758 research outputs found

    Fermi Surface of Alpha-Uranium at Ambient Pressure

    Full text link
    We have performed de Haas-van Alphen measurements of the Fermi surface of alpha-uranium single crystals at ambient pressure within the alpha-3 charge density wave (CDW) state from 0.020 K - 10 K and magnetic fields to 35 T using torque magnetometry. The angular dependence of the resulting frequencies is described. Effective masses were measured and the Dingle temperature was determined to be 0.74 K +/- 0.04 K. The observation of quantum oscillations within the alpha-3 CDW state gives new insight into the effect of the charge density waves on the Fermi surface. In addition we observed no signature of superconductivity in either transport or magnetization down to 0.020 K indicating the possibility of a pressure-induced quantum critical point that separates the superconducting dome from the normal CDW phase.Comment: 11 pages, 4 figures, 3 table

    Pressure Evolution of a Field Induced Fermi Surface Reconstruction and of the Neel Critical Field in CeIn3

    Full text link
    We report high-pressure skin depth measurements on the heavy fermion material CeIn3 in magnetic fields up to 64 T using a self-resonant tank circuit based on a tunnel diode oscillator. At ambient pressure, an anomaly in the skin depth is seen at 45 T. The field where this anomaly occurs decreases with applied pressure until approximately 1.0 GPa, where it begins to increase before merging with the antiferromagnetic phase boundary. Possible origins for this transport anomaly are explored in terms of a Fermi surface reconstruction. The critical magnetic field at which the Neel ordered phase is suppressed is also mapped as a function of pressure and extrapolates to the previous ambient pressure measurements at high magnetic fields and high pressure measurements at zero magnetic field.Comment: 15 pages, 5 figure

    A retrospective analysis of geriatric trauma patients: venous lactate is a better predictor of mortality than traditional vital signs

    Get PDF
    BACKGROUND: Traditional vital signs (TVS), including systolic blood pressure (SBP), heart rate (HR) and their composite, the shock index, may be poor prognostic indicators in geriatric trauma patients. The purpose of this study is to determine whether lactate predicts mortality better than TVS. METHODS: We studied a large cohort of trauma patients age ≄ 65 years admitted to a level 1 trauma center from 2009-01-01 - 2011-12-31. We defined abnormal TVS as hypotension (SBP < 90 mm Hg) and/or tachycardia (HR > 120 beats/min), an elevated shock index as HR/SBP ≄ 1, an elevated venous lactate as ≄ 2.5 mM, and occult hypoperfusion as elevated lactate with normal TVS. The association between these variables and in-hospital mortality was compared using Chi-square tests and multivariate logistic regression. RESULTS: There were 1987 geriatric trauma patients included, with an overall mortality of 4.23% and an incidence of occult hypoperfusion of 20.03%. After adjustment for GCS, ISS, and advanced age, venous lactate significantly predicted mortality (OR: 2.62, p < 0.001), whereas abnormal TVS (OR: 1.71, p = 0.21) and SI ≄ 1 (OR: 1.18, p = 0.78) did not. Mortality was significantly greater in patients with occult hypoperfusion compared to patients with no sign of circulatory hemodynamic instability (10.67% versus 3.67%, p < 0.001), which continued after adjustment (OR: 2.12, p = 0.01). CONCLUSIONS: Our findings demonstrate that occult hypoperfusion was exceedingly common in geriatric trauma patients, and was associated with a two-fold increased odds of mortality. Venous lactate should be measured for all geriatric trauma patients to improve the identification of hemodynamic instability and optimize resuscitative efforts

    Role of dimensionality in the Kondo CeT X-2 family: the case of CeCd0.7Sb2

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORMotivated by the presence of competing magnetic interactions in the heavy fermion family CeT X-2 (T = transition metal, X = pnictogen), here we study the novel parent compound CeCd0.7Sb2 by combining magnetization, electrical resistivity, and heat-capacity measurements. Contrary to the antiferromagnetic (AFM) ground state observed in most members of this family, the magnetic properties of our CeCd0.7Sb2 single crystals revealed a ferromagnetic ordering at T-c = 3 K with an unusual soft behavior. By using a mean field model including anisotropic nearest-neighbor interactions and the tetragonal crystalline electric field (CEF) Hamiltonian, a systematic analysis of our macroscopic data was obtained. Our fits allowed us to extract a simple but very distinct CEF scheme, as compared to the AFM counterparts. As in the previously studied ferromagnet CeAgSb2, a pure vertical bar +/- 1/2 > ground state is realized, hinting at a general trend within the ferromagnetic members. More generally, we propose a scenario for the understanding of the magnetism in this family of compounds based on the subtle changes of dimensionality in the crystal structure.Motivated by the presence of competing magnetic interactions in the heavy fermion family CeT X-2 (T = transition metal, X = pnictogen), here we study the novel parent compound CeCd0.7Sb2 by combining magnetization, electrical resistivity, and heat-capacity measurements. Contrary to the antiferromagnetic (AFM) ground state observed in most members of this family, the magnetic properties of our CeCd0.7Sb2 single crystals revealed a ferromagnetic ordering at T-c = 3 K with an unusual soft behavior. By using a mean field model including anisotropic nearest-neighbor interactions and the tetragonal crystalline electric field (CEF) Hamiltonian, a systematic analysis of our macroscopic data was obtained. Our fits allowed us to extract a simple but very distinct CEF scheme, as compared to the AFM counterparts. As in the previously studied ferromagnet CeAgSb2, a pure vertical bar +/- 1/2 > ground state is realized, hinting at a general trend within the ferromagnetic members. More generally, we propose a scenario for the understanding of the magnetism in this family of compounds based on the subtle changes of dimensionality in the crystal structure.921316FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP [2013/17427-7, 2013/20181-0, 2012/04870-7]2012/04870-7, 2013/17427-7, 2013/20181-0Sem informaçãoSem informaçã

    Partitioning and transmutation strategy R&D for nuclear spent fuel: the SACSESS and GENIORS projects

    Get PDF
    Processes such as PUREX allow the recovery and reuse of the uranium and the plutonium of GEN II/GEN III reactors and are being adapted for the recycling of the uranium and the plutonium of GEN IV MOX fuels. However, it does not fix the sensitive issue of the long-term management of the high active nuclear waste (HAW). Indeed, only the recovery and the transmutation of the minor actinides can reduce this burden down to a few hundreds of years. In this context, and in the continuity of the FP7 EURATOM SACSESS project, GENIORS focuses on the reprocessing of MOX fuel containing minor actinides, taking into account safety issues under normal and mal-operation. By implementing a three-step approach (reinforcement of the scientific knowledge => process development and testing => system studies, safety and integration), GENIORS will provide more science-based strategies for nuclear fuel management in the EU

    Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Get PDF
    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation}/D{sub Si}. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and D{sub cation} =D{sub H 2 O} , although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data
    • 

    corecore