251 research outputs found

    Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars

    Full text link
    We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.Comment: v2: Include comment regarding publication source To appear in the proceedings of "Solar Polarisation 4", held in Boulder, USA, Sept. 200

    The MiMeS Project: Overview and Current Status

    Full text link
    The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fields in these objects. At the time of writing, MiMeS Large Programs have acquired over 950 high-resolution polarised spectra of about 150 individual stars with spectral types from B5-O4, discovering new magnetic fields in a dozen hot, massive stars. The quality of this spectral and magnetic mat\'eriel is very high, and the Collaboration is keen to connect with colleagues capable of exploiting the data in new or unforeseen ways. In this paper we review the structure of the MiMeS observing programs and report the status of observations, data modeling and development of related theory.Comment: Proceedings of IAUS272: Active OB star

    Characterisation of the magnetic fields of the Herbig Be stars HD 200775 and V380 0ri

    Full text link
    The origin of the magnetic fields of the chemically peculiar main sequence Ap/Bp stars is still matter of intense debate. The recent discoveries of magnetic fields in Herbig Ae/Be stars using high resolution data obtained with the spectropolarimeter ESPaDOnS at CFHT provide a strong argument in favour of the fossil field hypothesis. Using a simple oblique rotator model of a centered dipole, we fit the Stokes V LSD profiles of two of these magnetic HAeBe stars, HD 200775 and V380 Ori, as well as their variations on timescales from days to months. We find that in both cases the dipole hypothesis is acceptable and we determine the rotation period, the angle between rotation and magnetic axes and the intensity of the magnetic field at pole.Comment: 5 pages, 4 figures. Proceeding of the 2006 conference of the Special Astrophysical Observatory of the Russian Academy of Science

    Statistics of Magnetic Fields for OB Stars

    Full text link
    Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field B{\cal B} of a star can be used as a statistically significant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength B{\cal B} and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, F(B)F({\cal B}), that has a power-law dependence on B{\cal B} with an exponent of ≈−1.82\approx -1.82. We have found a sharp decrease in the function F(B)F({\cal B})F for {\cal B}\lem 400 G that may be related to rapid dissipation of weak stellar surface magnetic fields.Comment: 22 pages, 7 figures, accepted Astronomy Letters, 2010, vol.36, No.5, pp.370-379, contact E-mail: [email protected]

    Discovery of magnetic fields in the very young, massive stars W601 (NGC 6611) and OI 201 (NGC 2244)

    Full text link
    Context: Recent spectropolarimetric observations of Herbig Ae/Be stars have yielded new arguments in favour of a fossil origin for the magnetic fields of intermediate mass stars. Aims: To study the evolution of these magnetic fields, and their impact on the evolution of the angular momentum of these stars during the pre-main sequence phase, we observed Herbig Ae/Be members of young open clusters of various ages. Methods: We obtained high-resolution spectropolarimetric observations of Herbig Ae/Be stars belonging to the young open clusters NGC 6611 (< 6 Myr), NGC 2244 (~1.9 Myr), and NGC 2264 (~8 Myr), using ESPaDOnS at theCanada-France-Hawaii Telescope. Results: Here we report the discovery of strong magnetic fields in two massive pre-main sequence cluster stars. We detected, for the first time, a magnetic field in a pre-main sequence rapid rotator: the 10.2 Msun Herbig B1.5e star W601 (NGC 6611; v sin i ~ 190 km/s). Our spectropolarimetric observations yield a longitudinal magnetic field larger than 1 kG, and imply a rotational period shorter than 1.7 days. The spectrum of this very young object (age ~ 0.017 Myr) shows strong and variable lines of He and Si. We also detected a magnetic field in the 12.1 Msun B1 star OI 201 (NGC 2244; v sin i = 23.5 km/s). The Stokes V profile of this star does not vary over 5 days, suggesting a long rotational period, a pole-on orientation, or aligned magnetic and rotation axes. OI 201 is situtated near the Zero-Age Main Sequence on the HR diagram, and exhibits normal chemical abundances and no spectrum variability.Comment: Accepted for publication as a letter in A&

    Massive open star clusters using the VVV survey II. Discovery of six clusters with Wolf-Rayet stars

    Get PDF
    Context: The ESO Public Survey "VISTA Variables in the V\'ia L\'actea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open clusters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.Comment: 17 pages, 8 figurs, accepted in A&

    Characterisation of the magnetic field of the Herbig Be star HD 200775

    Full text link
    After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD 200775, to determine if its magnetic topology is similar to that of the main sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than two years, using the new spectropolarimeters ESPaDOnS at CFHT, and Narval at TBL. Using our data, we find that HD 200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We determine the luminosity ratio of the system, and using the luminosity of the system found in literature, we derive the luminosity of both stars. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. We have fitted 30 Stokes V profiles simultaneously, using a chi2 minimisation method, with a decentered-dipole model. The best-fit model provides a rotation period of 4.3281 d an inclination angle of 60 degrees, and a magnetic obliquity angle of 125 degrees. The polar strength of the magnetic dipole field is 1000 G, which is decentered by 0.05 R* from the center of the star. The derived magnetic field model is qualitatively identical to those commonly observed in the Ap/Bp stars, which bring strong argument in favour of the fossil field hypothesis, to explain the origin of the magnetic fields in the main sequence Ap/Bp stars. Our determination of the inclination of the rotation axis leads to a radius of the primary which is smaller than that derived from the HR diagram position. This can be explained by a larger intrinsic luminosity of the secondary relative to the primary, due to a larger circumstellar extinction of the secondary relative to the primary.Comment: Accepted for publication in MNRAS, 14 pages, 10 figure

    Mass-loss rates of Very Massive Stars

    Full text link
    We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.Comment: 36 pages, 15 figures, Book Chapter in "Very Massive Stars in the Local Universe", Springer, Ed. Jorick S. Vin
    • 

    corecore