33 research outputs found

    CONCERTO: Extracting the power spectrum of the [C II ] emission line

    Full text link
    CONCERTO is the first experiment to perform a [CII] line intensity mapping survey to target z>5.2z>5.2. Measuring the [CII] power spectrum allows us to study the role of dusty star-forming galaxies in the star formation history during the Reionization and post-Reionization. The main obstacle to this measurement is the contamination by bright foregrounds. We evaluate our ability to retrieve the [CII] signal in mock observations using the Simulated Infrared Dusty Extragalactic Sky. We compared two methods for dealing with the dust continuum emission from galaxies: the standard PCA and the arPLS method. For line interlopers, the strategy relies on masking low-redshift galaxies using external catalogues. As we do not have observations of CO or classical CO proxies ,we relied on the COSMOS stellar mass catalogue. To measure the power spectrum of masked data, we adapted the P of K EstimatoR and discuss its use on LIM data. The arPLS method achieves a reduction of the continuum background to a sub-dominant level of the [CII] at z=7 by a factor of>70. When using PCA, this factor is only 0.7. The masking lowers the power amplitude of line contamination down to 2×102Jy2/sr2 \times 10^2 Jy^2/sr This residual level is dominated by faint undetected sources. For our [CII] model, this results in a detection at z = 5.2 with a power ratio [CII]/(residual interlopers) = 62±3262 \pm 32 for a 22 % area survey loss. However, at z = 7, [C II ] / (residual interlopers)=2.0±1.4=2.0 \pm 1.4. Thanks to the large area covered by SIDES-Uchuu, we show that the power amplitude of line residuals varies by 12-15% for z=5.2-7. We present an end-to-end simulation of the extragalactic foreground removal that we ran to detect the [CII] at high redshift via its power spectrum. We show that dust continuum emission are not a limiting foreground for [CII] LIM. Residual CO and [CI] limits our ability to measure the [CII] power spectrum at z>7.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysic

    CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping

    Get PDF
    The intensity mapping of the [CII] 158-ÎŒm line redshifted to the submillimeter window is a promising probe of the za>4 star formation and its spatial distribution into large-scale structures. To prepare the first-generation experiments (e.g., CONCERTO), we need realistic simulations of the submillimeter extragalactic sky in spectroscopy. We present a new version of the simulated infrared dusty extragalactic sky (SIDES) model including the main submillimeter lines around 1 mm (CO, [CII], [CI]). This approach successfully reproduces the observed line luminosity functions. We then use our simulation to generate CONCERTO-like cubes (125-305 GHz) and forecast the power spectra of the fluctuations caused by the various astrophysical components at those frequencies. Depending on our assumptions on the relation between the star formation rate and [CII] luminosity, and the star formation history, our predictions of the za∌6 [CII] power spectrum vary by two orders of magnitude. This highlights how uncertain the predictions are and how important future measurements will be to improve our understanding of this early epoch. SIDES can reproduce the CO shot noise recently measured at a4;100 GHz by the millimeter-wavelength intensity mapping experiment (mmIME). Finally, we compare the contribution of the different astrophysical components at various redshifts to the power spectra. The continuum is by far the brightest, by a factor of three to 100, depending on the frequency. At 300 GHz, the CO foreground power spectrum is higher than the [CII] one for our base scenario. At lower frequencies, the contrast between [CII] and extragalactic foregrounds is even worse. Masking the known galaxies from deep surveys should allow us to reduce the foregrounds to 20% of the [CII] power spectrum up to z∌ 6.5. However, this masking method will not be sufficient at higher redshifts. The code and the products of our simulation are released publicly, and can be used for both intensity mapping experiments and submillimeter continuum and line surveys

    CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance

    Get PDF
    In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available

    A wide field-of-view low-resolution spectrometer at APEX: Instrument design and scientific forecast

    Get PDF
    Context. Characterising the large-scale structure in the Universe from present times to the high redshift epoch of reionisation is essential to constraining the cosmology, the history of star formation, and reionisation, to measuring the gas content of the Universe, and to obtaining a better understanding of the physical processes that drive galaxy formation and evolution. Using the integrated emission from unresolved galaxies or gas clouds, line intensity mapping (LIM) provides a new observational window to measure the larger properties of structures. This very promising technique motivates the community to plan for LIM experiments. Aims. We describe the development of a large field-of-view instrument, named CONCERTO (for CarbON CII line in post-rEionisation and ReionisaTiOn epoch), operating in the range 130-310 GHz from the APEX 12-m telescope (5100 m above sea level). CONCERTO is a low-resolution spectrometer based on the lumped element kinetic inductance detectors (LEKID) technology. Spectra are obtained using a fast Fourier transform spectrometer (FTS), coupled to a dilution cryostat with a base temperature of 0.1 K. Two two kilo-pixel arrays of LEKID are mounted inside the cryostat that also contains the cold optics and the front-end electronics. Methods. We present, in detail, the technological choices leading to the instrumental concept, together with the design and fabrication of the instrument and preliminary laboratory tests on the detectors. We also give our best estimates for CONCERTO sensitivity and give predictions for two of the main scientific goals of CONCERTO, that is, a [CII]-intensity mapping survey and observations of galaxy clusters. Results. We provide a detailed description of the instrument design. Based on realistic comparisons with existing instruments developed by our group (NIKA, NIKA2, and KISS), and on the laboratory characterisation of our detectors, we provide an estimate for CONCERTO sensitivity on the sky. Finally, we describe, in detail, two of the main scientific goals offered by CONCERTO at APEX

    Knowledge and innovation: The strings between global and local dimensions of sustainable growth

    Get PDF
    The modern growth literature pays much attention to innovation and knowledge as drivers of endogenous developments in a competitive open economic system. This paper reviews concisely the literature in this field and addresses in particular micro- and macro-economic interactions at local or regional levels, based on clustering and networking principles, in which sustainability conditions also play a core role. The paper then develops a so-called knowledge circuit model comprising the relevant stakeholders, which aims to offer a novel framework for applied policy research at the meso-economic level

    CONCERTO: Readout and control electronics

    No full text
    The CONCERTO spectral-imaging instrument was installed at the Atacama Pathfinder EXperiment (APEX) 12-meter telescope in April 2021. It has been designed to look at radiation emitted by ionised carbon atoms, [CII], and use the "intensity Mapping" technique to set the first constraints on the power spectrum of dusty star-forming galaxies. The instrument features two arrays of 2152 pixels constituted of Lumped Element KID Detectors (LEKID) operated at cryogenic temperatures, cold optics and a fast Fourier Transform Spectrometer (FTS). To readout and operate the instrument, a newly designed electronic system hosted in five microTCA crates and composed of twelve readout boards and two control boards was designed and commissioned. The architecture and the performances are presented in this paper

    CONCERTO: Readout and control electronics

    No full text
    The CONCERTO spectral-imaging instrument was installed at the Atacama Pathfinder EXperiment (APEX) 12-meter telescope in April 2021. It has been designed to look at radiation emitted by ionised carbon atoms, [CII], and use the "intensity Mapping" technique to set the first constraints on the power spectrum of dusty star-forming galaxies. The instrument features two arrays of 2152 pixels constituted of Lumped Element KID Detectors (LEKID) operated at cryogenic temperatures, cold optics and a fast Fourier Transform Spectrometer (FTS). To readout and operate the instrument, a newly designed electronic system hosted in five microTCA crates and composed of twelve readout boards and two control boards was designed and commissioned. The architecture and the performances are presented in this paper

    CONCERTO: Readout and control electronics

    No full text
    The CONCERTO spectral-imaging instrument was installed at the Atacama Pathfinder EXperiment (APEX) 12-meter telescope in April 2021. It has been designed to look at radiation emitted by ionised carbon atoms, [CII], and use the "intensity Mapping" technique to set the first constraints on the power spectrum of dusty star-forming galaxies. The instrument features two arrays of 2152 pixels constituted of Lumped Element KID Detectors (LEKID) operated at cryogenic temperatures, cold optics and a fast Fourier Transform Spectrometer (FTS). To readout and operate the instrument, a newly designed electronic system hosted in five microTCA crates and composed of twelve readout boards and two control boards was designed and commissioned. The architecture and the performances are presented in this paper

    CONCERTO: Readout and control electronics

    No full text
    The CONCERTO spectral-imaging instrument was installed at the Atacama Pathfinder EXperiment (APEX) 12-meter telescope in April 2021. It has been designed to look at radiation emitted by ionised carbon atoms, [CII], and use the "intensity Mapping" technique to set the first constraints on the power spectrum of dusty star-forming galaxies. The instrument features two arrays of 2152 pixels constituted of Lumped Element KID Detectors (LEKID) operated at cryogenic temperatures, cold optics and a fast Fourier Transform Spectrometer (FTS). To readout and operate the instrument, a newly designed electronic system hosted in five microTCA crates and composed of twelve readout boards and two control boards was designed and commissioned. The architecture and the performances are presented in this paper

    CONCERTO: Extracting the power spectrum of the [C II ] emission line

    No full text
    International audienceCONCERTO is the first experiment to perform a [CII] line intensity mapping survey to target z>5.2z>5.2. Measuring the [CII] power spectrum allows us to study the role of dusty star-forming galaxies in the star formation history during the Reionization and post-Reionization. The main obstacle to this measurement is the contamination by bright foregrounds. We evaluate our ability to retrieve the [CII] signal in mock observations using the Simulated Infrared Dusty Extragalactic Sky. We compared two methods for dealing with the dust continuum emission from galaxies: the standard PCA and the arPLS method. For line interlopers, the strategy relies on masking low-redshift galaxies using external catalogues. As we do not have observations of CO or classical CO proxies ,we relied on the COSMOS stellar mass catalogue. To measure the power spectrum of masked data, we adapted the P of K EstimatoR and discuss its use on LIM data. The arPLS method achieves a reduction of the continuum background to a sub-dominant level of the [CII] at z=7 by a factor of>70. When using PCA, this factor is only 0.7. The masking lowers the power amplitude of line contamination down to 2×102Jy2/sr2 \times 10^2 Jy^2/sr This residual level is dominated by faint undetected sources. For our [CII] model, this results in a detection at z = 5.2 with a power ratio [CII]/(residual interlopers) = 62±3262 \pm 32 for a 22 % area survey loss. However, at z = 7, [C II ] / (residual interlopers)=2.0±1.4=2.0 \pm 1.4. Thanks to the large area covered by SIDES-Uchuu, we show that the power amplitude of line residuals varies by 12-15% for z=5.2-7. We present an end-to-end simulation of the extragalactic foreground removal that we ran to detect the [CII] at high redshift via its power spectrum. We show that dust continuum emission are not a limiting foreground for [CII] LIM. Residual CO and [CI] limits our ability to measure the [CII] power spectrum at z>7
    corecore