283 research outputs found

    The role of particle precipitation on plasma structuring at different altitudes by in-situ measurements

    Get PDF
    The plasma in the cusp ionosphere is subject to particle precipitation, which is important for the development of large-scale irregularities in the plasma density. These irregularities can be broken down into smaller scales which have been linked to strong scintillations in the Global Navigation Satellite System (GNSS) signals. We present power spectra for the plasma density irregularities in the cusp ionosphere for regions with and without auroral particle precipitation based on in-situ measurements from the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) mission, consisting of two sounding rockets flying simultaneously at different altitudes. The electron density measurements taken from the multi-needle Langmuir probe system (m-NLP) were analyzed for the whole flight duration for both rockets. Due to their high sampling rates, the probes allow for a study of plasma irregularities down to kinetic scales. A steepening of the slope in the power spectra may indicate two regimes, a frequency interval with a shallow slope, where fluid-like processes are dominating, and an interval with a steeper slope which can be addressed with kinetic theory. The steepening occurs at frequencies between 20 Hz and 100 Hz with a median similar to the oxygen gyrofrequency. Additionally, the occurrence of double slopes increases where precipitation starts and throughout the rest of the flight. In addition, strong electron density fluctuations were found in regions poleward of the cusp, thus in regions immediately after precipitation. Furthermore, by investigating the integrated power of the fluctuations within different frequency ranges, we show that at low frequencies (10–100 Hz), the power is pronounced more evenly while the rocket encounters particle precipitation, while at high frequencies (100–1000 Hz) fluctuations essentially coincide with the passing through a flow channel

    Space experiments with particle accelerators (SEPAC): Description of instrumentation

    Get PDF
    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers

    Criticality of natural absorbing states

    Full text link
    We study a recently introduced ladder model which undergoes a transition between an active and an infinitely degenerate absorbing phase. In some cases the critical behaviour of the model is the same as that of the branching annihilating random walk with N≥2N\geq 2 species both with and without hard-core interaction. We show that certain static characteristics of the so-called natural absorbing states develop power law singularities which signal the approach of the critical point. These results are also explained using random walk arguments. In addition to that we show that when dynamics of our model is considered as a minimum finding procedure, it has the best efficiency very close to the critical point.Comment: 6 page

    Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    Get PDF
    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves

    Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    Get PDF
    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves

    Optical Propagation and Communication

    Get PDF
    Contains summary of research and reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)Maryland Procurement Office (Contract MDA904-84-C-6037)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Interferometric Study of Ionospheric Plasma Irregularities in Regions of Phase Scintillations and HF Backscatter

    Get PDF
    We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the E × B velocity. Furthermore, we show that these “spatial” structures are intermittent and prominent outside of regions with strongest precipitation. The observations are then discussed in the context of possible mechanisms for irregularity creation.publishedVersio

    Optical Propagation and Communication

    Get PDF
    Contains research summary and reports on four research projects.National Science Foundation (Grant ECS81-20637)National Science Foundation (Grant ECS85-09143)Maryland Procurement Office (Contract MDA904-84-C-6037)National Science Foundation (Grant ECS84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract NO0014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)National Science Foundation (Grant ECS 84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
    • …
    corecore