15 research outputs found

    Metamaterial Plasmonic Tweezers for Enhanced Nanoparticle Trapping

    Get PDF
    Optical tweezers have gained significant attention in many research fields as the only technique that provides immobilisation (trapping) and manipulation of micro- and nanoparticles. Moving from the conventional, free-space configuration to plasmonic structures using strong near-field forces, resulted in many more avenues towards the exploration of the nanoworld. However, with that, many challenges also appeared, as is usually the case when pushing the boundaries of the unknown. In this thesis, we focus on how to achieve an efficient trap for particles of just a few nanometres in size, such as colloidal quantum dots and gold nanoparticles. For this purpose, we investigate a novel metamaterial plasmonic design that exhibits a sharp plasmonic Fano resonance feature, which is very sensitive to refractive index changes of its environment. Three main projects are presented. In the first one, we work on the optimisation of the basic characteristics of the metamaterial, to ensure it has the desired plasmonic resonance and exhibits strong optical forces. We test its efficiency by trapping 20 nm polystyrene particles, yielding very high trap stiffness values. We also perform sequential trapping, revealing the ability of the structure for on-demand, particle nanopositioning. In the second project, we study the mechanism of self-induced back-action trapping. Under certain conditions, the particle can contribute to its own trap through an optomechanical coupling of its motion with the intracavity light intensity of the plasmonic nanocavity. For this experiment, gold nanoparticles were used and successfully trapped with extremely low laser intensities. Finally, the third project addresses the trapping of semiconductor quantum dots and custom-synthesised organic molecule nanoparticles that can be tuned to the desired size and emission wavelength ac-cording to the expected application. Photoluminescence measurements are also performed and an overall evaluation of the applicability and potential uses of these nanoparticles is discussed.Okinawa Institute of Science and Technology Graduate Universit

    From far-field to near-field micro- and nanoparticle optical trapping

    Get PDF
    Optical tweezers is a very well-established technique that has developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Although the nature of light enforces restrictions on the minimum particle size that can be efficiently trapped due to Abbe's diffraction limit, scientists have managed to overcome this problem by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it relaxes the trapping requirements compared to conventional optical tweezers. In this work, we review the fundamentals of conventional optical tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of the idea by Arthur Ashkin until recent improvements and applications, we present some of the challenges faced by these techniques as well as their future perspectives. Emphasis in this review is on the successive improvements of the techniques and the innovative aspects that have been devised to overcome some of the main challenges.Comment: 15 pages, 10 figure

    Enabling self-induced back-action trapping of gold nanoparticles in metamaterial plasmonic tweezers

    Full text link
    The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic tweezers systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trapping stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles for on-resonant and off-resonant conditions with experimental trap stiffnesses as high as 4.18 fN/(nm*mW/μ\mum2^2 and very low excitation intensity of about 1 mW/μ\mum2^2. Simulations reveal the existence of two different groups of hotspots per unit cell of the metamaterial array. The two hotspots exhibit tunable trap stiffnesses and this is a unique feature of these systems. It can allow for sorting of particles and biological molecules based on their size, shape, and refractive index.Comment: 27 pages, 10 figure

    Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures

    Get PDF
    The manipulation of microparticles using optical forces has led to many applications in the life and physical sciences. To extend optical trapping towards the nano-regime, in this work we demonstrate trapping of single nanoparticles in arrays of plasmonic coaxial nano-apertures with various inner disk sizes and theoretically estimate the associated forces. A high normalized experimental trap stiffness of 3.50 fN nm⁻¹ mW⁻¹ μm⁻² for 20 nm polystyrene particles is observed for an optimum design of 149 nm for the nanodisk diameter at a trapping wavelength of 980 nm. Theoretical simulations are used to interpret the enhancement of the observed trap stiffness. A quick particle trapping time of less than 8 s is obtained at a concentration of 14 x 10¹¹ particles ml⁻¹ with low incident laser intensity of 0.59 mW μm⁻². This good trapping performance with fast delivery of nanoparticles to multiple trapping sites emerges from a combination of the enhanced electromagnetic near-field and spatial temperature increase. This work has applications in nanoparticle delivery and trapping with high accuracy, and bridges the gap between optical manipulation and nanofluidics

    Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency

    Get PDF
    The development of scalable deposition methods for stable perovskite layers is a prerequisite for the development and future commercialization of perovskite solar modules. However, there are two major challenges, i.e., scalability and stability. In sharp contrast to a previous report, here we develop a fully vapor based scalable hybrid chemical vapor deposition (HCVD) process for depositing Cs-formamidinium (FA) mixed cation perovskite films, which alleviates the problem encountered when using conventional solution coating of mainly methylammonium lead iodide (MAPbI3). Using our HCVD method, we fabricate perovskite films of Cs0.1FA0.9PbI2.9Br0.1 with enhanced thermal and phase stabilities, by the intimate incorporation of Cs into FA based perovskite films. In addition, the SnO2 electron transport layer (ETL) (prepared by sputter deposition) is found to be damaged during the HCVD process. In combination with precise interface engineering of the SnO2 ETL, we demonstrate relatively large area solar modules with efficiency approaching 10% and with a designated area of 91.8 cm2 fabricated on 10 cm × 10 cm substrates (14 cells in series). On the basis of our preliminary operational stability tests on encapsulated perovskite solar modules, we extrapolated that the T80 lifetime is approximately 500 h (under the light illumination of 1 sun and 25 °C)

    Nano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteries

    Get PDF
    Nanomaterials undergoing cyclic swelling-deswelling benefit from inner void spaces that help accommodate significant volumetric changes. Such flexibility, however, typically comes at a price of reduced mechanical stability, which leads to component deterioration and, eventually, failure. Here, we identify an optimised building block for silicon-based lithium-ion battery (LIB) anodes, fabricate it with a ligand- and effluent-free cluster beam deposition method, and investigate its robustness by atomistic computer simulations. A columnar amorphous-silicon film was grown on a tantalum-nanoparticle scaffold due to its shadowing effect. PeakForce quantitative nanomechanical mapping revealed a critical change in mechanical behaviour when columns touched forming a vaulted structure. The resulting maximisation of measured elastic modulus (similar to 120GPa) is ascribed to arch action, a well-known civil engineering concept. The vaulted nanostructure displays a sealed surface resistant to deformation that results in reduced electrode-electrolyte interface and increased Coulombic efficiency. More importantly, its vertical repetition in a double-layered aqueduct-like structure improves both the capacity retention and Coulombic efficiency of the LIB. Lithiation of anodes during cycling of lithium-ion batteries generates stresses that reduce operation lifetime. Here, a composite silicon-based anode with a nanoscale vaulted architecture shows high mechanical stability and electrochemical performance in a lithium-ion battery.Peer reviewe

    From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping

    No full text
    Optical tweezers are a very well-established technique that have developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Although the nature of light enforces restrictions on the minimum particle size that can be efficiently trapped due to Abbe’s diffraction limit, scientists have managed to overcome this problem by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it relaxes the trapping requirements compared to conventional optical tweezers although problems may arise due to thermal heating of the metallic nanostructures. This could hinder efficient trapping and damage the trapped object. In this work, we review the fundamentals of conventional optical tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of the idea by Arthur Ashkin until recent improvements and applications, we present the principles of these techniques along with their limitations. Emphasis in this review is on the successive improvements of the techniques and the innovative aspects that have been devised to overcome some of the main challenges
    corecore