11 research outputs found

    Approches protĂ©omiques pour l’analyse des exosomes de liquides biologiques pour la recherche de biomarqueurs

    No full text
    A biomarker is a molecule (or a cluster of molecule) which will reflect the occurrence of a pathological state, giving us the ability to detect a disease, to predict its severity or to assess drug efficiency. Biological fluids are the golden standards for biomarker research in human as they are routinely collected for patients’ follow-up and are less invasive than biopsies. During my PhD, I focused on exosomes that can be found in these biological fluids. Exosomes are nanovesicles with a diameter ranging between 30 and 100 nanometers. Exosomes are secreted by all cell types and harbor cytoplasmic and membranous proteins specific of their cells of origins. One of the major interest of exosomes enriched from biological fluids is that they represent a valuable source of biomarkers. They can be considered as a « liquid biopsy ». Their analysis could complete classical diagnosis and follow-up tools. In this project, we applied high resolution, high throughput proteomic techniques for exosomes analysis. We firstly focused on protein profiles in urinary exosomes in the context of two urinary tract diseases: cystinuria and kidney cancer. Cystinuria is an inherited autosomal recessive disease that is characterized by the formation of cystine stones in the kidneys. To date, there are no markers to predict the evolution toward end stage renal disease. We developed a method to prepare exosomes in order to reproducibly analyze their protein profiles. We applied this method to eight cystinuria patients and compared their profiles to those of ten healthy subjects. A panel of 38 differentially expressed proteins in patients were found and validated by western blots. We also applied this method to patients with clear cell renal cell carcinoma, for which invasive biopsies are necessary for clear diagnosis. We analyzed urinary exosomes form eight patients before and after nephrectomy. We were able to highlight 25 overexpressed proteins in patients’ exosomes. Eventually, the last part of my thesis was dedicated to the analysis of exosomes enriched from bronchoalveolar lavage fluid collected in cystic fibrosis patients, a disease that affects mostly the lungs. Bronchoalveolar lavage fluid exosomes analysis could give a new insight on the mechanisms of this disease. We compared protein profiles in exosomes from four cystic fibrosis patients and six asthmatic patients. The whole point of this work is to show that proteomic analysis of exosomes isolated from biological fluids could become a golden standard for the discovery of diagnosis or prognosis biomarkers.Un biomarqueur est une molĂ©cule (ou un ensemble de molĂ©cules) prĂ©sente dans l’organisme qui tĂ©moigne de l’apparition d’un processus pathologique. Il permet ainsi de dĂ©pister une maladie, d’en prĂ©dire sa gravitĂ© ou encore d’évaluer l’efficacitĂ© d’un traitement. Les liquides biologiques reprĂ©sentent des milieux de choix pour la recherche de biomarqueurs en pathologie humaine car leur collection est habituelle dans la prise en charge des patients et moins invasive comparĂ©e aux biopsies d’organes ou de tissus. Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s plus particuliĂšrement aux exosomes prĂ©sents dans ces liquides biologiques. Les exosomes sont des nanovĂ©sicules dont le diamĂštre est compris entre 30 et 100 nanomĂštres. Ils sont sĂ©crĂ©tĂ©s par tous les types cellulaires et contiennent des protĂ©ines cytoplasmiques et membranaires spĂ©cifiques de leur cellule d’origine. L’intĂ©rĂȘt majeur des exosomes isolĂ©s Ă  partir des liquides biologiques, est qu’ils constituent une source de biomarqueurs. Ils peuvent donc ĂȘtre assimilĂ©s Ă  une « biopsie liquide ». L’analyse des exosomes pourrait complĂ©ter utilement des examens classiques de dĂ©pistage, de diagnostic et de suivi d’une pathologie. Dans le cadre de projet de cette thĂšse, nous avons appliquĂ© des techniques de protĂ©omique Ă  haut dĂ©bit pour l’analyse des exosomes. Nous nous sommes tout d’abord intĂ©ressĂ©s Ă  l’analyse du profil protĂ©ique des exosomes urinaires dans le contexte de deux pathologies du tractus urinaire : la cystinurie et le cancer du rein. La cystinurie est une nĂ©phropathie lithiasique d’origine gĂ©nĂ©tique pour laquelle il y a peu de marqueurs biologiques pouvant prĂ©dire son Ă©volution vers l’insuffisance rĂ©nale terminale. Nous avons dĂ©veloppĂ© une mĂ©thode de prĂ©paration des exosomes urinaire permettant d’analyser de façon reproductible leurs profils protĂ©iques. Nous avons appliquĂ© cette mĂ©thode Ă  huit patients cystinuriques et comparĂ© les rĂ©sultats aux profils obtenus chez dix sujets sains. Un panel de 38 protĂ©ines diffĂ©rentiellement exprimĂ© dans les exosomes des patients a Ă©tĂ© identifiĂ© et en partie validĂ© par Western blot. Concernant le cancer du rein Ă  cellules claires pour lequel le diagnostic nĂ©cessite des prĂ©lĂšvements invasifs par biopsie, nous avons analysĂ© les exosomes urinaires de huit patients avant et aprĂšs nĂ©phrectomie. Nous avons ainsi pu mettre en Ă©vidence un panel de 25 protĂ©ines surexprimĂ©es dans les exosomes des patients. Enfin, le dernier volet de cette thĂšse a Ă©tĂ© consacrĂ© Ă  l’analyse des exosomes du lavage broncho-alvĂ©olaire provenant de patients MV, maladie d’origine gĂ©nĂ©tique qui atteint principalement les poumons. L’analyse des exosomes de lavage broncho-alvĂ©olaire pourrait permettre de donner un Ă©clairage nouveau sur la physiopathologie de la maladie. Nous avons rĂ©alisĂ© la comparaison des profils protĂ©iques des exosomes de quatre patients MV, et six patients asthmatiques. L’ensemble des rĂ©sultats obtenus au cours de cette thĂšse montre que l’analyse protĂ©omique des exosomes issus de fluides biologiques peut aider la recherche de biomarqueurs diagnostics ou pronostics de maladies

    Proteomic approaches for biological fluids exosomes analysis for biomarker discovery

    Get PDF
    Un biomarqueur est une molĂ©cule (ou un ensemble de molĂ©cules) prĂ©sente dans l’organisme qui tĂ©moigne de l’apparition d’un processus pathologique. Il permet ainsi de dĂ©pister une maladie, d’en prĂ©dire sa gravitĂ© ou encore d’évaluer l’efficacitĂ© d’un traitement. Les liquides biologiques reprĂ©sentent des milieux de choix pour la recherche de biomarqueurs en pathologie humaine car leur collection est habituelle dans la prise en charge des patients et moins invasive comparĂ©e aux biopsies d’organes ou de tissus. Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s plus particuliĂšrement aux exosomes prĂ©sents dans ces liquides biologiques. Les exosomes sont des nanovĂ©sicules dont le diamĂštre est compris entre 30 et 100 nanomĂštres. Ils sont sĂ©crĂ©tĂ©s par tous les types cellulaires et contiennent des protĂ©ines cytoplasmiques et membranaires spĂ©cifiques de leur cellule d’origine. L’intĂ©rĂȘt majeur des exosomes isolĂ©s Ă  partir des liquides biologiques, est qu’ils constituent une source de biomarqueurs. Ils peuvent donc ĂȘtre assimilĂ©s Ă  une « biopsie liquide ». L’analyse des exosomes pourrait complĂ©ter utilement des examens classiques de dĂ©pistage, de diagnostic et de suivi d’une pathologie. Dans le cadre de projet de cette thĂšse, nous avons appliquĂ© des techniques de protĂ©omique Ă  haut dĂ©bit pour l’analyse des exosomes. Nous nous sommes tout d’abord intĂ©ressĂ©s Ă  l’analyse du profil protĂ©ique des exosomes urinaires dans le contexte de deux pathologies du tractus urinaire : la cystinurie et le cancer du rein. La cystinurie est une nĂ©phropathie lithiasique d’origine gĂ©nĂ©tique pour laquelle il y a peu de marqueurs biologiques pouvant prĂ©dire son Ă©volution vers l’insuffisance rĂ©nale terminale. Nous avons dĂ©veloppĂ© une mĂ©thode de prĂ©paration des exosomes urinaire permettant d’analyser de façon reproductible leurs profils protĂ©iques. Nous avons appliquĂ© cette mĂ©thode Ă  huit patients cystinuriques et comparĂ© les rĂ©sultats aux profils obtenus chez dix sujets sains. Un panel de 38 protĂ©ines diffĂ©rentiellement exprimĂ© dans les exosomes des patients a Ă©tĂ© identifiĂ© et en partie validĂ© par Western blot. Concernant le cancer du rein Ă  cellules claires pour lequel le diagnostic nĂ©cessite des prĂ©lĂšvements invasifs par biopsie, nous avons analysĂ© les exosomes urinaires de huit patients avant et aprĂšs nĂ©phrectomie. Nous avons ainsi pu mettre en Ă©vidence un panel de 25 protĂ©ines surexprimĂ©es dans les exosomes des patients. Enfin, le dernier volet de cette thĂšse a Ă©tĂ© consacrĂ© Ă  l’analyse des exosomes du lavage broncho-alvĂ©olaire provenant de patients MV, maladie d’origine gĂ©nĂ©tique qui atteint principalement les poumons. L’analyse des exosomes de lavage broncho-alvĂ©olaire pourrait permettre de donner un Ă©clairage nouveau sur la physiopathologie de la maladie. Nous avons rĂ©alisĂ© la comparaison des profils protĂ©iques des exosomes de quatre patients MV, et six patients asthmatiques. L’ensemble des rĂ©sultats obtenus au cours de cette thĂšse montre que l’analyse protĂ©omique des exosomes issus de fluides biologiques peut aider la recherche de biomarqueurs diagnostics ou pronostics de maladies.A biomarker is a molecule (or a cluster of molecule) which will reflect the occurrence of a pathological state, giving us the ability to detect a disease, to predict its severity or to assess drug efficiency. Biological fluids are the golden standards for biomarker research in human as they are routinely collected for patients’ follow-up and are less invasive than biopsies. During my PhD, I focused on exosomes that can be found in these biological fluids. Exosomes are nanovesicles with a diameter ranging between 30 and 100 nanometers. Exosomes are secreted by all cell types and harbor cytoplasmic and membranous proteins specific of their cells of origins. One of the major interest of exosomes enriched from biological fluids is that they represent a valuable source of biomarkers. They can be considered as a « liquid biopsy ». Their analysis could complete classical diagnosis and follow-up tools. In this project, we applied high resolution, high throughput proteomic techniques for exosomes analysis. We firstly focused on protein profiles in urinary exosomes in the context of two urinary tract diseases: cystinuria and kidney cancer. Cystinuria is an inherited autosomal recessive disease that is characterized by the formation of cystine stones in the kidneys. To date, there are no markers to predict the evolution toward end stage renal disease. We developed a method to prepare exosomes in order to reproducibly analyze their protein profiles. We applied this method to eight cystinuria patients and compared their profiles to those of ten healthy subjects. A panel of 38 differentially expressed proteins in patients were found and validated by western blots. We also applied this method to patients with clear cell renal cell carcinoma, for which invasive biopsies are necessary for clear diagnosis. We analyzed urinary exosomes form eight patients before and after nephrectomy. We were able to highlight 25 overexpressed proteins in patients’ exosomes. Eventually, the last part of my thesis was dedicated to the analysis of exosomes enriched from bronchoalveolar lavage fluid collected in cystic fibrosis patients, a disease that affects mostly the lungs. Bronchoalveolar lavage fluid exosomes analysis could give a new insight on the mechanisms of this disease. We compared protein profiles in exosomes from four cystic fibrosis patients and six asthmatic patients. The whole point of this work is to show that proteomic analysis of exosomes isolated from biological fluids could become a golden standard for the discovery of diagnosis or prognosis biomarkers

    Proteomic approaches for biological fluids exosomes analysis for biomarker discovery

    No full text
    Un biomarqueur est une molĂ©cule (ou un ensemble de molĂ©cules) prĂ©sente dans l’organisme qui tĂ©moigne de l’apparition d’un processus pathologique. Il permet ainsi de dĂ©pister une maladie, d’en prĂ©dire sa gravitĂ© ou encore d’évaluer l’efficacitĂ© d’un traitement. Les liquides biologiques reprĂ©sentent des milieux de choix pour la recherche de biomarqueurs en pathologie humaine car leur collection est habituelle dans la prise en charge des patients et moins invasive comparĂ©e aux biopsies d’organes ou de tissus. Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s plus particuliĂšrement aux exosomes prĂ©sents dans ces liquides biologiques. Les exosomes sont des nanovĂ©sicules dont le diamĂštre est compris entre 30 et 100 nanomĂštres. Ils sont sĂ©crĂ©tĂ©s par tous les types cellulaires et contiennent des protĂ©ines cytoplasmiques et membranaires spĂ©cifiques de leur cellule d’origine. L’intĂ©rĂȘt majeur des exosomes isolĂ©s Ă  partir des liquides biologiques, est qu’ils constituent une source de biomarqueurs. Ils peuvent donc ĂȘtre assimilĂ©s Ă  une « biopsie liquide ». L’analyse des exosomes pourrait complĂ©ter utilement des examens classiques de dĂ©pistage, de diagnostic et de suivi d’une pathologie. Dans le cadre de projet de cette thĂšse, nous avons appliquĂ© des techniques de protĂ©omique Ă  haut dĂ©bit pour l’analyse des exosomes. Nous nous sommes tout d’abord intĂ©ressĂ©s Ă  l’analyse du profil protĂ©ique des exosomes urinaires dans le contexte de deux pathologies du tractus urinaire : la cystinurie et le cancer du rein. La cystinurie est une nĂ©phropathie lithiasique d’origine gĂ©nĂ©tique pour laquelle il y a peu de marqueurs biologiques pouvant prĂ©dire son Ă©volution vers l’insuffisance rĂ©nale terminale. Nous avons dĂ©veloppĂ© une mĂ©thode de prĂ©paration des exosomes urinaire permettant d’analyser de façon reproductible leurs profils protĂ©iques. Nous avons appliquĂ© cette mĂ©thode Ă  huit patients cystinuriques et comparĂ© les rĂ©sultats aux profils obtenus chez dix sujets sains. Un panel de 38 protĂ©ines diffĂ©rentiellement exprimĂ© dans les exosomes des patients a Ă©tĂ© identifiĂ© et en partie validĂ© par Western blot. Concernant le cancer du rein Ă  cellules claires pour lequel le diagnostic nĂ©cessite des prĂ©lĂšvements invasifs par biopsie, nous avons analysĂ© les exosomes urinaires de huit patients avant et aprĂšs nĂ©phrectomie. Nous avons ainsi pu mettre en Ă©vidence un panel de 25 protĂ©ines surexprimĂ©es dans les exosomes des patients. Enfin, le dernier volet de cette thĂšse a Ă©tĂ© consacrĂ© Ă  l’analyse des exosomes du lavage broncho-alvĂ©olaire provenant de patients MV, maladie d’origine gĂ©nĂ©tique qui atteint principalement les poumons. L’analyse des exosomes de lavage broncho-alvĂ©olaire pourrait permettre de donner un Ă©clairage nouveau sur la physiopathologie de la maladie. Nous avons rĂ©alisĂ© la comparaison des profils protĂ©iques des exosomes de quatre patients MV, et six patients asthmatiques. L’ensemble des rĂ©sultats obtenus au cours de cette thĂšse montre que l’analyse protĂ©omique des exosomes issus de fluides biologiques peut aider la recherche de biomarqueurs diagnostics ou pronostics de maladies.A biomarker is a molecule (or a cluster of molecule) which will reflect the occurrence of a pathological state, giving us the ability to detect a disease, to predict its severity or to assess drug efficiency. Biological fluids are the golden standards for biomarker research in human as they are routinely collected for patients’ follow-up and are less invasive than biopsies. During my PhD, I focused on exosomes that can be found in these biological fluids. Exosomes are nanovesicles with a diameter ranging between 30 and 100 nanometers. Exosomes are secreted by all cell types and harbor cytoplasmic and membranous proteins specific of their cells of origins. One of the major interest of exosomes enriched from biological fluids is that they represent a valuable source of biomarkers. They can be considered as a « liquid biopsy ». Their analysis could complete classical diagnosis and follow-up tools. In this project, we applied high resolution, high throughput proteomic techniques for exosomes analysis. We firstly focused on protein profiles in urinary exosomes in the context of two urinary tract diseases: cystinuria and kidney cancer. Cystinuria is an inherited autosomal recessive disease that is characterized by the formation of cystine stones in the kidneys. To date, there are no markers to predict the evolution toward end stage renal disease. We developed a method to prepare exosomes in order to reproducibly analyze their protein profiles. We applied this method to eight cystinuria patients and compared their profiles to those of ten healthy subjects. A panel of 38 differentially expressed proteins in patients were found and validated by western blots. We also applied this method to patients with clear cell renal cell carcinoma, for which invasive biopsies are necessary for clear diagnosis. We analyzed urinary exosomes form eight patients before and after nephrectomy. We were able to highlight 25 overexpressed proteins in patients’ exosomes. Eventually, the last part of my thesis was dedicated to the analysis of exosomes enriched from bronchoalveolar lavage fluid collected in cystic fibrosis patients, a disease that affects mostly the lungs. Bronchoalveolar lavage fluid exosomes analysis could give a new insight on the mechanisms of this disease. We compared protein profiles in exosomes from four cystic fibrosis patients and six asthmatic patients. The whole point of this work is to show that proteomic analysis of exosomes isolated from biological fluids could become a golden standard for the discovery of diagnosis or prognosis biomarkers

    Mammal Hyaluronidase Activity on Chondroitin Sulfate and Dermatan Sulfate: Mass Spectrometry Analysis of Oligosaccharide Products

    No full text
    International audienceAbstract Mammalian hyaluronidases are endo-N-acetyl-D-hexosaminidases involved in the catabolism of hyaluronic acid (HA) but their role in the catabolism of chondroitin sulfate (CS) is also examined. HA and CS are glycosaminoglycans implicated in several physiological and pathological processes, and understanding their metabolism is of significant importance. Data have been previously reported on the degradation of CS under the action of hyaluronidase, yet a detailed structural investigation of CS depolymerization products remains necessary to improve our knowledge of the CS depolymerizing activity of hyaluronidase. For that purpose, the fine structural characterization of CS oligosaccharides formed upon the enzymatic depolymerization of various CS subtypes by hyaluronidase has been carried out by high-resolution Orbitrap mass spectrometry (MS) and extreme UV (XUV) photodissociation tandem MS. The exact mass measurements show the formation of wide size range of even oligosaccharides upon digestion of CS-A and CS-C comprising hexa- and octa-saccharides among the main digestion products, as well as formation of small quantities of odd-numbered oligosaccharides, while no hyaluronidase activity was detected on CS-B. In addition, slight differences have been observed in the distribution of oligosaccharides in the digestion mixture of CS-A and CS-C, the contribution of longer oligosaccharides being significantly higher for CS-C. The sequence of CS oligosaccharide products determined XUV photodissociation experiments verifies the selective ÎČ(1 → 4) glycosidic bond cleavage catalyzed by mammal hyaluronidase. The ability of the mammal hyaluronidase to produce hexa- and higher oligosaccharides supports its role in the catabolism of CS anchored to membrane proteoglycans and in extra-cellular matrix

    MASS SPECTROMETRY ANALYSIS OF THE HYALURONIDASE-CATALYZED TRANSGLYCOSYLATION REACTION FOR THE SYNTHESIS OF GLYCOSAMINOGLYCANS.

    No full text
    National audienceThe Master internship project focused on the study of a recent oligosaccharide synthesis strategy based on the principle of enzymatic transglycosylation. The transglycosylation reaction was studied by exploiting the enzymatic activity of mammalian hyaluronidase, an endohydrolase that is active not only on the glycosaminoglycan (GAGs) hyaluronic acid (HA) but also on chondroitin sulfate (CS) as we recently showed [1]. Under specific reaction conditions, literature data indicated that this endohydrolase is able to catalyze a transglycosylation reaction in the opposite direction of hydrolysis reaction to form an osidic bond between HA oligosaccharides used as donor and acceptor [2]. The synthetic capabilities of this enzyme are of major interest for the production of defined sequences of GAGs, thus facilitating their structural and functional characterization. With the aim to study the capability of hyaluronidase to catalyze the tranglycosylation reaction with CS oligosaccharides donor and acceptor, we have implemented in this work mass spectrometry-based methods for the separation, detection and structural analysis of GAG. The hyaluronidase-catalyzed transglycosylation reaction was conducted using a variety of oligosaccharide acceptors and donors, and was monitored by coupling hydrophilic interaction liquid chromatography with mass spectrometry (HILIC-MS) [3]. The exploration of the experimental conditions favoring the transglycosylation reaction gave promising results since the formation of neosynthesized oligosaccharides could be detected. [1]M. Bilong, P. Bayat, M. Bouderioux, M. JĂ©rĂŽme, A. Giuliani, R. Daniel, Glycobiology, 2021, 31 (7), 751–761.[2]H. Saitoh, K. Takagaki, M. Majima, T. Nakamura, A. Matsuki, M. Kasai, H. Narita, M. Endo, J. Biol. Chem., 1995, 270 (8), 3741–3747.[3]S. Poyer, I. Seffouh, C. Lopin-Bon, J.-C. Jacquinet, J. L. Neira, J.-Y. Salpin, R. Daniel, Anal. Bioanal. Chem., 2021, doi : 10.1007/s00216-021-03679-9

    Localized lipidomics in cystic fibrosis: TOF-SIMS imaging of lungs from Pseudomonas aeruginosa-infected mice.

    No full text
    International audience: A consistent body of research has linked cystic fibrosis (CF) with variations in the tissue and fluid content in a number of lipid molecules. However, little is known about the spatial localization of those variations. We have recently applied TOF-SIMS mass spectrometry imaging to detect differential lipid signatures at the colon epithelium between normal and cftr-/- mice. In the present work we have used this technology to investigate potential differences in the spatial distribution of lipids due to Pseudomonas aeruginosa (P.a.) infection in mouse lung expressing or not cftr. Wild-type and exon 10 cftr knockout mice were subjected to intranasal infection with a clinical strain of P.a. Lung cryosections from infected and non-infected mice were subjected to cluster TOF-SIMS analysis in the negative ion mode. We observed a highly specific localization of a phosphoinositol fragment ion at m/z 299.1 in bronchial epithelium. Using this ion to delineate a region of interest, we studied the relative abundance of ions below m/z 1500. We found a significant increase in m/z 465.4 (identified as cholesteryl sulfate) in cftr-/- epithelium and in response to bacterial infection, as well as a decrease in most carboxylic ions. In conclusion, the m/z 299.1 ion can be used as a marker of bronchial epithelium, where P.a. infection leads to increased presence of cholesteryl sulfate in this tissue. TOF-SIMS imaging reveals as a valuable tool for the study of respiratory epithelium. This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances

    Single molecule nanopore sensing of glycosaminoglycans

    No full text
    International audienceSequencing of polysaccharides is lagging behind compared to the very advanced situation for the twoother major families of bio-polymers, nucleic acids and proteins, for which effective methods of structuralanalysis have been available for decades. The need for such methods is particularly felt for bioactivepolysaccharides and among them glycosaminoglycans (GAGs).GAGs are highly sulfated linear polysaccharides that play a dominant role in the communication ofcells with their environment [1]. Comprising of disaccharide units, GAGs present an extraordinary structuralcomplexity due to their non-template driven biosynthesis that results in their chemical heterogeneity and abroad diversification of structure.Faced with this situation, a powerful solution is provided by the single-molecule detection andcharacterization based on the translocation through nanopores. This technique has been applied to GAGs byexploiting the confinement properties of the aerolysin nanopore. Heparin, chondroitin sulfate, dermatansulfate, heparosan and hyaluronic acid saccharides were analyzed and distinguished, showing that aerolysinnanopore can detect and characterize GAGs with various sulfate patterns, osidic bonds and epimers ofuronic acid residues [2].The results of the study show for the first time the detection and resolution of different sequences ofGAGs according to the different modifications distributed along the chains. The discrimination of the buildingblocks of GAGs is an essential step towards a sequencing pathway for these polysaccharides

    Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore

    No full text
    International audienceAbstract Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/ÎČ anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal
    corecore