13 research outputs found
Identification des déterminants moléculaires impliqués dans la formation de la pochette de liaison du récepteur CXCR4 et des changements conformationnels lors de son activation
Les rĂ©cepteurs couplĂ©s aux protĂ©ines G (GPCR) constituent lâune des plus grandes familles de cibles pharmacologiques. Afin de pouvoir extraire tout leur potentiel thĂ©rapeutique, il faut dâabord comprendre et caractĂ©riser le premier Ă©vĂ©nement dans la cascade pharmacologique, câest-Ă -dire la liaison dâun ligand Ă son rĂ©cepteur. Nous nous sommes intĂ©ressĂ©s au rĂ©cepteur CXCR4, car il fait partie de la famille des rĂ©cepteurs peptidergiques qui demeure peu comprise au niveau de la structure et de leur mode de liaison. Au niveau physiologique, ce rĂ©cepteur joue un rĂŽle important pour lâhomĂ©ostasie du systĂšme immunitaire ainsi que dans certaines pathologies comme lâinfection au VIH-1 et le cancer. Nous avons dâabord caractĂ©risĂ© la pochette de liaison du rĂ©cepteur CXCR4 Ă lâaide de photoanalogues du T140, un composĂ© peptidomimĂ©tique anti-VIH. Nous avons identifiĂ© que le domaine transmembranaire 4 (TM4) est impliquĂ© dans la pochette de liaison orthostĂ©rique du rĂ©cepteur CXCR4. Nous avons aussi gĂ©nĂ©rĂ© un modĂšle par homologie de sĂ©quence de la liaison du T140 sur CXCR4. Ce modĂšle nous a permis de constater que le T140 peut lier profondĂ©ment au niveau de la pochette de liaison du CXCR4 ainsi quâau niveau des boucles extracellulaires 2 et 3. Ă lâaide de la mĂ©thode d'accessibilitĂ© des rĂ©sidus cystĂ©ines substituĂ©s (SCAM), nous avons procĂ©dĂ© Ă la substitution individuelle des rĂ©sidus du domaine TM4 en cystĂ©ine. Nous avons caractĂ©risĂ© ces mutants pour leur affinitĂ© et leur expression Ă lâaide d'Ă©tudes de radioliaison. Nous avons identifiĂ© que les rĂ©sidus Asp171[indice supĂ©rieur 4.60] et Pro170[indice supĂ©rieur 4.59] se situent face Ă la pochette de liaison du rĂ©cepteur Ă lâĂ©tat basal. Ă lâaide du mutant constitutivement actif Asn119[indice supĂ©rieur 3.35]Ser, nous avons identifiĂ© quâil y avait un mouvement rotatoire anti-horaire du domaine TM4 permettant au rĂ©sidu Ile173[indice supĂ©rieur 4.62] d'ĂȘtre accessible. Ce mouvement serait couplĂ© Ă un changement conformationnel de la boucle extracellulaire 2 permettant aux rĂ©sidus Ser178[indice supĂ©rieur 4.67] et Val177[indice supĂ©rieur 4.66] d'ĂȘtre accessibles dans un Ă©tat actif. Ces rĂ©sultats suggĂšrent que le domaine TM4 participe Ă la pochette de liaison du rĂ©cepteur CXCR4 ainsi quâaux mouvements conformationnels lors de lâactivation
Identification des déterminants moléculaires impliqués dans la formation de la pochette de liaison du récepteur CXCR4 et des changements conformationnels lors de son activation
Les rĂ©cepteurs couplĂ©s aux protĂ©ines G (GPCR) constituent lâune des plus grandes familles de cibles pharmacologiques. Afin de pouvoir extraire tout leur potentiel thĂ©rapeutique, il faut dâabord comprendre et caractĂ©riser le premier Ă©vĂ©nement dans la cascade pharmacologique, câest-Ă -dire la liaison dâun ligand Ă son rĂ©cepteur. Nous nous sommes intĂ©ressĂ©s au rĂ©cepteur CXCR4, car il fait partie de la famille des rĂ©cepteurs peptidergiques qui demeure peu comprise au niveau de la structure et de leur mode de liaison. Au niveau physiologique, ce rĂ©cepteur joue un rĂŽle important pour lâhomĂ©ostasie du systĂšme immunitaire ainsi que dans certaines pathologies comme lâinfection au VIH-1 et le cancer. Nous avons dâabord caractĂ©risĂ© la pochette de liaison du rĂ©cepteur CXCR4 Ă lâaide de photoanalogues du T140, un composĂ© peptidomimĂ©tique anti-VIH. Nous avons identifiĂ© que le domaine transmembranaire 4 (TM4) est impliquĂ© dans la pochette de liaison orthostĂ©rique du rĂ©cepteur CXCR4. Nous avons aussi gĂ©nĂ©rĂ© un modĂšle par homologie de sĂ©quence de la liaison du T140 sur CXCR4. Ce modĂšle nous a permis de constater que le T140 peut lier profondĂ©ment au niveau de la pochette de liaison du CXCR4 ainsi quâau niveau des boucles extracellulaires 2 et 3. Ă lâaide de la mĂ©thode d'accessibilitĂ© des rĂ©sidus cystĂ©ines substituĂ©s (SCAM), nous avons procĂ©dĂ© Ă la substitution individuelle des rĂ©sidus du domaine TM4 en cystĂ©ine. Nous avons caractĂ©risĂ© ces mutants pour leur affinitĂ© et leur expression Ă lâaide d'Ă©tudes de radioliaison. Nous avons identifiĂ© que les rĂ©sidus Asp171[indice supĂ©rieur 4.60] et Pro170[indice supĂ©rieur 4.59] se situent face Ă la pochette de liaison du rĂ©cepteur Ă lâĂ©tat basal. Ă lâaide du mutant constitutivement actif Asn119[indice supĂ©rieur 3.35]Ser, nous avons identifiĂ© quâil y avait un mouvement rotatoire anti-horaire du domaine TM4 permettant au rĂ©sidu Ile173[indice supĂ©rieur 4.62] d'ĂȘtre accessible. Ce mouvement serait couplĂ© Ă un changement conformationnel de la boucle extracellulaire 2 permettant aux rĂ©sidus Ser178[indice supĂ©rieur 4.67] et Val177[indice supĂ©rieur 4.66] d'ĂȘtre accessibles dans un Ă©tat actif. Ces rĂ©sultats suggĂšrent que le domaine TM4 participe Ă la pochette de liaison du rĂ©cepteur CXCR4 ainsi quâaux mouvements conformationnels lors de lâactivation
The Majority of CD45â Ter119â CD31â Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors
The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45â Ter119â CD31â (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (âŒ85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51â TNCs. Ly6D+ CD44+ CD51â TNCs phenotypically and functionally resembled CD45+ pro-B lymphoid cells, whereas Ly6Dâ CD44+ CD51â TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proerythroblasts. Upon adoptive transfer, CD44+ CD51â TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44+ CD51â TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45â hematopoietic progenitors. Bone marrow triple-negative CD45â Ter119â CD31â cells are thought to contain heterogeneous stromal cell populations. Boulais et al. show these cells are mostly hematopoietic in origin and contain previously unappreciated stromal-associated erythroid and B-lymphoid progenitor populations
The majority of CD45- Ter119- CD31- bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors
The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45(-) Ter119(-) CD31(-) (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (-85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51(-) TNCs. Ly6D(+) CD44(+) CD51(-) TNCs phenotypically and functionally resembled CD45(+) pro-B lymphoid cells, whereas Ly6D(-) CD44(+) CD51(-) TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proery-throblasts. Upon adoptive transfer, CD44(+) CD51(-) TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44(+) CD51(-) TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45(-) hematopoietic progenitors
The Majority of CD45Â Ter119Â CD31 Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors
The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45- Ter119- CD31- (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (âŒ85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51- TNCs. Ly6D+ CD44+ CD51- TNCs phenotypically and functionally resembled CD45+ pro-B lymphoid cells, whereas Ly6D- CD44+ CD51- TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proerythroblasts. Upon adoptive transfer, CD44+ CD51- TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44+ CD51- TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45- hematopoietic progenitors
Agonists for the Chemokine Receptor CXCR4
The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokineâreceptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4
StructureâActivity Relationship and Signaling of New Chimeric CXCR4 Agonists
The
CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic
antagonists/inverse agonists. We recently described high affinity
synthetic agonists for this chemokine receptor, obtained by grafting
the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric
molecules behave as agonists for CXCR4, their binding and activation
mode are unknown. The present SAR of those CXCL12-oligopeptide grafts
reveals the key determinants involved in CXCR4 activation. Position
3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy
switch. Chimeric molecules bearing aromatic residues in position 3
possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of
electron-poor aromatic rings in position 7 enhances receptor activation.
To rationalize these results, a homology model of a receptorâligand
complex was built using the published crystal structures of CXCR4.
Molecular dynamics simulations reveal further details accounting for
the observed SAR for this series
StructureâActivity Relationship and Signaling of New Chimeric CXCR4 Agonists
The
CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic
antagonists/inverse agonists. We recently described high affinity
synthetic agonists for this chemokine receptor, obtained by grafting
the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric
molecules behave as agonists for CXCR4, their binding and activation
mode are unknown. The present SAR of those CXCL12-oligopeptide grafts
reveals the key determinants involved in CXCR4 activation. Position
3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy
switch. Chimeric molecules bearing aromatic residues in position 3
possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of
electron-poor aromatic rings in position 7 enhances receptor activation.
To rationalize these results, a homology model of a receptorâligand
complex was built using the published crystal structures of CXCR4.
Molecular dynamics simulations reveal further details accounting for
the observed SAR for this series
StructureâActivity Relationship and Signaling of New Chimeric CXCR4 Agonists
The
CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic
antagonists/inverse agonists. We recently described high affinity
synthetic agonists for this chemokine receptor, obtained by grafting
the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric
molecules behave as agonists for CXCR4, their binding and activation
mode are unknown. The present SAR of those CXCL12-oligopeptide grafts
reveals the key determinants involved in CXCR4 activation. Position
3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy
switch. Chimeric molecules bearing aromatic residues in position 3
possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of
electron-poor aromatic rings in position 7 enhances receptor activation.
To rationalize these results, a homology model of a receptorâligand
complex was built using the published crystal structures of CXCR4.
Molecular dynamics simulations reveal further details accounting for
the observed SAR for this series