42 research outputs found

    Recent Advances in Molecular Electronics Based on Carbon Nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field

    Overview of the current use of levosimendan in France: a prospective observational cohort study

    Get PDF
    Abstract Background Following the results of randomized controlled trials on levosimendan, French health authorities requested an update of the current use and side-effects of this medication on a national scale. Method The France-LEVO registry was a prospective observational cohort study reflecting the indications, dosing regimens, and side-effects of levosimendan, as well as patient outcomes over a year. Results The patients included ( n = 602) represented 29.6% of the national yearly use of levosimendan in France. They were treated for cardiogenic shock ( n = 250, 41.5%), decompensated heart failure ( n = 127, 21.1%), cardiac surgery-related low cardiac output prophylaxis and/or treatment ( n = 86, 14.3%), and weaning from veno-arterial extracorporeal membrane oxygenation ( n = 82, 13.6%). They received 0.18 ± 0.07 µg/kg/min levosimendan over 26 ± 8 h. An initial bolus was administered in 45 patients (7.5%), 103 (17.1%) received repeated infusions, and 461 (76.6%) received inotropes and or vasoactive agents concomitantly. Hypotension was reported in 218 patients (36.2%), atrial fibrillation in 85 (14.1%), and serious adverse events in 17 (2.8%). 136 patients (22.6%) died in hospital, and 26 (4.3%) during the 90-day follow-up. Conclusions We observed that levosimendan was used in accordance with recent recommendations by French physicians. Hypotension and atrial fibrillation remained the most frequent side-effects, while serious adverse event potentially attributable to levosimendan were infrequent. The results suggest that this medication was safe and potentially associated with some benefit in the population studied

    L'ogre de Santa Cruz / Stéphane Bourgoin

    No full text
    Collection : Serial killers ; 3Contient une table des matièresAvec mode text

    Taming the Janssen effect

    No full text
    We investigate both experimentally and theoretically the apparent mass of a ferromagnetic granular assembly filling a cylindrical container and submitted to a magnetic field B, aligned vertically along the silo. We show that the mass of the ferromagnetic granular column depends strongly on the applied magnetic field. Notably, our measurements deviate strongly from the exponential saturation of the measured mass as a function of the true mass of the grain packing, as predicted by Janssen [H.A. Janssen, Vereins Eutscher Ingenieure Zeitschrift, 1045 (1895)]. In particular, the measured mass of tall columns decreases systematically as the amplitude of the magnetic field increases. We rationalize our experimental findings by considering the induced magnetic dipole-dipole interactions within the whole packing. We show the emergence of a global magnetic radial force along the walls of the silos, fully determined by the external magnetic field. The resulting tunable frictional interactions allows a full control of the effective mass of the ferromagnetic granular column

    Taming the Janssen effect

    Get PDF
    We investigate both experimentally and theoretically the apparent mass of a ferromagnetic granular assembly filling a cylindrical container and submitted to a magnetic field B, aligned vertically along the silo. We show that the mass of the ferromagnetic granular column depends strongly on the applied magnetic field. Notably, our measurements deviate strongly from the exponential saturation of the measured mass as a function of the true mass of the grain packing, as predicted by Janssen [H.A. Janssen, Vereins Eutscher Ingenieure Zeitschrift, 1045 (1895)]. In particular, the measured mass of tall columns decreases systematically as the amplitude of the magnetic field increases. We rationalize our experimental findings by considering the induced magnetic dipole-dipole interactions within the whole packing. We show the emergence of a global magnetic radial force along the walls of the silos, fully determined by the external magnetic field. The resulting tunable frictional interactions allows a full control of the effective mass of the ferromagnetic granular column

    Biomechanical characterisation of fresh and cadaverous human small intestine: applications for abdominal trauma

    No full text
    Intestinal injuries are responsible for significant morbidity and mortality arising from trauma to the abdomen. The biomechanical characterisation of the small intestine allows for the understanding of the pathophysiological mechanisms responsible for these injuries. Studies reported in the literature focus principally on quasi-static tests, which do not take into account the stresses

    Discharge of a 2D magnetic silo

    Get PDF
    We investigate experimentally the discharge of a 2D-silo, a Hele-Shaw cell, filled with a mono layer of ferromagnetic grains submitted to an external magnetic field B perpendicular to the cell plane. In this case the magnetic pair interactions are repulsive. We show that the granular flow rate decreases systematically with the amplitude of the external magnetic field applied. Interestingly, while the output flow rate remains constant during an experiment, we reveal very large spatio-temporal fluctuations of the packing density within the cell, particularly evident for magnetic field of high amplitudes
    corecore