12 research outputs found

    Robust numerical schemes for Eulerian spray DNS and LES in two-phase turbulent flows

    Get PDF
    International audienceLarge Eddy Simulation (LES) and Direct numerical Simulation (DNS) of polydisperse evaporating sprays with Eulerian models are very promising tools for high performance computing of combustion applications. They are able to describe the turbulent dispersion and evaporation and properly predict the combustion regimes. However, the spray system of conservation equations has a convective part which is either similar to gas dynamics Euler equations with a real gas type state law or to the pressureless gas dynamics (PGD), depending on the local flow regime and droplet Stokes number; so, they usually involve singularities due to model closure assumptions and require dedicated numerical schemes. Besides, it is desirable to cope with exactly zero droplet density in some zones of the flow, especially near the injection zone, where droplets are injected in only some spatial locations. Even if the issue has been successfully tackled in de Chaisemartin (2009); Fréret et al. (2010) in the framework of PGD with the use of accurate kinetic schemes, it cannot be directly extended to general gas dynamics. The purpose of the present contribution is to introduce a new generation of numerical methods based on relaxation schemes which are able to treat both PGD and general gas dynamics, as well as to cope in a robust manner with vacuum zones and natural singularities of the resulting system of conservation equations. The proposed hybrid relaxation scheme and algorithms are validated through comparisons with analytical solutions and other numerical strategies on 1D and 2D configurations. They exhibit a very robust behavior and are a very promising candidate for more complex applications since they provide solutions to key numerical issues of the actual Eulerian spray DNS and LES models

    Studying the influence of a solid shell on lava dome growth and evolution using the level set method

    Get PDF
    A finite element formulation of the level set method, a technique to trace flow fronts and interfaces without element distortion, is presented to model the evolution of the free surface of a spreading flow for a highly viscous medium on a horizontal surface. As an example for this class of problem we consider the evolution of an axisymmetric lava dome. Equilibrium configurations of lava domes have been modelled analytically as brittle shells enclosing pressurized magma. The existence of the brittle shell may be viewed as a direct consequence of the strong temperature dependence of the viscosity. The temperature dependence leads to the formation of a thin predominantly elastic-plastic boundary layer along the free surface and acts as a constraint for the shape and flow of the lava dome. In our model, we adopt Iverson's assumption that the thin boundary layer behaves like an ideal plastic membrane shell enclosing the ductile interior of the lava dome. The effect of the membrane shell is then formally identical to a surface tension-like boundary condition for the normal stress at the free surface. The interior of the dome is modelled as a Newtonian fluid and the axisymmetry equations of motion are formulated in a Eulerian framework. We show that the level set is an effective tool to trace and model deforming interfaces for the example of the free surface of a lava dome. We demonstrate that Iverson's equilibrium dome shapes are indeed steady states of a transient model. We also show how interface conditions in the form of surface tension involving higher order spatial derivative (curvature) can be considered within a standard finite element framework

    Free surfaces modelling based on level sets

    No full text
    We use a finite element formulation of the level set method to model the evolution of the free surface of axi-symmetric spreading flows of highly viscous media on a horizontal plane. We consider specifically the growth of a lava dome as an example however similar problems also occur in flows involving the spreading of molten metals or ceramics. Here we restrict ourselves on constant viscosity fluids for simplicity. In real lavas or melts the viscosity is highly temperature dependent. This manifests itself in the formation of thin predominantly elastic-plastic boundary layers along the free (cold) surfaces of the spreading flows. In our model we follow Iverson [23] who assumes that the thin boundary layer behaves like an ideal plastic membrane shell enclosing the free surface. The effect of the membrane shell is then formally identical to a surface tension-like boundary condition for the normal stress at the free surface

    Two dimensional gel analysis of midgut proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infection

    No full text
    Little is known about the composition of the mosquito midgut which plays a central role in the development and subsequent transmission of malaria parasites. As a first step towards the characterization of mosquito midgut molecules involved in the transmission of malaria parasites, we analysed two-dimensional gel electrophoresis patterns of the midgut proteins of sugar-fed and blood-fed Anopheles stephensi lines of different susceptibility to P. falciparum infection. Two lines fully susceptible and one line (Pb3-9A) of reduced susceptibility were used. In the refractory line ookinetes do develop but are only inefficiently transformed into oocysts (Feldmann and Ponnudurai, 1989). The protein profiles of midguts from all sugar-fed mosquito lines were similar. However, after blood feeding, the midgut of the fully susceptible lines contained proteins not found in the midgut of line Pb3-9A. Twenty-nine such proteins were detected and are candidates for involvement in the interaction between the mosquito midgut and P. falciparum

    Dynamics of slab tear faults: Insights from numerical modelling

    Get PDF
    Tear resistance at the edge of a slab is an important parameter controlling the evolution of subduction zones. However, compared with other subduction parameters such as plate strength, plate viscosity, plate thickness and trench width, the dynamics of tearing are poorly understood. Here we obtain a first-order understanding of the dynamics and morphology of subduction zones to resistance during tear propagation, by developing and using a novel computational modelling technique for subducting slabs, with side boundaries described by visco-plastic weak zones, developing into tear faults. Our 3D model is based upon a visco-plastic slab that sinks into the less dense mantle, generating poloidal and toroidal flows. The asthenospheric mantle field is static and only develops flow due to the subducting slab. We use the finite element code eScript/Finley and the level set method to describe the lithosphere to solve this fluid dynamics problem. Our results show the importance of tear resistance for the speed of trench migration and for shaping the final geometry of subduction systems. We show that slab tearing along a weak layer can result in a relatively straight slab hinge shape, while increasing the strength in the weak layer results in the curvature of the hinge increasing substantially. High tear resistance at the slab edges may hinder rollback to the extent that the slab becomes stretched and recumbently folded at the base of the domain. Tear resistance also controls whether the subducting lithosphere can experience accelerating rollback velocities or a constant rollback velocity. © 2009 Elsevier B.V. All rights reserved

    A model comparison study of large-scale mantle-lithosphere dynamics driven by subduction

    No full text
    Modelling subduction involves solving the dynamic interaction between a rigid (solid yet deformable) plate and the fluid (easily deformable) mantle. Previous approaches neglected the solid-like behavior of the lithosphere by only considering a purely fluid description. However, over the past 5 years, a more self-consistent description of a mechanically differentiated subducting plate has emerged. The key feature in this mechanical description is incorporation of a strong core which provides small resistance to plate bending at subduction zones while simultaneously providing adequate stretching resistance Such that slab Pull drives forward plate motion. Additionally, the accompanying numerical approaches for simulating large-scale lithospheric deformation processes coupled to the underlying viscous mantle flow, have been become available. Here we put forward three fundamentally different numerical strategies, each of which is capabable of treating the advection of mechanically distinct materials that describe the subducting plate. We demonstrate their robustness by calculating the numerically challenging problem of subduction of a 6000 kin wide slab at high-resolution in three-dimensions, the successfuly achievement of which only a few codes in the world can presently even attempt. In spite of the differences of the approaches, all three codes pass the simple qualitative test of developing an "S-bend" trench curvature previously observed in similar models. While reproducing this emergent feature validates that the lithosphere-mantle interaction has been correctly modelled, this is not a numerical benchmark in the traditional sense where the objective is for all codes to achieve exact agreement on a unique numerical Solution. However, we do provide some quantitative comparisons such as trench and plate kinematics in addition to discussing the strength and weaknesses of the individual approaches. Consequently, we believe these developed algorithms can now be applied to study the parameters involved in the dynamics of subduction and offer a toolbox to be used by the entire geoscience community. (C) 2008 Elsevier B.V. All rights reserved
    corecore