395 research outputs found

    Extinction controlled adaptive phase-mask coronagraph

    Get PDF
    Context. Phase-mask coronagraphy is advantageous in terms of inner working angle and discovery space. It is however still plagued by drawbacks such as sensitivity to tip-tilt errors and chromatism. A nulling stellar coronagraph based on the adaptive phase-mask concept using polarization interferometry is presented in this paper. Aims. Our concept aims at dynamically and achromatically optimizing the nulling efficiency of the coronagraph, making it more immune to fast low-order aberrations (tip-tilt errors, focus, ...). Methods. We performed numerical simulations to demonstrate the value of the proposed method. The active control system will correct for the detrimental effects of image instabilities on the destructive interference. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. Liquid-crystal properties are used to provide variable transmission of an annulus around the phase mask, but also to achieve the achromatic {\pi} phase shift in the core of the PSF by rotating the polarization by 180 degrees. Results. We developed a new concept and showed its practical advantages using numerical simulations. This new adaptive implementation of the phase-mask coronagraph could advantageously be used on current and next-generation adaptive optics systems, enabling small inner working angles without compromising contrast.Comment: 7 pages, 6 figure

    Colmatage microbien des forages et circulation de l'eau - Résultats d'un « colmatomètre » expérimental

    Get PDF
    Un modèle physique est constitué de quatre éprouvettes de sable percolées à des vitesses de flux différentes par L'eau d'un forage colmaté.On a pu ainsi obtenir, en quelques semaines, un colmatage différentiel de deux éprouvettes percolées à des vitesses supérieures à 1 cm/s, et confirmer les hypothèses émises sur l'influence de La vitesse réelle des filets liquides dans L'apparition du colmatage, et sur ta nature bactérienne du processus colmatant.Ce modèle constitue un véritable "colmatomètre" qui a donné lieu au dépôt d'un brevet (BOURGUET et al., 1985). Avant La réalisation d'un champ captant nouveau, L'emploi d'un tel colmatomètre devrait permettre d'apprécier les risques de colmatage spécifiques au site, et de définir Les normes de crépinage et d'exploitation permettant de Les éviter, ou du moins de les minimiser.INTRODUCTIONA study on 300 wells drilled in the Ypresian aquifer, over 60 % of which were clogged, revealed that there were significant statistic relationships between the frequency of ctogging, the high velocities of the water close to the well screens and the presence of hydrogen sulfide in the water; the latter means the existence of sulfato-reducing bacterial activity.The experimental model described here was designed to check the effect of the velocity of the water in the aquifer on the creation of clogging, as well as its relationship with the development of the bacterial population induced by a sufficient nutrient flow rate.This model, comprising sterilized sand, through wich water from a clogged well percolated, was set up prior to a model which will soon be built, consisting of cores of Ypresian sand containing its own microorganisms.APPARATUS AND METHODSFour stainless-steel tubes (length 14 cm, inner diameter 26 mm) were filled with sterilized siliceous sand, the initial porosity of which was 35 %. The particle size distribution (40 to 140 µm) and the permeability were similar to those of the Ypresian sand. Tube seeding was carried out for a week by percolation with water from a clogged well; no clogging in the tubes was observed. This water was then percotated simultaneously through the tubes (figure 2) for 58 days at rates, maintained by weekly corrections, close to 1, 3, 12 and 30 mm/s respectively (figure 3).The microbiological analyses consisted in : direct numeration of bacterial bodies by epifluorescence microscopy, indirect numeration by counting revivifiable heterotrophic aerobic bacteria after 15 days incubation within a medium chosen to be the least selective possible and, lastly, the numeration of both permanent and casual anaerobia, as well as sulfatoreducing bacteria following Hungate's method.HYDRODYNAMIC RESULTS (figure 4)The reduction of permeability, which results from clogging, after 58 days of percolation was the following :- tube nb 1          0 % for an average percolation rate of 0.8 mm/s,- tube nb 2         2 % for an average percolation rate of 2.5 mm/s,- tube nb 3         29,5 % for an average percolation rate of 11.5 mm/s,- tube nb 4         59 % for an average percolation rate of 30.8 mm/s.Tubes nb 1, 2 and 4 were destroyed in order to carry out microbiological analyses. Tube nb 3, maintained in percolation, reached 99,4 % clogging after 142 days.MICROBIOLOGICAL RESULTS AND DISCUSSIONSampling procedures for analyses were set up by using tube nb 2. Three different samples of sand were used for analyses : from the inlet, from the middle and from the outlet of tubes nb 1 et 4. Moreover analyses were made on the percolation water upstream and downstream of tube nb 4.The revivifiable heterotrophic aerobic bacteria are more numerous in the water at the outlet of tube nb 4 than at the inlet, white direct counting shows a slight decrease.There are greater quantities of microorganisms in the sand than in the percolation water. The presence of sulfato-reducing bacteria can even be observed whereas they are too few to be counted in the percolation water. The filtering effect of the sand is not the only, element responsible for the increase amount of bacteria. Indeed the ratio between the number of revivifiable heterotrophic bacteria in the clogged tube and the non clogged tube was about 3 times greater than the ratio between their flow rates.The higher velocity in tube nb 4 induced favorable conditions for the development of certain species of bacteria, some of which generate hydrogen producing organic molecules, thus allowing the development of sulfato-reducing bacteria.Clogging itself should depend either on the increase of the biomass or on the development of microorganisms producing a significant quantity of organic molecules outside the cells. By taking into account the amount of bacteria and the volumes of percolated water, it can be seen that 2.01 x 1011 cells, i.e. 0.2 cm3 , were retained by filtration in tube nb 1, and 0.7 cm3 in tube nb 4. Basing the estimations on bacterial counts in the sand, biovolumes of 0.2 mm3 are obtained for tube nb 1 (non clogged), and 8 mm3 for tube nb 4 (clogged). Consequently the clogging substances consist mainly of products situated outside the cells.The tube is the center of chemolithotrophic organisms (made evident by C14 tracers), thus the aerobic heterotrophic microflora and the sulfato-reducing species are no doubt linked to the use of the metabolism products of these organisms.After 142 days percolation, the sand in tube nb 3 (clogged at 99,4 %) had a cell content of 1011 cells/cm3 of sand at the inlet (filamentous aggregates) and 107 cells/cm3 at the outlet (no aggregates). On an average, roughly a third of the pore volume is filled with cells, which is in agreement with a decrease in porosity from 35 to 27 % and therefore with the clogging in the tubes.CONCLUSIONTubes of sand could be clogged experimentalty and rapidly. The most significant clogging was obtained for the fastest percolation rate.It seems as though clogging is due to a proliferation of bacteria, essentially oligotrophic, and to the creation of a nutrient-chain rising to the sulfato-reducing bacteria (which are heterotrophic).The clogging process described in the case of the Ypresian sand aquifer is certainly similar to the processes occurring in other granular aquifers.The model " clog-meter" could be used by water supptiers exploiting aquifers fiable to clogging. Indeed it can determine the best flow rate, to avoid clogging in newly exploited pumping fields and decide on the most adequate well equipment, the number of wells needed in newly exploited areas and their exploitation yield in order to obtain the desired flow rates

    Towards Deconstruction of the Type D (2,0) Theory

    Get PDF
    We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2,0)(2,0) theory of type DkD_k. This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2k)\mathrm{O}(2k) and Sp(k)\mathrm{Sp}(k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O\mathrm{O} versus SO\mathrm{SO} gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d

    Science Hackathons for Cyberphysical System Security Research: Putting CPS testbed platforms to good use

    Full text link
    A challenge is to develop cyber-physical system scenarios that reflect the diversity and complexity of real-life cyber-physical systems in the research questions that they address. Time-bounded collaborative events, such as hackathons, jams and sprints, are increasingly used as a means of bringing groups of individuals together, in order to explore challenges and develop solutions. This paper describes our experiences, using a science hackathon to bring individual researchers together, in order to develop a common use-case implemented on a shared CPS testbed platform that embodies the diversity in their own security research questions. A qualitative study of the event was conducted, in order to evaluate the success of the process, with a view to improving future similar events

    Eigenvalue distributions from a star product approach

    Full text link
    We use the well-known isomorphism between operator algebras and function spaces equipped with a star product to study the asymptotic properties of certain matrix sequences in which the matrix dimension DD tends to infinity. Our approach is based on the su(2)su(2) coherent states which allow for a systematic 1/D expansion of the star product. This produces a trace formula for functions of the matrix sequence elements in the large-DD limit which includes higher order (finite-DD) corrections. From this a variety of analytic results pertaining to the asymptotic properties of the density of states, eigenstates and expectation values associated with the matrix sequence follows. It is shown how new and existing results in the settings of collective spin systems and orthogonal polynomial sequences can be readily obtained as special cases. In particular, this approach allows for the calculation of higher order corrections to the zero distributions of a large class of orthogonal polynomials.Comment: 25 pages, 8 figure

    Extinction controlled Adaptive Mask Coronagraph Lyot and Phase Mask dual concept for wide extinction area

    Get PDF
    A dual coronagraph based on the Adaptive Mask concept is presented in this paper. A Lyot coronagraph with a variable diameter occulting disk and a nulling stellar coronagraph based on the Adaptive Phase Mask concept using polarization interferometry are presented in this work. Observations on sky and numerical simulations show the usefulness of the proposed method to optimize the nulling efficiency of the coronagraphs. In the case of the phase mask, the active control system will correct for the detrimental effects of image instabilities on the destructive interference (low-order aberrations such as tip-tilt and focus). The phase mask adaptability both in size, phase and amplitude also compensate for manufacturing errors of the mask itself, and potentially for chromatic effects. Liquid-crystal properties are used to provide variable transmission of an annulus around the phase mask, but also to achieve the achromatic π phase shift in the core of the PSF by rotating the polarization by 180°.A compressed mercury (Hg) drop is used as an occulting disk for the Lyot mask, its size control offers an adaptation to the seeing conditions and provides an optimization of the Tip-tilt correction

    Random Time-Dependent Quantum Walks

    Full text link
    We consider the discrete time unitary dynamics given by a quantum walk on the lattice Zd\Z^d performed by a quantum particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in Zd\Z^d when the sequence of unitary updates is given by an i.i.d. sequence of random matrices. When averaged over the randomness, this distribution is shown to display a drift proportional to the time and its centered counterpart is shown to display a diffusive behavior with a diffusion matrix we compute. A moderate deviation principle is also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. A generalization to unitary updates distributed according to a Markov process is also provided. An example of i.i.d. random updates for which the analysis of the distribution can be performed without averaging is worked out. The distribution also displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix whose law we compute. A large deviation principle is shown to hold for this example. We finally show that, in general, the expectation of the random diffusion matrix equals the diffusion matrix of the averaged distribution.Comment: Typos and minor errors corrected. To appear In Communications in Mathematical Physic

    Correlated Markov Quantum Walks

    Full text link
    We consider the discrete time unitary dynamics given by a quantum walk on Zd\Z^d performed by a particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in Zd\Z^d for random updates of the coin states of the following form. The random sequences of unitary updates are given by a site dependent function of a Markov chain in time, with the following properties: on each site, they share the same stationnary Markovian distribution and, for each fixed time, they form a deterministic periodic pattern on the lattice. We prove a Feynman-Kac formula to express the characteristic function of the averaged distribution over the randomness at time nn in terms of the nth power of an operator MM. By analyzing the spectrum of MM, we show that this distribution posesses a drift proportional to the time and its centered counterpart displays a diffusive behavior with a diffusion matrix we compute. Moderate and large deviations principles are also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. An example of random updates for which the analysis of the distribution can be performed without averaging is worked out. The random distribution displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix whose law we compute. We complete the picture by presenting an uncorrelated example.Comment: 37 pages. arXiv admin note: substantial text overlap with arXiv:1010.400
    corecore