4 research outputs found

    Report for 2011 from the Bordeaux IVS Analysis Center

    Get PDF
    This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2011. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) imaging of the sources observed during the 2009 International Year of Astronomy IVS observing session; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the enhancement of the IVS LiveWeb site which now comprises all IVS sessions back to 2003, allowing one to search past observations for session-specific information (e.g. sources or stations)

    Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    Get PDF
    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future

    Report for 2012 from the Bordeaux IVS Analysis Center

    Get PDF
    This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2012. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) investigation of the correlation between astrometric position instabilities and source structure variations; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the 11th European VLBI Network Symposium, which we organized last October in Bordeaux and which drew much attention from the European and International VLBI communities

    The IVS data input to ITRF2014

    Get PDF
    2015ivs..data....1N - GFZ Data Services, Helmoltz Centre, Potsdam, GermanyVery Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013)
    corecore