534 research outputs found

    A global analysis of the seaward salt marsh extent: the importance of tidal range

    Get PDF
    Despite the growing interest in ecosystem services provided by intertidal wetlands, we lack sufficient understanding of the processes that determine the seaward extent of salt marsh vegetation on tidal flats. With the present study, we aim to establish a globally valid demarcation between tidal flats and salt marsh vegetation in relation to tidal range. By comparing results from a regional GIS study with a global literature search on the salt marsh- tidal flat border, we are able to define the global critical elevation, above which salt marsh plants can grow in the intertidal zone. Moreover, we calculate inundation characteristics from global tide gauge records to determine inundation duration and frequency at this predicted salt marsh - tidal flat border depending on tidal range. Our study shows that the height difference between the lowest elevation of salt-marsh pioneer vegetation and mean high water increases logarithmically with tidal range when including macrotidal salt marshes. Hence, the potentially vegetated section of the tidal frame below mean high water does not proportionally increase with tidal range. The data analysis suggests that inundation frequency rather than duration defines the global lower elevational limit of vascular salt marsh plants on tidal flats. This is critical information to better estimate sea level rise and coastal change effects on lateral marsh development

    Area-Independent Effects of Water-Retaining Features on Intertidal Biodiversity on Eco-Engineered Seawalls in the Tropics

    Get PDF
    Over the last decade there has been a global effort to eco-engineer urban artificial shorelines with the aim of increasing their biodiversity and extending their conservation value. One of the most common and viable eco-engineering approaches on seawalls is to use enhancement features that increase habitat structural complexity, including concrete tiles molded with complex designs and precast “flowerpots” that create artificial rock pools. Increases in species diversity in pits and pools due to microhabitat conditions (water retention, shade, protection from waves, and/or biotic refugia) are often reported, but these results can be confounded by differences in the surface area sampled. In this study, we fabricated three tile types (n = 10): covered tile (grooved tile with a cover to retain water), uncovered tile (same grooved tile but without a cover) and granite control. We tested the effects of these tile types on species richness (S), total individual abundance (N), and community composition. All tiles were installed at 0.5 m above chart datum along seawalls surrounding two island sites (Pulau Hantu and Kusu Island) south of Singapore mainland. The colonizing assemblages were sampled after 8 months. Consistent with previous studies, mean S was significantly greater on covered tiles compared to the uncovered and granite tiles. While it is implied in much of the eco-engineering literature that this pattern results from greater niche availability allotted by microhabitat conditions, we further investigated whether there was an underlying species-individual relationship to determine whether increases in S could have simply resulted from covered tiles supporting greater N (i.e., increasing the probability of detecting more species despite a constant area). The species-individual relationship was positive, suggesting that multiple mechanisms are at play, and that biodiversity enhancements may in some instances operate simply by increasing the abundance of individuals, even when microhabitat availability is unchanged. This finding underscores the importance of testing mechanisms in eco-engineering studies and highlights ongoing mechanistic uncertainties that should be addressed to inform the design of more biodiverse seawalls and urban marine environments

    Mussel seed is highly plastic to settling conditions:The influence of waves versus tidal emergence

    Get PDF
    Phenotypic plasticity is important for organisms to adjust to a new environment.Therefore, the transplantation success of an organism to a new environment can be increased with knowledge of its capacity for phenotypic plasticity in different life stages, and the phenotypic adjustments it needs to make in specific environmental situations. Both the capacity for phenotypic plasticity and the necessary phenotypic adjustments for transplantation were tested in a mesocosm experiment using blue mussels Mytilus edulis as a model organism. This study tested (1) to what extent mussel seed coming from collectors in the water column are still capable of adjusting their phenotype, and (2) whether exposure to air or wave action is more important as a driver of phenotypic adjustments for mussels living in intertidal conditions. We found that musselseed had a high capacity for phenotypic plasticity, and were capable of adjusting their morphology to accommodate different intertidal hydrodynamic conditions. Exposure to air influenced the shell shape, condition, byssal attachment strength and aggregation behaviour, but exposure to waves played the most important role in determining the phenotype of mussels. Wave-exposedmussels grew bigger, rounder, had thicker shells and a stronger byssal attachment strength than mussels exposed to either calm tidal or calm submerged environments. This knowledge is important for selecting a suitable source population and transplantation location

    Interaction between hydrodynamics and seagrass canopy structure: Spatially explicit effects on ammonium uptake rates

    Get PDF
    The hypotheses that (1) different seagrass morphologies may facilitate different nutrient uptake rates under similar hydrodynamic forcing and (2) this effect on nutrient uptake rates is spatially explicit, with the highest uptake rates at edges of patches, where currents and turbulence are highest, were examined under unidirectional flow conditions.We thank Jos van Soelen, Bas Koutstaal, and Louie Haazen for invaluable technical assistance. In addition, we are grateful to Britta Gribsholt, Bart Veuger, Miguel Bernal, Juan Jose Vergara, and Alfredo Izquirdo for helpful discussion. In addition, we thank Josef D. Ackerman and the anonymous reviewers for comments that greatly improved the manuscript. This work and the first author were supported by an EU Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, and the Spanish national project EVAMARIA, CTM2005-00395/MAR. F.G.B. holds an EU Marie Curie individual fellowship, MEIF-CT-2005-515071. This is publication 4251 of the Netherlands Institute of Ecology (NIOO-KNAW)

    Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh

    Get PDF
    Grazers can have a large impact on ecosystem processes and are known to change vegetation composition. However, knowledge of how the long-term presence of grazers affects soil carbon sequestration is limited. In this study, we estimated total accumulated organic carbon in soils of a back-barrier salt marsh and determined how this is affected by long-term grazing by both small and large grazers in relation to age of the ecosystem. In young marshes, where small grazers predominate, hare and geese have a limited effect on total accumulated organic carbon. In older, mature marshes, where large grazers predominate, cattle substantially enhanced carbon content in the marsh soil. We ascribe this to a shift in biomass distribution in the local vegetation towards the roots in combination with trampling effects on the soil chemistry. These large grazers thus act as ecosystem engineers: their known effect on soil compaction (based on a previous study) enhances anoxic conditions in the marsh soil, thereby reducing the oxygen available for organic carbon decomposition by the local microbial community. This study showed that the indirect effects of grazing can significantly enhance soil carbon storage through changing soil abiotic conditions. This process should be taken into account when estimating the role of ecosystems in reducing carbon dioxide concentration in the atmosphere. Ultimately, we propose a testable conceptual framework that includes 3 pathways by which grazers can alter carbon storage: (1) through above-ground biomass removal, (2) through alteration of biomass distribution towards the roots and/or (3) by changing soil abiotic conditions that affect decomposition.</p

    Potential uptake of dissolved organic matter by seagrasses and macroalgae

    Get PDF
    Dissolved organic nitrogen (DON) acts as a large reservoir of fixed nitrogen. Whereas DON utilization is common in the microbial community, little is known about utilization by macrophytes. We investigated the ability of the coexisting temperate marine macrophytes Zostera noltii, Cymodocea nodosa, and Caulerpa prolifera to take up nitrogen and carbon from small organic substrates of different molecular complexities (urea, glycine, L-leucine, and L-phenylalanine) and from dissolved organic matter (DOM) derived from algal and bacterial cultures (substrates with a complex composition). In addition to inorganic nitrogen, nitrogen from small organic substrates could be taken up in significant amounts by all macrophytes. Substrate uptake by the aboveground tissue differed from that of the belowground tissue. No relationships between carbon and nitrogen uptake of small organics were found. The preference for individual organic substrates was related to their structural complexity and C:N ratio. Uptake of algae-derived organic nitrogen was of similar magnitude as inorganic nitrogen, and was preferred over bacteria-derived nitrogen. These results add to the growing evidence that direct or quick indirect DON utilization may be more widespread among aquatic macrophytes than traditionally thought.This research was supported by the regional government of Andalusia project FUNDIV (P07-RNM-2516), the Spanish Project CTM2008-00012/MAR, a European Reintegration Grant (MERG-CT-2007-205675), a travel grant from Schure-Beijerinck-Popping Fund (SBP/JK/2007-32) and the Netherlands Organization for Scientific Research. Thanks to Fidel EchevarrĂŹa Navas (Director of CACYTMAR) for granting us access to facilities, and to Bas Koutstaal for helping with sample processing. We also thank the anonymous reviewers for their valuable comments which significantly improved this manuscript

    Are all patterns created equal?:Cooperation is more likely in spatially simple habitats

    Get PDF
    Cooperative behaviours, such as aggregation with neighbouring conspecifics, canenhance resilience in habitats where risks (i.e. predation, physical disturbances) are high, exerting positive feedback loops to maintain a healthy population. At the same time, cooperation behaviours can involve some extra energy expenditures and in‐ creasing resource competition. For sessile reefs, like mussels, simulation models predict increased cooperation under increasing levels of environmental stress. Predation risk is viewed as a behaviour‐modifying stressor, but its role on cooperation mechanisms, such as likelihood of reciprocity, has not yet been empirically tested. This study harnesses this framework to understand how cooperation changes under different perceived levels of predation risk, using mussel beds as model of a complex“self‐organised” system. Hence, we assessed the context dependency of cooperation response in different “landscapes of fear,” created by changes in predator cues, sub‐ stratum availability and body size. Our experiments demonstrated that i) cooperation in a mussel bed system increases when predator cues are present, but that this relationship was found to be both, ii) strongly context‐dependent, particularly upon substratum availability and iii) size‐dependent. That is, while cooperation is in general greater for larger individuals, the response to risk results in greater cooperation when alternative attachment substratum is absent, meaning that simpler landscapes may be perceived as riskier. The context dependency of structural complexity is also an essential finding to consider in a changing world where habitats are losing complexity and cooperative strategies should be maximised

    Sediment supply explains long-term and large-scale patterns in saltmarsh lateral expansion and erosion

    Get PDF
    Salt marshes often undergo rapid changes in lateral extent, the causes of which lack common explanation. We combine hydrological, sedimentological, and climatological data with analysis of historical maps and photographs to show that long‐term patterns of lateral marsh change can be explained by large‐scale variation in sediment supply and its wave‐driven transport. Over 150 years, northern marshes in Great Britain expanded while most southern marshes eroded. The cause for this pattern was a north to south reduction in sediment flux and fetch‐driven wave sediment resuspension and transport. Our study provides long‐term and large‐scale evidence that sediment supply is a critical regulator of lateral marsh dynamics. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes and other sedimentary ecosystems to sea level rise. Managing sediment supply is not common place but may be critical to mitigating coastal impacts from climate change

    The importance of marshes providing soil stabilization to resist fast-flow erosion in case of a dike breach

    Get PDF
    Salt marshes provide valuable ecosystem services including coastal protection by reducing wave loading on dikes and seawalls. If the topsoil is erosion resistant to fast-flowing water, it may also reduce breach depth if a dike fails. In this experiment, we quantified the topsoil erosion resistance from marshes and bare tidal flats with different soil types to understand the extent to which they can help reduce breach depth. Intact soil samples were collected from 11 locations in the Netherlands at different tidal elevations and then exposed for 3 h to 2.3 m/s currents. To the samples that remained stable after flow exposure, an artificial crack was made to test their stability following soil disturbance. All samples from the tidal flats were completely eroded, regardless of sediment type. In contrast, all samples from well-established marsh plateaus were stable as long as no disturbances were made, including those with sandy subsoils. After creating artificial cracks, samples with a thin cohesive top layer on top of sandy subsoil collapsed, while marshes with silty subsoils remained stable. Pioneer marshes on sandy substrate without a cohesive top layer were the only vegetated soils that completely eroded. The lower erosion of marshes with either sandy or silty soils compared to bare tidal flats was best explained by the presence of a top layer with belowground biomass, high organic content, high water content, and low bulk density. When analyzing the erodibility of marshes only, fine root density was the best predictor of erosion resistance. This study demonstrates the importance of preserving, restoring, or creating salt marshes, to obtain a topsoil that is erosion resistant under fast-flowing water, which helps reduce breach dimensions if a dike fails. The probability of topsoil erosion in established marshes with sandy subsoil is higher than in silty marshes. A silty layer of cohesive sediment on top of the sand provides extra erosion resistance as long as it does not break. Pioneer marshes that have not developed a cohesive top layer are erosion sensitive, especially in sandy soils. For future marsh creations, using fine-grained sediments or a mixture of sand with silt or clay is recommended
    • 

    corecore