13 research outputs found

    Identification des déterminants moléculaires impliqués dans la formation de la pochette de liaison du récepteur CXCR4 et des changements conformationnels lors de son activation

    Get PDF
    Les rĂ©cepteurs couplĂ©s aux protĂ©ines G (GPCR) constituent l’une des plus grandes familles de cibles pharmacologiques. Afin de pouvoir extraire tout leur potentiel thĂ©rapeutique, il faut d’abord comprendre et caractĂ©riser le premier Ă©vĂ©nement dans la cascade pharmacologique, c’est-Ă -dire la liaison d’un ligand Ă  son rĂ©cepteur. Nous nous sommes intĂ©ressĂ©s au rĂ©cepteur CXCR4, car il fait partie de la famille des rĂ©cepteurs peptidergiques qui demeure peu comprise au niveau de la structure et de leur mode de liaison. Au niveau physiologique, ce rĂ©cepteur joue un rĂŽle important pour l’homĂ©ostasie du systĂšme immunitaire ainsi que dans certaines pathologies comme l’infection au VIH-1 et le cancer. Nous avons d’abord caractĂ©risĂ© la pochette de liaison du rĂ©cepteur CXCR4 Ă  l’aide de photoanalogues du T140, un composĂ© peptidomimĂ©tique anti-VIH. Nous avons identifiĂ© que le domaine transmembranaire 4 (TM4) est impliquĂ© dans la pochette de liaison orthostĂ©rique du rĂ©cepteur CXCR4. Nous avons aussi gĂ©nĂ©rĂ© un modĂšle par homologie de sĂ©quence de la liaison du T140 sur CXCR4. Ce modĂšle nous a permis de constater que le T140 peut lier profondĂ©ment au niveau de la pochette de liaison du CXCR4 ainsi qu’au niveau des boucles extracellulaires 2 et 3. À l’aide de la mĂ©thode d'accessibilitĂ© des rĂ©sidus cystĂ©ines substituĂ©s (SCAM), nous avons procĂ©dĂ© Ă  la substitution individuelle des rĂ©sidus du domaine TM4 en cystĂ©ine. Nous avons caractĂ©risĂ© ces mutants pour leur affinitĂ© et leur expression Ă  l’aide d'Ă©tudes de radioliaison. Nous avons identifiĂ© que les rĂ©sidus Asp171[indice supĂ©rieur 4.60] et Pro170[indice supĂ©rieur 4.59] se situent face Ă  la pochette de liaison du rĂ©cepteur Ă  l’état basal. À l’aide du mutant constitutivement actif Asn119[indice supĂ©rieur 3.35]Ser, nous avons identifiĂ© qu’il y avait un mouvement rotatoire anti-horaire du domaine TM4 permettant au rĂ©sidu Ile173[indice supĂ©rieur 4.62] d'ĂȘtre accessible. Ce mouvement serait couplĂ© Ă  un changement conformationnel de la boucle extracellulaire 2 permettant aux rĂ©sidus Ser178[indice supĂ©rieur 4.67] et Val177[indice supĂ©rieur 4.66] d'ĂȘtre accessibles dans un Ă©tat actif. Ces rĂ©sultats suggĂšrent que le domaine TM4 participe Ă  la pochette de liaison du rĂ©cepteur CXCR4 ainsi qu’aux mouvements conformationnels lors de l’activation

    Identification des déterminants moléculaires impliqués dans la formation de la pochette de liaison du récepteur CXCR4 et des changements conformationnels lors de son activation

    No full text
    Les rĂ©cepteurs couplĂ©s aux protĂ©ines G (GPCR) constituent l’une des plus grandes familles de cibles pharmacologiques. Afin de pouvoir extraire tout leur potentiel thĂ©rapeutique, il faut d’abord comprendre et caractĂ©riser le premier Ă©vĂ©nement dans la cascade pharmacologique, c’est-Ă -dire la liaison d’un ligand Ă  son rĂ©cepteur. Nous nous sommes intĂ©ressĂ©s au rĂ©cepteur CXCR4, car il fait partie de la famille des rĂ©cepteurs peptidergiques qui demeure peu comprise au niveau de la structure et de leur mode de liaison. Au niveau physiologique, ce rĂ©cepteur joue un rĂŽle important pour l’homĂ©ostasie du systĂšme immunitaire ainsi que dans certaines pathologies comme l’infection au VIH-1 et le cancer. Nous avons d’abord caractĂ©risĂ© la pochette de liaison du rĂ©cepteur CXCR4 Ă  l’aide de photoanalogues du T140, un composĂ© peptidomimĂ©tique anti-VIH. Nous avons identifiĂ© que le domaine transmembranaire 4 (TM4) est impliquĂ© dans la pochette de liaison orthostĂ©rique du rĂ©cepteur CXCR4. Nous avons aussi gĂ©nĂ©rĂ© un modĂšle par homologie de sĂ©quence de la liaison du T140 sur CXCR4. Ce modĂšle nous a permis de constater que le T140 peut lier profondĂ©ment au niveau de la pochette de liaison du CXCR4 ainsi qu’au niveau des boucles extracellulaires 2 et 3. À l’aide de la mĂ©thode d'accessibilitĂ© des rĂ©sidus cystĂ©ines substituĂ©s (SCAM), nous avons procĂ©dĂ© Ă  la substitution individuelle des rĂ©sidus du domaine TM4 en cystĂ©ine. Nous avons caractĂ©risĂ© ces mutants pour leur affinitĂ© et leur expression Ă  l’aide d'Ă©tudes de radioliaison. Nous avons identifiĂ© que les rĂ©sidus Asp171[indice supĂ©rieur 4.60] et Pro170[indice supĂ©rieur 4.59] se situent face Ă  la pochette de liaison du rĂ©cepteur Ă  l’état basal. À l’aide du mutant constitutivement actif Asn119[indice supĂ©rieur 3.35]Ser, nous avons identifiĂ© qu’il y avait un mouvement rotatoire anti-horaire du domaine TM4 permettant au rĂ©sidu Ile173[indice supĂ©rieur 4.62] d'ĂȘtre accessible. Ce mouvement serait couplĂ© Ă  un changement conformationnel de la boucle extracellulaire 2 permettant aux rĂ©sidus Ser178[indice supĂ©rieur 4.67] et Val177[indice supĂ©rieur 4.66] d'ĂȘtre accessibles dans un Ă©tat actif. Ces rĂ©sultats suggĂšrent que le domaine TM4 participe Ă  la pochette de liaison du rĂ©cepteur CXCR4 ainsi qu’aux mouvements conformationnels lors de l’activation

    The Majority of CD45– Ter119– CD31– Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors

    No full text
    The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45– Ter119– CD31– (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (∌85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51– TNCs. Ly6D+ CD44+ CD51– TNCs phenotypically and functionally resembled CD45+ pro-B lymphoid cells, whereas Ly6D– CD44+ CD51– TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proerythroblasts. Upon adoptive transfer, CD44+ CD51– TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44+ CD51– TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45– hematopoietic progenitors. Bone marrow triple-negative CD45– Ter119– CD31– cells are thought to contain heterogeneous stromal cell populations. Boulais et al. show these cells are mostly hematopoietic in origin and contain previously unappreciated stromal-associated erythroid and B-lymphoid progenitor populations

    The majority of CD45- Ter119- CD31- bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors

    No full text
    The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45(-) Ter119(-) CD31(-) (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (-85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51(-) TNCs. Ly6D(+) CD44(+) CD51(-) TNCs phenotypically and functionally resembled CD45(+) pro-B lymphoid cells, whereas Ly6D(-) CD44(+) CD51(-) TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proery-throblasts. Upon adoptive transfer, CD44(+) CD51(-) TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44(+) CD51(-) TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45(-) hematopoietic progenitors

    The Majority of CD45 Ter119 CD31 Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors

    No full text
    The non-hematopoietic cell fraction of the bone marrow (BM) is classically identified as CD45- Ter119- CD31- (herein referred to as triple-negative cells or TNCs). Although TNCs are believed to contain heterogeneous stromal cell populations, they remain poorly defined. Here we showed that the vast majority of TNCs (∌85%) have a hematopoietic rather than mesenchymal origin. Single cell RNA-sequencing revealed erythroid and lymphoid progenitor signatures among CD51- TNCs. Ly6D+ CD44+ CD51- TNCs phenotypically and functionally resembled CD45+ pro-B lymphoid cells, whereas Ly6D- CD44+ CD51- TNCs were enriched in previously unappreciated stromal-dependent erythroid progenitors hierarchically situated between preCFU-E and proerythroblasts. Upon adoptive transfer, CD44+ CD51- TNCs contributed to repopulate the B-lymphoid and erythroid compartments. CD44+ CD51- TNCs also expanded during phenylhydrazine-induced acute hemolysis or in a model of sickle cell anemia. These findings thus uncover physiologically relevant new classes of stromal-associated functional CD45- hematopoietic progenitors

    Agonists for the Chemokine Receptor CXCR4

    No full text
    The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine–receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4

    Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists

    No full text
    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor–ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series

    Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists

    No full text
    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor–ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series

    Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists

    No full text
    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gα<sub>i</sub> full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor–ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series
    corecore