154 research outputs found

    Wonderfully weird: the head anatomy of the armadillo ant, Tatuidris tatusia (Hymenoptera: Formicidae: Agroecomyrmecinae), with evolutionary implications

    Get PDF
    Tatuidris tatusia Brown & Kempf, 1968, the armadillo ant, is a morphologically unique species found in low to high elevation forests in regions of Central and South America. It is one of only two extant representatives of the subfamily Agroecomyrmecinae, and very little is known about the biology of these ants, which are almost exclusively collected from leaf litter and have rarely been seen alive. Here, we illuminate the functional morphology and evolution of this species via detailed anatomical documentation of their exceptionally modified head. We describe and illustrate the skeletomuscular system, digestive tract, and cephalic glands based on high-resolution micro-computed tomography scan data. We hypothesize that the modifications which produce the unusual “shield-like” head shape are the result of complex optimizations for mandibular power, physical protection, and balance. The most conspicuous cephalic features are the broadening of the frontal region and foreshortening of the postgenal region. The former characteristic is likely also associated with the lateral position of the antennal scrobe, the inverted antennal articulation, and the broad attachment surface for the mandibular adductor muscles. This head geometry also comes with a degree of internal restructuring of the tentorium and the antennal musculature, which have a unique configuration among ants studied so far. The mandibular blades, and their articulations and muscles, are highly distinctive compared with previously evaluated species. Using a 3D-printed model, we were able to hypothesize their entire range of motion as the mandibles fit tightly into the oral foramen. Finally, we compare T. tatusia across other related subfamilies and discuss the evolution of the Agroecomyrmecinae and other species-poor and phylogenetically isolated “relictual” lineages.journal articl

    The head anatomy of Protanilla lini (Hymenoptera: Formicidae: Leptanillinae), with a hypothesis of their mandibular movement

    Get PDF
    The hypogaeic ant subfamilies Leptanillinae and Martialinae likely form the sister group to the remainder of the extant Formicidae. In order to increase the knowledge of anatomy and functional morphology of these unusual and phylogenetically crucial ants, we document and describe in detail the cranium of a leptanilline, Protanilla lini Terayama, 2009. The mandibular articulation of the species differs greatly from that of other ants studied so far, and clearly represents a derived condition. We propose a mode of movement for the specialized mandibles that involves variable rotation and sophisticated locking mechanisms. While a wide opening gape and a unique articulation are characteristics of the mandibular movement of P. lini, the observed condition differs from the trap-jaw mechanisms occurring in other groups of ants, and we cannot, at present, confirm such a functional configuration. Protanilla lini displays hardly any plesiomorphies relative to the poneroformicine ants, with the possible exception of the absence of the torular apodeme. Instead, the species is characterized by a suite of apomorphic features related to its hypogaeic and specialized predatory lifestyle. This includes the loss of eyes and optic neuropils, a pronouncedly prognathous head, and the derived mandibular articulation. The present study is an additional stepping-stone on our way to reconstructing the cephalic ground plan of ants and will contribute to our understanding of ant evolution.info:eu-repo/semantics/publishedVersio

    Genetic Resistance to Rhabdovirus Infection in Teleost Fish Is Paralleled to the Derived Cell Resistance Status

    Get PDF
    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses

    Resistance to a Rhabdovirus (VHSV) in Rainbow Trout: Identification of a Major QTL Related to Innate Mechanisms

    Get PDF
    Chantier qualité GAHealth control is a major issue in animal breeding and a better knowledge of the genetic bases of resistance to diseases is needed in farm animals including fish. The detection of quantitative trait loci (QTL) will help uncovering the genetic architecture of important traits and understanding the mechanisms involved in resistance to pathogens. We report here the detection of QTL for resistance to Viral Haemorrhagic Septicaemia Virus (VHSV), a major threat for European aquaculture industry. Two induced mitogynogenetic doubled haploid F2 rainbow trout (Oncorhynchus mykiss) families were used. These families combined the genome of susceptible and resistant F0 breeders and contained only fully homozygous individuals. For phenotyping, fish survival after an immersion challenge with the virus was recorded, as well as in vitro virus replication on fin explants. A bidirectional selective genotyping strategy identified seven QTL associated to survival. One of those QTL was significant at the genome-wide level and largely explained both survival and viral replication in fin explants in the different families of the design (up to 65% and 49% of phenotypic variance explained respectively). These results evidence the key role of innate defence in resistance to the virus and pave the way for the identification of the gene(s) responsible for resistance. The identification of a major QTL also opens appealing perspectives for selective breeding of fish with improved resistance

    Advancing fish breeding in aquaculture through genome functional annotation

    Get PDF
    Genomics is increasingly applied in breeding programmes for farmed fish and shellfish species around the world. However, current applications do not include information on genome functional activity, which can enhance opportunities to predict relationships between genotypes and phenotypes and hence increase the accuracy of selection. Here, we review prospects for improving aquaculture breeding practises through the uptake of functional genomics data in light of the EU Horizon 2020 project AQUA-FAANG: ‘Advancing European Aquaculture by Genome Functional Annotation’. This consortium targeted the six major farmed fish species in European aquaculture, producing thousands of functional genomic datasets from samples representing embryos to mature adults of both sexes, and following immunological stimulation. This data was used to catalogue functional activity across the genome of each species, revealing transcribed regions, distinct chromatin states and regulatory elements impacting gene expression. These functional annotations were shared as open data through the Ensembl genome browser using the latest reference genomes for each species. AQUA-FAANG data offers novel opportunities to identify and prioritize causative genetic variants responsible for diverse traits including disease resistance, which can be exploited to enhance selective breeding. Such knowledge and associated resources have the potential to improve sustainability and boost production in aquaculture by accelerating genetic gain for health and robustness to infection, whilst reducing the requirement for animal testing. We further outline directions to advance and leverage genome functional annotation beyond the AQUA-FAANG project. Given the diversity of aquaculture sectors and businesses, the incorporation of functional genomic information into breeding decisions will depend on technological readiness level and scale of operation, with cost-benefit analysis necessary to determine the most profitable approach for each species and production system

    Evidence for the evolution of eusociality in stem ants and a systematic revision of †Gerontoformica (Hymenoptera: Formicidae)

    Get PDF
    It is generally assumed that Cretaceous stem ants were obligately eusocial, because of the presence of wingless adult females, yet the available evidence is ambiguous. Here, we report the syninclusion of a pupa and adult of a stem ant species from Mid-Cretaceous amber. As brood are immobile, the pupa was likely to have been transported by an adult. Therefore, the fossil substantiates the hypothesis that wingless females were cooperators, thus these were true ‘workers’. Re-examination of all described Cretaceous ant species reveals that winged–wingless diphenism – hence a variable dispersal capacity – may have been ancestral to the total clade of the ants, and that highly specialized worker-specific phenotypes evolved in parallel between the stem and crown groups. The soft-tissue preservation of the fossil is exceptional, demonstrating the possibility of analysing the development of the internal anatomy in stem ants. Based on the highest-resolution µ-CT scans of stem ants to date, we describe †Gerontoformica sternorhabda sp. nov., redescribe †G. gracilis, redefine the species group classification of †Gerontoformica, and provide a key to the species of the genus. Our work clarifies the species boundaries of †Gerontoformica and renders fossils relevant to the discussion of eusocial evolution in a way that has heretofore been intractable.journal articl

    Comparison of the intracellular trafficking itinerary of ctla-4 orthologues.

    Get PDF
    CTLA-4 is an essential inhibitor of T cell immune responses. At steady state, most CTLA-4 resides in intracellular compartments due to constitutive internalisation mediated via a tyrosine based endocytic motif (YVKM) within the cytoplasmic domain. This domain is highly conserved in mammals suggesting strong selective pressure. In contrast, the C-terminal domain varies considerably in non-mammals such as fish, xenopus and birds. We compared the ability of the C-terminus of these species to direct the trafficking of CTLA-4 with human CTLA-4. Using a chimeric approach, endocytosis was found to be conserved between human, xenopus and chicken CTLA-4 but was reduced substantially in trout CTLA-4, which lacks the conserved YXXM motif. Nevertheless, we identified an alternative YXXF motif in trout CTLA-4 that permitted limited endocytosis. Post-internalisation, CTLA-4 was either recycled or targeted for degradation. Human and chicken CTLA-4, which contain a YVKM motif, showed efficient recycling compared to xenopus CTLA-4 which contains a less efficient YEKM motif. Specific mutation of this motif in human CTLA-4 reduced receptor recycling. These findings suggest evolutionary development in the endocytic and recycling potential of CTLA-4, which may facilitate more refined functions of CTLA-4 within the mammalian immune system

    Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in massively parallel sequencing have increased the depth at which T cell receptor (TCR) repertoires can be probed by >3log10, allowing for saturation sequencing of immune repertoires. The resolution of this sequencing is dependent on its accuracy, and direct assessments of the errors formed during high throughput repertoire analyses are limited.</p> <p>Results</p> <p>We analyzed 3 monoclonal TCR from TCR transgenic, Rag<sup>-/- </sup>mice using Illumina<sup>® </sup>sequencing. A total of 27 sequencing reactions were performed for each TCR using a trifurcating design in which samples were divided into 3 at significant processing junctures. More than 20 million complementarity determining region (CDR) 3 sequences were analyzed. Filtering for lower quality sequences diminished but did not eliminate sequence errors, which occurred within 1-6% of sequences. Erroneous sequences were pre-dominantly of correct length and contained single nucleotide substitutions. Rates of specific substitutions varied dramatically in a position-dependent manner. Four substitutions, all purine-pyrimidine transversions, predominated. Solid phase amplification and sequencing rather than liquid sample amplification and preparation appeared to be the primary sources of error. Analysis of polyclonal repertoires demonstrated the impact of error accumulation on data parameters.</p> <p>Conclusions</p> <p>Caution is needed in interpreting repertoire data due to potential contamination with mis-sequence reads. However, a high association of errors with phred score, high relatedness of erroneous sequences with the parental sequence, dominance of specific nt substitutions, and skewed ratio of forward to reverse reads among erroneous sequences indicate approaches to filter erroneous sequences from repertoire data sets.</p

    Treatment efficacy in a soman-poisoned guinea pig model: added value of physostigmine?

    Get PDF
    Current treatment of organophosphate poisoning is insufficient, and survivors may suffer from long-lasting adverse effects, such as cognitive deficits and sleep-wake disturbances. In the present study, we aimed at developing a guinea pig model to investigate the benefits of immediate and delayed stand-alone therapy on the development of clinical signs, EEG, heart rate, respiration and AChE activity in blood and brain after soman poisoning. The model allowed the determination of the therapeutic effects at the short-term of obidoxime, atropine and physostigmine. Obidoxime exerted the highest therapeutic efficacy at administration of the lowest dose (3.1 mg/kg i.m.), whereas two higher doses (9 and 18 mg/kg) were less effective on most parameters. Addition of atropine at 0.03 and 3 mg/kg (i.m.) to the treatment did not improve the therapeutic effects of obidoxime alone. Physostigmine (0.8 mg/kg im) at 1 min after poisoning increased mortality. Two lower doses (0.1 and 0.3 mg/kg i.m.) showed improvements on all parameters but respiration. The middle dose was most effective in preventing seizure development and therefore assessed as the most efficacious dose. Combined treatment of obidoxime and physostigmine shortened the duration of seizures, if present, from up to 80 min to ~10–15 min. In practice, treatment will be employed when toxic signs appear, with the presence of high levels of AChE inhibition in both blood and brain. Administration of physostigmine at that moment showed to be redundant or even harmful. Therefore, treatment of OP poisoning with a carbamate, such as physostigmine, should be carefully re-evaluated
    corecore