20 research outputs found
Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer
The development of a long-range and efficient Förster resonance energy transfer (FRET) process is essential for its application in key enabling optoelectronic and sensing technologies. Via controlling the delocalization of the donor’s electric field and Purcell enhancements, we experimentally demonstrate long-range and high-efficiency Förster resonance energy transfer using a plasmonic nanogap formed between a silver nanoparticle and an extended silver film. Our measurements show that the FRET range can be extended to over 200 nm while keeping the FRET efficiency over 0.38, achieving an efficiency enhancement factor of ∼108 with respect to a homogeneous environment. Reducing Purcell enhancements by removing the extended silver film increases the FRET efficiency to 0.55, at the expense of the FRET rate. We support our experimental findings with numerical calculations based on three-dimensional finite difference time-domain calculations and treat the donor and acceptor as classical dipoles. Our enhanced FRET range and efficiency structures provide a powerful strategy to develop novel optoelectronic devices and long-range FRET imaging and sensing systems
Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor
The development of actively tunable plas-monic nanostructures enables real-time reconfigurable and on demand enhancement of optical signals. This is an essential requirement for a wide range of applications such as sensing and nanophotonic devices, for which electrically driven tunability is required. By modifying the transition energies of a material via the application of an electric field, the Stark effect offers a reliable and practical approach to achieve such tunability. In this work, we report on the use of the Stark effect to control the scattering response of a plasmonic nanogap formed between a silver nanoparticle and an extended silver film separated by a thin layer of the organic semiconductor PQT-12. The plasmonic response of such nano-scattering sources follows the quadratic stark shift. Additionally, our approach allows to experimentally determine the polarizability of the semiconductor material embedded in the nanogap region, offering a new approach to probe the excitonic properties of extremely thin semi-conducting materials such as 2D materials under applied external electric field with nanoscale resolution
Plasmons Enhancing Sub-Bandgap Photoconductivity in TiO<inf>2</inf> Nanoparticles Film
The coupling between sub-bandgap defect states and surface plasmon resonances in Au nanoparticles and its effects on the photoconductivity performance of TiO2 are investigated in both the ultraviolet (UV) and visible spectrum. Incorporating a 2 nm gold nanoparticle layer in the photodetector device architecture creates additional trapping pathways, resulting in a faster current decay under UV illumination and a significant enhancement in the visible photocurrent of TiO2, with an 8-fold enhancement of the defects-related photocurrent. We show that hot electron injection (HEI) and plasmonic resonance energy transfer (PRET) jointly contribute to the observed photoconductivity enhancement. In addition to shedding light on the below-band-edge photoconductivity of TiO2, our work provides insight into new methods to probe and examine the surface defects of metal oxide semiconductors using plasmonic resonances
Probing the molecular orientation of a single conjugated polymer via nano-gap SERS
Determining the molecular orientation at the single molecule level is of key importance for a wide range of applications ranging from molecular electronic devices to biomedical applications. In this work surface-enhanced Raman scattering (SERS) was used to probe the light-emitting conjugated polymer F8-PFB at the single molecule level using nanoparticles on an extended metallic film nanogap. The directional field enhancement of the nanogap combined with density functional theory (DFT) calculations was used to determine the orientation of the molecule. This analysis revealed that the spin-coated conjugated polymer preferentially aligns its molecular chains parallel to the metallic substrate. The integration of this approach in nanofabrication and synthesis will have a profound impact on different fields ranging from molecular electronic devices to biomedical applications
Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas
Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces
NIR-quantum dots in biomedical imaging and their future
Fluorescence imaging has gathered interest over the recent years for its real-time response and high sensitivity. Developing probes for this modality has proven to be a challenge. Quantum dots (QDs) are colloidal nanoparticles that possess unique optical and electronic properties due to quantum confinement effects, whose excellent optical properties make them ideal for fluorescence imaging of biological systems. By selectively controlling the synthetic methodologies it is possible to obtain QDs that emit in the first (650–950 nm) and second (1000–1400 nm) near infra-red (NIR) windows, allowing for superior imaging properties. Despite the excellent optical properties and biocompatibility shown by some NIR QDs, there are still some challenges to overcome to enable there use in clinical applications. In this review, we discuss the latest advances in the application of NIR QDs in preclinical settings, together with the synthetic approaches and material developments that make NIR QDs promising for future biomedical applications
Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennas
Strong electromagnetic field confinement and enhancement can be readily achieved in plasmonic nanoantennas, however, this is considerably more difficult to realize over large areas, which is essential for many applications. Here, dispersion engineering in plasmonic metamaterials is applied to successfully develop and demonstrate a coupled array of plasmonic–dielectric nanoantennas offering an ultrahigh density of electromagnetic hot spots (10 cm ) over macroscopic, centimeter scale areas. The hetero-metamaterial is formed by a highly ordered array of vertically standing plasmonic dipolar antennas with a ZnO gap and fabricated using a scalable electrodeposition technique. It supports a complex modal structure, including guided, surface and gap modes, which offers rich opportunities, frequently beyond the local effective medium theory, with optical properties that can be easily controlled and defined at the fabrication stage. This metamaterial platform can be used in a wide variety of applications, including hot-electron generation, nanoscale light sources, sensors, as well as nonlinear and memristive devices. 11 −
Long-term ambient air-stable cubic CsPbBr3 perovskite quantum dots using molecular bromine
We report unprecedented phase stability of cubic CsPbBr3 quantum dots in ambient air obtained by using Br2 as halide precursor. Mechanistic investigation reveals the decisive role of temperature-controlled in situ generated, oleylammonium halide species from molecular halogen and amine for the long term stability and emission tunability of CsPbX3 (X = Br, I) nanocrystals
Magnetic control of MOF crystal orientation and alignment
Most metal-organic frameworks (MOFs) possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH2-MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin/ Sylgard 184), magnetically oriented, and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation
Recommended from our members
Conjugated, rod-like viologen oligomers: correlation of oligomer length with conductivity and photoconductivity
An iterative synthesis has been used to produce conjugated, monodisperse, viologen-based aromatic oligomers containing up to 12 aromatic/heterocyclic rings. The methoxy-substituted oligomers were soluble in common organic solvents and could be processed by spin coating. The conductivities of the resulting films (30 to 221 nm thick) increased by more than an order of magnitude as the oligomer length increased from unimer (1, 2.20×10-11 S cm-1) through dimer (2) to trimer (3, 6.87×10-10 S cm-1). The bandgaps of the materials were estimated from the absorption spectra of these thin films. The longest oligomer, 3, exhibited a noticeably narrower bandgap (2.3 eV) than the shorter oligomers (1 and 2 both 2.7 eV). Oligomer 3 also showed photoconductivity under irradiation across a wide range of wavelengths in the visible spectral region. In conjunction with DFT calculations of these systems our results suggest that structurally related viologen-type oligomers may find use in optoelectronic devices