1.92 GPa), torsional rigidity (2.36 × 10–26 Nm2), and flexural rigidity (10.84 × 10–26 Nm2) were found to be in good agreement with existing experimental data. Subsequently, the tension-induced bending was studied for F-actins as a result of their helical structure. Mechanical instability was also investigated for the actin filaments in filopodial protrusion by considering the reinforcing effect of the actin-binding proteins. The predicted buckling load agreed well with the experimentally obtained stall force, showing a pivotal role of the actin-binding protein in regulating the stiffness of F-actin bundles during the formation of filopodia protrusion. Herein, it is expected that the MSM model can be extended to the mechanics of more complex filamentous systems such as stress fibers and actin meshwork

    Mesosphere and Lower Thermosphere Changes Associated With the 2 July 2019 Total Eclipse in South America Over the Andes Lidar Observatory, Cerro Pachon, Chile

    Get PDF
    This article presents the results of a week of observations around the 2 July 2019, total Chilean eclipse. The eclipse occurred between 19:22 and 21:46 UTC, with complete sun disc obscuration at 20:38–20:40 UTC (16:38–16:40 LT) over the Andes Lidar Observatory (ALO) at (30.3°S, 70.7°W). Observations were carried out using ALO instrumentation with the goal to observe possible eclipse-induced effects on the mesosphere and lower thermosphere region (MLT; 75–105 km altitude). To complement our data set, we have also utilized TIMED/SABER temperatures and ionosonde electron density measurements taken at the University of La Serena\u27s Juan Soldado Observatory. Observed events include an unusual fast, bow-shaped gravity wave structure in airglow images, mesosphere temperature mapper brightness as well as in lidar temperature with 150 km horizontal wavelength 24 min observed period, and vertical wavelength of 25 km. Also, a strong zonal wind shear above 100 km in meteor radar scans as well as the occurrence of a sporadic E layer around 100 km from ionosonde measurements. Finally, variations in temperature and density and the presence of a descending sporadic sodium layer near 98 km were seen in lidar data. We discuss the effects of the eclipse in the MLT, which can shed light on a sparse set of measurements during this type of event. Our results point out several effects of eclipse-associated changes in the atmosphere below and above but not directly within the MLT

    Mineral nutrition in penaeid shrimp

    Get PDF
    This review summarises the current knowledge of mineral nutrition for penaeid shrimp. It investigates how the aquatic environment and the lifecycle of shrimp affect requirements and the role that minerals play in shrimp health. Methods of supplying minerals via either water or to feed, and novel ways of supplementing minerals within feed, are discussed. The requirements for individual minerals are summarised with recommendations for minimum levels of dietary inclusion for semi-intensive and intensive commercial shrimp culture presented where data permits. Estimates of dietary requirement remain broad for most minerals for the main shrimp production species (Penaeus vannamei, Penaeus monodon and Penaeus japonicus), with some essential minerals remaining unstudied (Table 2 in Section 5.10). Mineral nutrition will become more important as intensification and diversification of production systems provide new challenges to shrimp aquaculture.</p
    corecore