663 research outputs found
Monte Carlo simulation of a two-field effective Hamiltonian of complete wetting
Recent work on the complete wetting transition for three dimensional systems
with short-ranged forces has emphasized the role played by the coupling of
order-parameter fluctuations near the wall and depinning interface. It has been
proposed that an effective two-field Hamiltonian, which predicts a
renormalisation of the wetting parameter, could explain the controversy between
RG analysis of the capillary-wave model and Monte Carlo simulations on the
Ising model. In this letter results of extensive Monte Carlo simulations of the
two-field model are presented. The results are in agreement with prediction of
a renormalized wetting parameter .Comment: To appear in Europhysics Letters. Latex file, 6 pages, 2 figure
Coupled Fluctuations near Critical Wetting
Recent work on the complete wetting transition has emphasized the role played
by the coupling of fluctuations of the order parameter at the wall and at the
depinning fluid interface. Extending this approach to the wetting transition
itself we predict a novel crossover effect associated with the decoupling of
fluctuations as the temperature is lowered towards the transition temperature
T_W. Using this we are able to reanalyse recent Monte-Carlo simulation studies
and extract a value \omega(T_W)=0.8 at T_W=0.9T_C in very good agreement with
long standing theoretical predictions.Comment: 4 pages, LaTex, 1 postscript figur
Surface induced disorder in body-centered cubic alloys
We present Monte Carlo simulations of surface induced disordering in a model
of a binary alloy on a bcc lattice which undergoes a first order bulk
transition from the ordered DO3 phase to the disordered A2 phase. The data are
analyzed in terms of an effective interface Hamiltonian for a system with
several order parameters in the framework of the linear renormalization
approach due to Brezin, Halperin and Leibler. We show that the model provides a
good description of the system in the vicinity of the interface. In particular,
we recover the logarithmic divergence of the thickness of the disordered layer
as the bulk transition is approached, we calculate the critical behavior of the
maxima of the layer susceptibilities, and demonstrate that it is in reasonable
agreement with the simulation data. Directly at the (110) surface, the theory
predicts that all order parameters vanish continuously at the surface with a
nonuniversal, but common critical exponent. However, we find different
exponents for the order parameter of the DO3 phase and the order parameter of
the B2 phase. Using the effective interface model, we derive the finite size
scaling function for the surface order parameter and show that the theory
accounts well for the finite size behavior of the DO3 ordering but not for that
of B2 ordering. The situation is even more complicated in the neighborhood of
the (100) surface, due to the presence of an ordering field which couples to
the B2 order.Comment: To appear in Physical Review
Dynamics of Wetting Fronts in Porous Media
We propose a new phenomenological approach for describing the dynamics of
wetting front propagation in porous media. Unlike traditional models, the
proposed approach is based on dynamic nature of the relation between capillary
pressure and medium saturation. We choose a modified phase-field model of
solidification as a particular case of such dynamic relation. We show that in
the traveling wave regime the results obtained from our approach reproduce
those derived from the standard model of flow in porous media. In more general
case, the proposed approach reveals the dependence of front dynamics upon the
flow regime.Comment: 4 pages, 2 figures, revte
Patient Care in High-Level Containment Care Units: In a Resourced Setting
Vasa, A., Boulter, K., Horihan, Cates, D., Piquette, C., Sullivan, J., Johnson, D, & Hewlett, A. (2019). Patient Care in High-Level Containment Care Units. In T. Cieslak, M. Kortepeter, C. Kratochvil, & J. Lawler (Eds.), Nebraska Isolation and Quarantine Manual (pp. 87-101). Lincoln, NE: University of Nebraska Press.https://digitalcommons.unmc.edu/nm_books/1000/thumbnail.jp
Effects of confinement and surface enhancement on superconductivity
Within the Ginzburg-Landau approach a theoretical study is performed of the
effects of confinement on the transition to superconductivity for type-I and
type-II materials with surface enhancement. The superconducting order parameter
is characterized by a negative surface extrapolation length . This leads to
an increase of the critical field and to a surface critical
temperature in zero field, , which exceeds the bulk . When the
sample is {\em mesoscopic} of linear size the surface induces
superconductivity in the interior for .
In analogy with adsorbed fluids, superconductivity in thin films of type-I
materials is akin to {\em capillary condensation} and competes with the
interface delocalization or "wetting" transition. The finite-size scaling
properties of capillary condensation in superconductors are scrutinized in the
limit that the ratio of magnetic penetration depth to superconducting coherence
length, , goes to zero, using analytic
calculations. While standard finite-size scaling holds for the transition in
non-zero magnetic field , an anomalous critical-point shift is found for
H=0. The increase of for H=0 is calculated for mesoscopic films,
cylindrical wires, and spherical grains of type-I and type-II materials.
Surface curvature is shown to induce a significant increase of ,
characterized by a shift inversely proportional to the
radius .Comment: 37 pages, 5 figures, accepted for PR
Nucleation and Growth of the Superconducting Phase in the Presence of a Current
We study the localized stationary solutions of the one-dimensional
time-dependent Ginzburg-Landau equations in the presence of a current. These
threshold perturbations separate undercritical perturbations which return to
the normal phase from overcritical perturbations which lead to the
superconducting phase. Careful numerical work in the small-current limit shows
that the amplitude of these solutions is exponentially small in the current; we
provide an approximate analysis which captures this behavior. As the current is
increased toward the stall current J*, the width of these solutions diverges
resulting in widely separated normal-superconducting interfaces. We map out
numerically the dependence of J* on u (a parameter characterizing the material)
and use asymptotic analysis to derive the behaviors for large u (J* ~ u^-1/4)
and small u (J -> J_c, the critical deparing current), which agree with the
numerical work in these regimes. For currents other than J* the interface
moves, and in this case we study the interface velocity as a function of u and
J. We find that the velocities are bounded both as J -> 0 and as J -> J_c,
contrary to previous claims.Comment: 13 pages, 10 figures, Revte
Late Paleocene Flora of the Northern Alaska Peninsula: The Role of Transberingian Plant Migrations and Climatic Change
For the first time, the Late Sagwon Flora is described from the upper beds of the Prince Creek Formation (Upper Paleocene) at the Sagavanirktok River (northern Alaska Peninsula). The flora is dominated by the angiosperm Tiliaephyllum brooksense Moiseeva et Herman sp. nov. and conifer Metasequoia occidentalis (Newb.) Chaney. The Late Sagwon Flora is most similar to the Danian or Danian-Selandian flora from the middle part of the Upper Tsagayan Subformation (Amur Region) and lower part of the Wuyun Formation (Heilongjiang Province, China). This similarity allows us to hypothesize that the genus Tiliaephyllum, which dominated in the Late Tsagayan Flora, migrated via the Bering Land Bridge from southern paleolatitudes of the Far East to high latitudes of the Arctic Pacific, due to the progressively warming climate of the Paleocene. Additional new angiosperm species are described from the Late Sagwon Flora: Archeampelos mullii Moiseeva et Herman sp. nov., Tiliaephyllum brooksense Moiseeva et Herman sp. nov., and Dicotylophyllum sagwonicum Moiseeva et Herman sp. nov
Wetting films on chemically heterogeneous substrates
Based on a microscopic density functional theory we investigate the
morphology of thin liquidlike wetting films adsorbed on substrates endowed with
well-defined chemical heterogeneities. As paradigmatic cases we focus on a
single chemical step and on a single stripe. In view of applications in
microfluidics the accuracy of guiding liquids by chemical microchannels is
discussed. Finally we give a general prescription of how to investigate
theoretically the wetting properties of substrates with arbitrary chemical
structures.Comment: 56 pages, RevTeX, 20 Figure
Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR
Erratum in : Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. [Cell. 2019]International audienceInnate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-likereceptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatorysignals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect theimmune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DC)are exacerbated by a high fatty acid (FA) metabolic environment. FA suppress the TLR-inducedhexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changesenhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded proteinresponse (UPR) leading to a distinct transcriptomic signature, with IL-23 as hallmark. Interestingly,chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response.Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innateimmunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR
- âŠ