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Abstract: Optical tweezers are a very well-established technique that have developed into a standard
tool for trapping and manipulating micron and submicron particles with great success in the last
decades. Although the nature of light enforces restrictions on the minimum particle size that can be
efficiently trapped due to Abbe’s diffraction limit, scientists have managed to overcome this problem
by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be
fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer
from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it
relaxes the trapping requirements compared to conventional optical tweezers although problems
may arise due to thermal heating of the metallic nanostructures. This could hinder efficient trapping
and damage the trapped object. In this work, we review the fundamentals of conventional optical
tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of
the idea by Arthur Ashkin until recent improvements and applications, we present the principles
of these techniques along with their limitations. Emphasis in this review is on the successive
improvements of the techniques and the innovative aspects that have been devised to overcome some
of the main challenges.

Keywords: optical tweezers; optical forces; particle trapping; plasmonics; self-induced back action
effect; surface plasmons

1. Introduction

Imagine reducing the size of our fingers by one million times and being able to use them to probe
the nanoworld. Now, it is easy to imagine that we could easily capture things of a similar size, such as
dielectric nanoparticles, quantum dots with a DNA strand attached to them, proteins and viruses.
More than that, we could have the ability to move them in space. In reality, although we cannot modify
our fingers in this way, we have found a way to manipulate objects of that size using light!

For more than four centuries, it has been known that light can exert forces on objects [1].
Much later, in 1873, using Maxwell’s electromagnetic theory [2], the transfer of momentum from
light to illuminated objects was described, resulting in the so-called radiation pressure that leads to
objects moving along the direction of light propagation [3]. There were many experiments to follow
that confirmed Poynting’s calculations, but all of them concluded with the fact that these optical forces
were so small that it was difficult even to measure them, let alone utilise them in some meaningful
application. In 1936, Beth experimentally demonstrated the transfer of angular momentum from
light to a crystal plate and studied the change of polarisation of the beam due to the interaction with
matter [4]. However, the birth of lasers in 1960 [5,6] was really what opened new possibilities and
topics for research in the field of light-matter interactions.
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As the use of lasers became more and more popular in science exploration, Arthur Ashkin, in 1970,
experimentally demonstrated how optical radiation forces exerted by lasers can be used to change
the motion of dielectric microparticles. He succeeded in trapping them by creating a stable optical
potential well [7], thus establishing the new research topic that is known today as optical tweezers.

As always, nature follows its own rules, and soon the primary challenge for optical tweezers
became apparent, i.e., the diffraction limit. It seemed to be impossible to focus light beyond the
constraints imposed by this limit and, consequently, this created a restriction on the smallest size
of particle that could be trapped. Subsequently, the next step in the field’s progress was to use
surface plasmons excited on metallic nanostructures to confine light into highly intense optical fields,
thus enabling superior trapping performance [8]. The first experimental demonstration of trapping
using plasmonic structures was reported by Righini et al. [9] in 2007 and, since then, the field of
plasmonic optical tweezers started developing rapidly and opened further scientific avenues for
investigation. Numerous implementations arose from the research on optical forces and plasmonics
and are discussed in further detail elsewhere [10,11]

2. Conventional Optical Tweezers

The Nobel Prize in Physics 2018 was awarded (50%) to Arthur Ashkin “for the optical tweezers and
their application to biological systems”. The whole research field started when Ashkin calculated that
“a power P = 1 W of cw (continuous wave) argon laser light at λ = 0.5145 µm focussed on a lossless dielectric
sphere of radius r = λ and density = 1 gm/cc gives a radiation pressure force Frad = 2qP/c = 6.6× 10−5 dyn,
where q, the fraction of light effectively reflected back, is assumed to be of order 0.1. The acceleration =

1.2× 108 cm/sec2 ∼= 105 times the acceleration of gravity” [7]. In SI units, this is equivalent to a radiation
pressure force Frad = 0.66 nN, leading to an acceleration of 1.2 × 106 m/s2. In the same work,
he demonstrated the first experimental approach to test his calculations on transparent, micron-sized
latex spheres in liquids and gas and found that the radiation pressure exerted on the particles from
a focussed laser beam was able to accelerate them along the direction of the beam. The measured
velocities of the accelerated particles were in very good agreement with the theoretical predictions.

Ashkin next demonstrated trapping of particles using one laser beam and the wall of a glass
cell, as well as using two counter-propagating beams with the same characteristics [7]. A few years
later, Ashkin et al. [12], reported trapping of dielectric particles (10 µm–25 nm) using a single beam by
focussing argon-laser light at 514.5 nm through a high numerical aperture objective lens (NA = 1.25).
This achievement is attributed to the existence of a force additional to that caused by the radiation
pressure (from now on called the scattering force) which originates from the axial beam intensity
gradient. It then becomes apparent that, whereas the scattering force depends on the optical intensity
and has the direction of the incident beam, the gradient force depends on the intensity gradient and is
directed along it from low to high intensities (for the case of particles with higher refractive index than
the surrounding medium). Stable optical trapping can occur when these two forces are balanced.

The theoretical mechanism that explains this observation, depends on the relative size of the
particle (radius, r) with respect to the wavelength of the laser light (λ). For r � λ, ray optics can
be used and the reflection and transmission of the beam from the particle can give rise to the two
forces. For r � λ, Rayleigh scattering is assumed and the particle is treated like a dipole in an external
electromagnetic field. The two regimes are analysed below, where we assume spherical dielectric
particles with refractive index higher than that of the surrounding environment. For the calculation
of optical forces acting on particles with arbitrary shapes, the reader is encouraged to study other
works [13,14]. Finally, there is an intermediate regime where the particle size is of the same order
of magnitude as the wavelength. In this case, the approximations mentioned above cannot be used
and, in order to evaluate the forces arising, Maxwell’s stress tensor, which relates the interactions
between electromagnetic forces and mechanical momentum [10,15], should be used. To handle this
complicated mathematical analysis different algorithms have been established, such as the transition
matrix (T-matrix) method [16] and the discrete dipole approximation (DDA) [17]. Many works
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have followed various approaches for the calculation of the forces in this regime [18–23]. Due to its
complexity this regime is not analysed here.

2.1. Ray Optics Approximation (r � λ)

We assume spherical particles of higher refractive index than their surrounding environment,
being in a liquid solution and undergoing Brownian motion. As soon as a particle, randomly moving,
enters the light beam, a small fraction of light is reflected off the surface of the particle and most of it is
refracted on passing through the particle (assuming no absorption). Light carries momentum and, since
refraction is a light-matter interaction phenomenon, there is a momentum transfer from the photons
to the particle. As known from geometrical optics, the path of the light changes due to refraction,
resulting in a change in the momentum (~p) of the photons, over time (t). Obviously, from conservation
of momentum for the light-particle system, there should also be a change in the momentum of the
particle and this creates a force (~F) acting on the particle, ~F = d~p/dt. To get a first insight, we can
initially assume that there is no reflection and the entire beam is refracted inside the sphere as shown
in Figure 1a. According to the work done in [24,25], the magnitude of the force on the particle due to
the momentum change of a single ray is given by

F =
nm

c
P, (1)

where nm is the refractive index of the particle, c is the speed of light and P is the power of the incident
ray. For a Gaussian beam profile, there is more power towards the centre of the beam than in the
tail regions, thus the resultant force from ray 2 (F2) is stronger than that from ray 1 (F1), as shown in
Figure 1a.

Figure 1. The scattering and gradient forces acting on a dielectric particle in the ray optics regime,
arising from a free space (a) and a tightly focussed (b) Gaussian beam. In the subplot (a) the forces
push the particle towards the centre of the beam and along the direction of propagation, whereas in
(b) the forces drag the particle towards the focus of the beam. The upper panel in subplot (a) shows
the proposed geometry for calculating the forces using Fresnel coefficients. The bottom panel shows
trapping using counter-propagating beams with the same characteristics so that the scattering forces
cancel each other to achieve a stable trap. Figure reproduced with permission from [26].

The forces acting on the particle can be reduced into a longitudinal component parallel to the
incident ray and a transversal one perpendicular to it. As shown in the figure, the longitudinal
components of the two forces add up to create a scattering force, whereas the transversal components
subtract leading to a gradient force towards the beam’s regions of higher intensity. Thence, the particle
moves towards the centre of the Gaussian beam and along its axis. Note that, for particles with a lower
refractive index than the surroundings, the forces reverse and the particle moves away from the centre
of the beam.
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If we want to describe the process in a more accurate and mathematically rigorous way, we have
to take into account multiple internal reflections and refractions of the rays, as shown in the top
inset of Figures 1a and 2. The forces exerted on a particle were first calculated by Roosen [27]
by considering Fresnel’s reflection (R) and transmission (T) coefficients. For a detailed derivation
see [14,28]. The resulting forces are:

Fscat = FZ =
N

∑
i=1

nm · Pi
c

[
1 + Ri cos(2θi)−

T2
i [cos(2θi − 2ri) + Ri cos(2θi)]

1 + R2
i + 2Ri cos(2ri)

]
(2)

and

Fgrad = FY =
N

∑
i=1

nm · Pi
c

[
Ri sin(2θi)−

T2
i [sin(2θi − 2ri) + Ri sin(2θi)]

1 + R2
i + 2Ri cos(2ri)

]
, (3)

where the sum is over all N rays with power Pi each, interacting with the particle, and θi and ri are the
incidence and refraction angles, respectively, as shown in Figure 2. The terms in the square brackets
are the dimensionless trapping efficiencies, Qscat and Qgrad, and account for the efficiency of momentum
transfer from the light ray to the particle. We also define the total trapping efficiency of the ray as
Qray =

√
Q2

scat + Q2
grad. The Fresnel coefficients, R and T, depend on the polarisation of the incident

rays. Therefore, the trapping efficiencies and the trapping forces will also be polarisation dependent.

Figure 2. Calculation of the scattering and gradient forces acting on a Mie particle from a single
ray, by taking into account geometrical optics and multiple reflection and transmission events, using
Fresnel coefficients R and T.

In Figure 3, the trapping efficiencies as a function of the ray’s incident angle are plotted for
circularly polarised light hitting a glass (nm = 1.6) sphere in water (ns = 1.33). We see that, for incident
angles smaller than 70◦, the gradient force dominates, but as the incident angle increases, the scattering
force becomes significant. This means that, for unfocussed or slightly focussed beams that have a small
convergence angle, inevitably most of the rays (taking into account the Gaussian beam profile) will
hit the surface of the particle with a large incident angle, θ, as shown in Figure 1a, thereby pushing
the particle away. On the contrary, beams that are tightly focussed under a high NA objective lens,
cause the rays to hit the surface of the particle with small incident angles (Figure 1b). As a result,
the gradient forces strongly dominate over the scattering ones and a stable trap can be established,
as Ashkin et al. experimentally demonstrated [12]. Note that, in this case, the longitudinal component
of the resulting forces always points towards a location slightly downstream of the beam’s focal point,
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leading to particle trapping close to, but not exactly at, the focal point. Ashkin’s calculations [28]
confirmed that, in order to create strong, single-beam traps, high convergence angles are required.
For convergence angles smaller than ∼ 30◦, single-beam trapping is impossible. Instead, we can
use two counter-propagating beams with the same characteristics, as shown in the bottom inset of
Figure 1a, to cancel out the scattering forces [7].

Figure 3. The calculated Q factors for the gradient, scattering, and total trapping efficiencies for a single
circularly polarised ray acting on a spherical dielectric particle of effective refractive index nm,e f f = 1.2,
as a function of the incident angle. Figure reproduced with permission from [28].

2.2. Dipole Approximation (r � λ)

In this case, the electric field that the particle experiences is approximately spatially constant over
its dimensions, and assuming a dielectric particle, we can treat the entire particle as a collection of
induced point dipoles in a homogeneous electric field. Early theoretical work on radiation forces and
scattering effects for subwavelength dielectric media can be found in [24,29]. Based on this work and
the electromagnetic theory for electromagnetically induced dipoles, we can describe the optical forces
and the trapping potential that arises.

The situation for a homogeneous particle can be briefly described as follows (the analysis
presented is taken from [14]): The oscillating electromagnetic field from the laser beam causes each of
the particle’s point dipoles to have a dipole moment

~p = α0~E, (4)

where ~E is the electric field and α0 is the polarizability of the particle, given by the
Clausius-Mossotti relation

α0 = 4πr3ε0
εr − 1
εr + 2

. (5)

Here, r is the particle’s radius, ε0 is the vacuum dielectric permittivity, and εr is the particle’s
dielectric permittivity. The external field causes the dipoles to oscillate and, thus, radiate. Now, we
have to take into account the dipole’s interaction not only with the external electromagnetic field,
but with its own induced scattered field as well. For that reason, the effective polarizability, αd, is
introduced as a radiative reaction correction to the intrinsic polarizability of the particle [14] and it is
given by
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αd =
α0

1− εr−1
εr+2 [(k0r)2 + 2i

3 (k0r)3]
, (6)

with k0 being the vacuum wavenumber and i =
√
−1.

Similarly, in order to calculate the forces acting on all the dipoles, we have to take into account
the Lorentz force from the external field and the radiation forces arising from the dipoles themselves.
It is also convenient to calculate the time-averaged total force since it is the one that is observable
(electromagnetic fields oscillate on the order of ∼ 1015 Hz which is very fast). Rigorous calculations
have been done in [14,26,30]. According to these works, the resulting, time-averaged force acting on
a dielectric particle is given by

~F =
1
4

α′d∇|~E|
2 +

σext,d

c
~S +

cε0σext,d

4ωi
∇× (~E× ~E∗), (7)

where α′d is the real part of the effective polarizability, ω is the angular frequency, σext,d is the
extinction cross-section, i.e., the active area of the particle that causes part of the energy of the
incident electromagnetic wave to be extinguished due to scattering and absorption from the particle,
σext,d = k0

ε0
Im(αd). It, therefore, indicates the rate of energy loss from the incident wave. ~S is the

time-averaged real part of the Poynting vector of the incident wave

~S =
1
2

Re{~E× ~H∗}. (8)

In Equation (7), we see that the force acting on a particle consists of three terms; the third term is
called the spin-curl force and is related to polarisation gradients in the electromagnetic field that arise
when the polarisation is inhomogeneous (e.g., under conditions of tight focussing) [31,32]. The second
term is the scattering force pointing in the direction of the Poynting vector, ~S, and arises from absorption
and scattering phenomena that cause momentum transfer from the field to the particle. The first term
is the gradient force and depends on the particle’s polarizability and the intensity gradient of the
electric field. Since I = 1

2 cε0|~E|2, the gradient force can be written as

~Fgrad(~rd) =
1
2

α′d
cε0
∇I(~rd). (9)

From Equation (9) we see that, for particles with positive polarizability (i.e., a higher refractive
index than its environment) this force acts towards the direction of the field’s higher intensity,
i.e., the focal point. At the focal point of a Gaussian beam with a beam waist, w0, and radial coordinate,
ρ, we can approximate the intensity distribution as

I(ρ) = I0e−2ρ2/w2
0 , (10)

and, for small radial displacements, we can Taylor expand to get

I(ρ) ≈ I0

(
1− 2

ρ2

w2
0

)
, (11)

and substitute into Equation (9). Thence,

~Fgrad(~rd) =
1
2

α′d
cε0

∂

∂ρ

[
I0

(
1− 2

ρ2

w2
0

)]
ρ̂ = −2

α′d
cε0

I0

w2
0

ρρ̂. (12)

By comparing with the restoring force of the classical harmonic oscillator, ~F(x) = −κxx̂, we get
the trapping constant
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κρ = 2
α′d
cε0

I0

w2
0

, (13)

and, by integrating Equation (12), we get the trapping potential

U(ρ) =
1
2

κρρ2, (14)

which is plotted in Figure 4. Note that similar analysis can be used in order to obtain the potential and
the trapping constant along the axial direction.

We now consider the main limitation of conventional optical tweezers. Ashkin et al. [12] did
some basic calculations and showed that, in order to create a stable optical trap, resisting the Brownian
motion of particles in a liquid environment, a potential well as deep as 10kBT is required, where T is the
temperature in Kelvin. Although in some cases this is easy to achieve, for subwavelength particles, as
they become smaller in size, the gradient force scales down very quickly, making it impossible to satisfy
this requirement. By replacing Equation (5) into (6) and simplifying the complex term, we see that
α′d ∝ r3, which means that, when the radius of the particle decreases by a factor of 10, the polarizability
of the particle and, consequently, the gradient force (Equation (9)) decrease by a factor of 1000. The
trapping potential is no longer deep and tight enough to hold the particle (Figure 4) and the trap is
inefficient.

Figure 4. Graphical representation of the trapping potential wells for a polystyrene bead of radius r
and 0.8r. A small decrease in the particle’s size creates a significantly shallower and broader trapping
potential well, which offers much weaker confinement and, thus, the particle has a higher probability
to escape from the trap.

Equations (5), (6) and (13) can be used to calculate the change in the trapping stiffness if the
particle has a radius of 0.8r:

∆κ =
κ0.8r − κr

κr
=

α′d0.8r − α′dr
α′dr

. (15)

Calculations show that for r = 100 nm, there is a 53% decrease in the trapping stiffness when
the particle’s radius decreases to 0.8r. From Equation (13) we see that, in order to compensate for this
effect and increase the trapping constant and the gradient force, we can either increase the intensity of
the incident field (I0) or focus tighter (w0). However, even though in some cases it is experimentally
possible to increase the intensity of the field by a factor of 1,000, the heat accumulation will be very
large and could eventually destroy the particle, in particular if it is a biological sample. On the other
hand, the diffraction limit allows for focussing of the beam to a diameter of approximately half of its
wavelength, thus creating a certain minimum value for w0 (see Equation (13)). Additionally, as the
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particle becomes smaller, the viscous drag reduces and the particle’s Brownian motion increases and
escape from the trap is more likely [11].

All the above highlighted issues contribute to a number of limitations for the use of conventional
optical tweezers in particle manipulation. As a result, an alternative approach was established that
relies on surface plasmons and was based on the observations of moving particles in evanescent fields.

3. Plasmonic Optical Tweezers

Recent advances in the fields of optics and nano-optics have helped to overcome the diffraction
limit problem by using evanescent fields instead of propagating ones; these have the intrinsic property
of confinement beyond the diffraction limit. A detailed analysis can be found in [33,34]. The current
trend is to use metallic nanostructures (see [35] for a recent review on different platforms) in which
surface plasmons can be excited at resonant frequencies and that concentrate the electric field to create
highly intense fields, thereby significantly increasing the trapping potential depth that a nanoparticle
may experience.

In 1992, Kawata et al. demonstrated the motion of microparticles under illumination from
evanescent fields [36] and they were soon followed by Prieve et al. [37]. Some years later, in 1997,
Novotny et al. theoretically proposed and calculated optical trapping at the nanoscale, using enhanced
evanescent fields from a laser-illuminated metallic nanotip [8]. Okamoto et al., at around the same
time, did similar work, but used a metallic nano-aperture instead of a tip [38]. Figure 5 shows their
proposed geometrical model. Analytical work on the calculation of forces acting on a dielectric sphere
from an evanescent field can also be found in [39].

Figure 5. The geometrical model, studied by Okamoto et al., for subwavelength particle trapping,
utilising the evanescent field near a metallic nano-aperture. This is the most commonly studied and
reported geometry due to its simplicity to fabricate using the focussed ion beam (FIB) milling technique.
Figure reproduced with permission from [38].

The advantage of using this kind of configuration comes from the fact that the incident field
no longer directly creates the trapping potential, but rather excites the surface plasmons (SP) on
the metal/dielectric interface. The SPs, in turn, create the strong evanescent field that provides the
trapping potential. The main benefit of trapping using an evanescent field is that, by nature, it has
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a very high field gradient, thus exerting a large trapping force (see Equation (9)) with no need to
increase the incident intensity, thereby leading to a reduction of radiation damage to the sample.
In other words, superior trapping conditions can be achieved with much lower illumination power
compared to conventional optical tweezers.

It was then just a matter of time for plasmonic optical tweezers to be realised. In 2007, Righini et al.,
using a geometry of total internal reflection similar to the one shown in Figure 6a, and a pattern
consisting of 4.8 µm-diameter gold discs fabricated on glass, performed multiple trapping of 4.88 µm
polystyrene colloids [9]. Note that the laser beam was unfocussed, with a waist of about 100 µm and
the intensity was more than 10 times lower than that required for conventional optical tweezers with
similar characteristics. Theoretical work had been done earlier in order to study the forces arising
in such a configuration [40]. Also, in earlier experimental work, the authors used a photonic force
microscope to measure the plasmon radiation forces acting on polystyrene beads at the localised
surface plasmon resonance. They reported forces 40 times stronger than those obtained in the absence
of SP excitation [41].

Figure 6. (a) Schematic of the Kretschmann configuration [42,43] used to excite the surface plasmon
polaritons (SPP). Light is coupled into SPPs under total internal reflection in order to compensate
for the light momentum mismatch. The angle of incidence, θ, controls both the scattering and the
gradient forces, allowing for tuning of the total trapping force. (b) Excitation of the localised surface
plasmons (LSP) can happen under direct illumination of the metallic nanostuctures. The geometrical
characteristics of the nanostructures on the metallic thin film define the resonance frequency and
the forces that arise from the plasmonic field. Inset shows the exponential decay of the evanescent
plasmonic field from the surface of the material.

It is important to mention the two distinct types of surface plasmons. Surface plasmon polaritons
(SPP) are propagating electromagnetic surface waves that appear at the metal/dielectric interface
due to the motion of the metal’s free electrons driven by the incident electromagnetic field. They are
evanescent modes and, thus, they produce localised fields with a high intensity decaying exponentially
away from the metal surface. Due to the very large intensity gradient, they exert strong gradient forces
on the trapped particles (see Equation (9)), thereby producing stable traps. However, because SPPs
are pure evanescent modes, direct coupling to propagating light is not possible and, in order to excite
them, a different geometrical approach is required. The most common experimental method relies
on the Kretschmann configuration [42,43], which is shown in Figure 6a. Light is coupled into SPPs
under total internal reflection in order to compensate for the light momentum mismatch. The crucial
parameter in this configuration is the angle of incidence, θ, which controls both the scattering and the
gradient force, allowing for tuning of the total trapping force.
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In contrast, localised surface plasmons (LSP) are related to the bound electrons that are present
near to nano-apertures or nanoparticles much smaller than the wavelength of the electromagnetic
field. Bound electrons are susceptible to a damping oscillation due to the nucleus attraction and,
as a result, they have a characteristic resonance frequency, unlike SPPs that can be excited over
a wide range of frequencies. The benefits of LSPs are that they can directly couple to propagating
light and their resonance frequency can be tuned by changing the size and the shape of the
nano-aperture/nanoparticle (Figure 6b). In a theoretical work done on LSPs, the dramatic dependence
of the strength of the excited evanescent field on the frequency of the incident electromagnetic field
was presented [40]. Detailed mathematical analysis on the excitation of surface plasmons and the
forces arising can be found in Ref. [14,44].

To date, many different configurations have been reported using SPs for efficient trapping of
subwavelength particles, such as plasmonic nanodots [45], nano-antennas [46], nanocavities [47]
and nano-apertures of different shapes and sizes [48,49], relying on very low incident power.
Note that, in these cases, rigorous calculations need to be done beforehand in order to determine
crucial parameters such as resonance wavelength and polarisation in compliance with the plasmonic
field excitation requirements. Additionally, the fabrication of such nanostructures can also be
a challenging task. The most popular techniques to fabricate structures of these sizes is focussed
ion beam (FIB) milling and electron beam lithography (EBL), with a resolution of about 10 nm.
With these considerations, the implementation of plasmonic optical tweezers can, overall, be relatively
time consuming.

The main disadvantage with plasmonic structures is the conductive nature of metals, which
is linked to heat induction and dissipation to the surrounding environment. The excitation of the
LSP leads to a frequency-dependent absorption of light by the structures in the metallic thin film,
which provides maximum absorption for maximum plasmonic field intensity. The dynamic behaviour
of the nanoparticles in and around the optical potential well can be strongly affected by the resultant
photothermal effects and various studies have investigated this phenomenon [50,51]. Methods to
suppress the heat dissipation have been proposed [52,53] and these could be applied in a synergistic
way to mitigate the problem. Additionally, controlled fabrication of the plasmonic structures could
enable researchers to take advantage of the self-induced back action effect [54] (see below).

Self-Induced Back Action Effect

The diffraction and transmission of light through a single, subwavelength-sized circular hole on
a metallic surface was first theoretically studied in 1944 by Bethe [55]. Assuming a perfectly conducting
and infinitely thin material, Bethe calculated that the transmitted light would scale as T ∝ (d/λ)4,
where d is the radius of the hole and λ the wavelength of the incident light, as illustrated in Figure 7.
In 1998, the remarkable phenomenon of the extraordinary transmission of light was experimentally
observed by Ebbesen et al. [56], when they studied the effects of the geometrical characteristics of
an array of tiny holes, drilled on different metallic films, on the transmission of light. In that work,
UV-Vis-NIR spectrophotometry of the array was performed and it revealed the existence of maxima
in the transmission intensity, see Figure 8a, with much higher values than predicted from Bethe’s
theory. These maxima could not be explained simply by diffraction theory and they were associated
with the resonant frequencies of the excited surface plasmons of the metal. A detailed theoretical
explanation of this observation was provided a few years later [57,58], where the calculated positions
of the transmission maxima were in very good agreement with the experiment, confirming that the
mechanism of extraordinary transmission was taken into account in their model (Figure 8b).
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Figure 7. (a) Diffraction and transmission of visible light through a subwavelength circular hole of
radius, d, on a perfectly conducting and infinitely thin metallic film. (b) According to Bethe’s calculation
the transmission of incident light λ scales as (d/λ)4. Figure inspired by [59].

Figure 8. (a) Experimental and (b) theoretical plots of the normalised transmittance as a function of
the incident light wavelength, for a square array of holes on a Ag thin film with thickness h =320 nm.
The diameter of the holes was d = 280 nm in the experiment and d = 240, 280, 320 nm for the
calculations and the lattice constant 750 nm. Inset in the left plot shows an SEM image of the nano-hole
lattice. Image reproduced with permission from [57].

In addition, in his theoretical work, Abajo investigated the case whereby the nano-hole is filled
with a dielectric material of high refractive index (Si). He found that the transmission cross-section at
the resonance frequency was almost three times higher than without the filling, leading to increased
transmission [58]. The increase of the refractive index at the nano-hole causes the wavelength of the
light to decrease:

n f ill =
c

c f ill
> 1⇔ n f ill =

λ

λ f ill
> 1⇔ λ f ill < λ. (16)

A consequence of this effect is that, according to Bethe’s theory, the transmission of light through
the subwavelength aperture increases, a phenomenon also known as dielectric loading. Figure 9 shows
how the wavelength shift causes a significant increase in the transmission of light T2, compared to
transmission of light T1 through a non-filled aperture.
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Figure 9. (a) The presence of a dielectric material of higher refractive index than the surroundings
causes an increase in the transmission of light through the subwavelength aperture. (b) Shift of
the transmission line due to existence of the dielectric material, leading to higher transmission T2,
compared to the transmission of light T1 in the case of non-filling. Figure inspired by [59].

As mentioned in the previous section, at around the same time, the use of plasmonics for enhanced
optical trapping had started to attract attention and, despite how promising they might seem for
trapping subwavelength particles, it became apparent that their use is limited to particles with
a minimum diameter around 100 nm due to photothermal effects [60].

It was the combination of these two different studies on plasmonics that brought the realisation
that the resonance frequency of the excited plasmonic field is very sensitive to changes of the local
refractive index. Thus, by proper engineering of the plasmonic structure, the trapped particle itself
could actively contribute to its own trapping potential in a dynamical way [61]. This plasmonic
structure - particle interaction promised high tunability of the trapping potential, which was no longer
a static. This gave rise to the self-induced back action (SIBA) effect and the first experimental trapping
utilising this effect, where polystyrene spheres of 100 and 50 nm size were successfully trapped
with incident powers as low as 0.7 and 1.9 mW, respectively [54], pushing further the boundaries of
plasmonic nanotweezers.

A comprehensive mathematical analysis of the SIBA effect has been done by Neumeier et al. [62],
for a small dielectric particle trapped in a plasmonic nanocavity. They demonstrated the additional
restoring forces that act on the particle as it tries to escape from the trap. Below, we present the basic
principle of the SIBA effect following the analysis done in [60].

The gradient force experienced by a nanosphere with radius r � λ of the incident light, is given
by Equation (9), as mentioned previously. If we assume small displacements of the particle from the
centre of the trap (|x| � λ), then according to the overdamped Langevin equation the particle’s motion
inside the trap is given by

γẋ(t) + κtotx(t) = ξ(t), (17)

where γ is the viscous damping [63], assuming that the particle exists in a liquid environment, κtot is the
stiffness of the trap, indicating how strongly the particle is confined in the trap, and ξ represents thermal
fluctuations [64]. Due to their strong interaction there is a dispersive coupling between the cavity and
the particle. Thus, the motion of the particle in the trap causes the plasmon resonance frequency of
the cavity to shift by δω0(xp), where xp indicates the frequency dependence on the particle’s position.
Then, for a cavity with mode volume, Vm, and intensity profile, f (xp), normalised to 1 for maximum
intensity, the perturbation theory for shifts much smaller than the cavity eigenfrequency, ωc, yields [65]

δω0(xp) = ωc
αd

2Vmε0
f (xp), (18)

with αd being the effective polarizability, from Equation (6). Note that the magnitude of the shift
strongly depends on the relative size of the particle and the cavity and, as expected from Equation (18),
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a decrease in the particle’s size (decrease in αd, see Equations (5) and (6)), decreases the magnitude of
the shift [66].

Now, for incident laser frequency, ω, and ∆ ≡ ω−ωc being the cavity detuning, the intracavity
intensity, I(ω), is given, on Taylor expansion, as

I(ω) = I0
(Γ/2)2

(∆− δω0)2 + (Γ/2)2 ≈ Iopt −
2δω0(xp)∆

∆2 + (Γ/2)2 Iopt + ... (19)

where Γ is the cavity linewidth and Iopt = I0
(Γ/2)2

∆2+(Γ/2)2 is the empty cavity profile.
As can been seen from Equation (19), the intensity of light inside the cavity, to a first order

approximation, is given by the term related to the intensity of the empty cavity, plus the one related to
the frequency shift caused by the presence of the particle. This second term is the one that causes the
SIBA effect and modifies the optical potential. Following Equation (19), we can also write the total
trapping stiffness, κtot, as [62]

κtot = κopt + κSIBA, (20)

where κopt is constant and depends on the cavity resonance profile and κSIBA is a function of the
particle’s displacement. According to Neumeier et al., in order to optimise κSIBA, the cavity has to be
constructed such that the back-action parameter, υ = δω0(xp)/Γ, is maximised [62]. This means that,
while the particle is trapped in the centre of the trap, the resonance shift is such that the photon flux
from the cavity is less than the maximum possible. As a consequence, when the particle moves away
from the centre of the trap, the resonance shift causes the photon flux to increase and, thus, the intensity
of the transmitted light increases. From Equation (9) an increase to the intensity leads to an increase
to the gradient force, which restores the particle back to the centre of the trap. Then, the photon flux
and the intensity decrease and, again, the particle tends to move away from the trap centre. This
kind of feedback is referred to as “optomechanical coupling” because there is a continuous response
between light and mechanical motion. The field of optomechanics in plasmonics is rather unexplored
and, to our knowledge, there is only one work that reports an optomechanical coupling constant [60].
This optomechanical coupling not only relaxes the requirements for high power trapping, but also
prevents the sample from overheating since most of the time the particle is trapped using a low
intensity. It remains open to exploration to find ways to increase the optomechanical coupling constant
and to achieve even higher particle confinement and motion transduction.

In Figure 10a, the vertical dashed line represents the excitation laser wavelength, the black
lineshape is the empty cavity mode resonance, and the orange is the shifted one due to particle
trapping. In the first case (Figure 10(ai), blue-shifted) the cavity resonance is set to be blue-detuned
from the excitation laser, such that when the particle is trapped, the resonance red-shift increases the
photon flux to the maximum value and the gradient force reaches a maximum. However, when the
particle moves away from the centre of the trap, the lineshape blue shifts towards the empty cavity
resonance and the intensity decreases. In order to increase the gradient force, the power of the laser
has to, externally, be increased, thus, it is not the most efficient scenario for trapping. In the case where
the empty mode resonance is slightly blue-detuned (Figure 10(aii), resonance), the red-shifting due to
a trapping event creates a symmetrical lineshape around the laser wavelength. As the particle tries to
escape from the trap, the resonance moves towards the empty mode value and causes an increase in the
photon flux and the light intensity of light, thus increasing the gradient force. Finally, in the case where
the empty cavity resonance is designed to be red-detuned from the excitation laser (Figure 10(aiii),
red-shifted), the trapped object further red-shifts the resonance, leading to significant reduction in
the intensity and the gradient force. In this configuration, the trapping becomes very inefficient and
an increase to the laser power is necessary to keep the particle in the trap.

The intensity required to keep the particle efficiently in the trap is less in the second case where
the SIBA effect contributes to an increase in the total trapping stiffness. This was also experimentally
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observed for the first time by Mestres et al. [60]. Figure 10b shows the experimental data that confirm
the superior trapping efficiency of a plasmonic cavity, designed to be slightly blue-detuned from
the excitation wavelength (Figure 10(aii,bii)). The remarkable effect of SIBA is now apparent and,
by proper design of the plasmonic structure, we can have a larger trapping stiffness at a lower laser
power, thereby reducing heat transfer to the specimen.

Figure 10. (a) Three different cases of the resonance profile of a plasmonic cavity (black line). In case
(i), (ii), and (iii) the cavity is designed to be blue-detuned, slightly blue-detuned and red-detuned,
respectively, from the excitation laser (vertical dashed line). The orange line represents the frequency
shift of the resonance of the cavity due to the existence of the particle near by it. In case (ii), the SIBA
effect has a positive influence on the trap and, whenever the particle tries to escape, the photon flux
(intensity) increases, which causes, increase to the gradient force. (b) Experimental measurements of the
total trapping stiffness as a function of the incident laser intensity. (b)(i) corresponds to case (a)(i), where
as the intensity decreases both the total and the empty cavity trapping stiffness decrease, making the
trap inefficient. (b)(ii) corresponds to case (a)(ii), and clearly shows that, as the laser intensity decreases,
the empty cavity trapping stiffness decreases, but the total stiffness increases due to the positive
contribution from the SIBA effect, thus achieving a stable, self-adjustable trap. Figures reproduced
from [60], under Creative Commons license: CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/.

4. Conclusions and Future Perspectives

It is interesting to see how a relatively basic idea can be transformed into a very useful technique
for manipulating matter, finally leading to the awarding of a Nobel Prize in Physics. Optical tweezers,
whether conventional or plasmonic, are now widely used in many fields of research, due to such
scientific efforts. A big advantage of optical tweezers is that they are relatively easy and inexpensive
to build or to modify according to research needs. Thus, they have found application in various
fields such as physics [67], biosciences [68–70], and chemistry [71]. In many cases, they serve as
a tool to trap or manipulate matter while simultaneously making other measurements, such as
Raman spectroscopy of biological samples [72–74]. There is also an increased interest in exploring the
area between particle trapping and atom cooling to study quantum phenomena at the mesoscopic
scale [75,76], indicating that optical tweezers may even impact the development of quantum-based
technologies. Very recently, ground state laser cooling of a subwavelength sized dielectric particle

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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trapped in an optical tweezers has been reported [77], providing a route to explore topics such as
quantum sensing using macrosystems, so it is certainly a very exciting time for further advances in
the field.

Of course, there are many open questions and challenges to overcome in order to optimise the
techniques so that they can be used to efficiently trap not only particles in the range of less than
10 nm, but also biological samples such as proteins, viruses and DNA for which the treatment as
a spherical dielectric particles is inadequate. Although not discussed here, the geometrical shape
and material of the trapped object play a significant role in the trapping conditions and, in particular
for biomaterials, heating and rapid temperature changes must be taken into consideration. One of
the biggest challenges for progress in optical trapping is the ability to fully control and manipulate
many trapped nano-objects simultaneously. While this has been achieved for micro-objects by using
modulation of the light field, it has yet to be realized in the nanoscale. We can expect to see this barrier
surmounted in the near future.
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