33 research outputs found

    Modèles statistiques pour l'étude de la progression de la maladie rénale chronique

    No full text
    The objective of this thesis was to illustrate the benefit of using advanced statistical methods to study associations between risk factors and chrouic kidney disease (CKD) progression. In a first time, we conducted a literature review of statistical methods used to investigate risk factors of CKD progression, identified important methodological issues, and discussed solutions. In our sec­ ond work, we focused on survival analyses and issues with interval-censoring, which occurs when the event of interest is the progression to a specifie CKD stage, and competing risk with death. A comparison between standard survival models and the illness-death mode! for interval-censored data allowed us to illustrate the impact of modeling on the estimates of both the effects of risk factors and the probabilities of events, using data from the NephroTest cohort. Other works fo­ cused on analysis of longitudinal data on renal function. We illustrated the interest of linear mixed mode! in this context and presented its extension to account for sub-populations with different trajectories of renal function. We identified five classes, including one with a strong decline and one with an improvement of renal function over time. Severa! perspectives on predictions bind the two types of analyses presented in this thesis.Cette thèse avait pour but d'illustrer l'intérêt de méthodes statistiques avancées lorsqu'on s'in­ téresse aux associations entre différents facteurs et la progression de la maladie rénale chronique (MRC). Dans un premier temps, une revue de la littérature a été effectuée alin d'identifier les méthodes classiquement utilisées pour étudier les facteurs de progression de la MRC ; leurs limites et des méthodes permettant de mieux prendre en compte ces limites ont été discutées. Notre second travail s'est concentré sur les analyses de données de survie et la prise en compte de la censure par intervalle, qui survient lorsque l'évènement d'intérêt est la progression vers un stade spécifique de la MRC, et le risque compétitif avec le décès. Une comparaison entre des modèles de survie standards et le modêle illness-death pour données censurées par intervalle nous a permis d'illustrer l'impact de la modélisation choisie sur les estimations à la fois des effets des facteurs de risque et des probabilités d'évènements, à partir des données de la cohorte NephroTest. Les autres travaux ont porté sur les analyses de données longitudinales de la fonction rénale. Nous avons illustré l'intérêt du modèle linéaire mixte dans ce contexte et présenté son extension pour la prise en compte de sous-populations de trajectoires de la fonction rénale différentes. Nous avons ainsi identifier cinq classes, dont une avec un déclin très rapide et une autre avec une amélioration de la fonction rénale au cours du temps. Des perspectives de travaux liés à la prédiction permettent enfin de lier les deux types d'analyses présentées dans la thèse

    Statistical models to study progression of chronic kidney disease

    No full text
    Cette thèse avait pour but d'illustrer l'intérêt de méthodes statistiques avancées lorsqu'on s'in­ téresse aux associations entre différents facteurs et la progression de la maladie rénale chronique (MRC). Dans un premier temps, une revue de la littérature a été effectuée alin d'identifier les méthodes classiquement utilisées pour étudier les facteurs de progression de la MRC ; leurs limites et des méthodes permettant de mieux prendre en compte ces limites ont été discutées. Notre second travail s'est concentré sur les analyses de données de survie et la prise en compte de la censure par intervalle, qui survient lorsque l'évènement d'intérêt est la progression vers un stade spécifique de la MRC, et le risque compétitif avec le décès. Une comparaison entre des modèles de survie standards et le modêle illness-death pour données censurées par intervalle nous a permis d'illustrer l'impact de la modélisation choisie sur les estimations à la fois des effets des facteurs de risque et des probabilités d'évènements, à partir des données de la cohorte NephroTest. Les autres travaux ont porté sur les analyses de données longitudinales de la fonction rénale. Nous avons illustré l'intérêt du modèle linéaire mixte dans ce contexte et présenté son extension pour la prise en compte de sous-populations de trajectoires de la fonction rénale différentes. Nous avons ainsi identifier cinq classes, dont une avec un déclin très rapide et une autre avec une amélioration de la fonction rénale au cours du temps. Des perspectives de travaux liés à la prédiction permettent enfin de lier les deux types d'analyses présentées dans la thèse.The objective of this thesis was to illustrate the benefit of using advanced statistical methods to study associations between risk factors and chrouic kidney disease (CKD) progression. In a first time, we conducted a literature review of statistical methods used to investigate risk factors of CKD progression, identified important methodological issues, and discussed solutions. In our sec­ ond work, we focused on survival analyses and issues with interval-censoring, which occurs when the event of interest is the progression to a specifie CKD stage, and competing risk with death. A comparison between standard survival models and the illness-death mode! for interval-censored data allowed us to illustrate the impact of modeling on the estimates of both the effects of risk factors and the probabilities of events, using data from the NephroTest cohort. Other works fo­ cused on analysis of longitudinal data on renal function. We illustrated the interest of linear mixed mode! in this context and presented its extension to account for sub-populations with different trajectories of renal function. We identified five classes, including one with a strong decline and one with an improvement of renal function over time. Severa! perspectives on predictions bind the two types of analyses presented in this thesis

    Statistical models to study progression of chronic kidney disease

    No full text
    Cette thèse avait pour but d'illustrer l'intérêt de méthodes statistiques avancées lorsqu'on s'in­ téresse aux associations entre différents facteurs et la progression de la maladie rénale chronique (MRC). Dans un premier temps, une revue de la littérature a été effectuée alin d'identifier les méthodes classiquement utilisées pour étudier les facteurs de progression de la MRC ; leurs limites et des méthodes permettant de mieux prendre en compte ces limites ont été discutées. Notre second travail s'est concentré sur les analyses de données de survie et la prise en compte de la censure par intervalle, qui survient lorsque l'évènement d'intérêt est la progression vers un stade spécifique de la MRC, et le risque compétitif avec le décès. Une comparaison entre des modèles de survie standards et le modêle illness-death pour données censurées par intervalle nous a permis d'illustrer l'impact de la modélisation choisie sur les estimations à la fois des effets des facteurs de risque et des probabilités d'évènements, à partir des données de la cohorte NephroTest. Les autres travaux ont porté sur les analyses de données longitudinales de la fonction rénale. Nous avons illustré l'intérêt du modèle linéaire mixte dans ce contexte et présenté son extension pour la prise en compte de sous-populations de trajectoires de la fonction rénale différentes. Nous avons ainsi identifier cinq classes, dont une avec un déclin très rapide et une autre avec une amélioration de la fonction rénale au cours du temps. Des perspectives de travaux liés à la prédiction permettent enfin de lier les deux types d'analyses présentées dans la thèse.The objective of this thesis was to illustrate the benefit of using advanced statistical methods to study associations between risk factors and chrouic kidney disease (CKD) progression. In a first time, we conducted a literature review of statistical methods used to investigate risk factors of CKD progression, identified important methodological issues, and discussed solutions. In our sec­ ond work, we focused on survival analyses and issues with interval-censoring, which occurs when the event of interest is the progression to a specifie CKD stage, and competing risk with death. A comparison between standard survival models and the illness-death mode! for interval-censored data allowed us to illustrate the impact of modeling on the estimates of both the effects of risk factors and the probabilities of events, using data from the NephroTest cohort. Other works fo­ cused on analysis of longitudinal data on renal function. We illustrated the interest of linear mixed mode! in this context and presented its extension to account for sub-populations with different trajectories of renal function. We identified five classes, including one with a strong decline and one with an improvement of renal function over time. Severa! perspectives on predictions bind the two types of analyses presented in this thesis

    Regression methods for investigating risk factors of chronic kidney disease outcomes: the state of the art

    No full text
    Chronic kidney disease (CKD) is a progressive and usually irreversible disease. Different types of outcomes are of interest in the course of CKD such as time-to-dialysis, transplantation or decline of the glomerular filtration rate (GFR). Statistical analyses aiming at investigating the association between these outcomes and risk factors raise a number of methodological issues. The objective of this study was to give an overview of these issues and to highlight some statistical methods that can address these topics. A literature review of statistical methods published between 2002 and 2012 to investigate risk factors of CKD outcomes was conducted within the Scopus database. The results of the review were used to identify important methodological issues as well as to discuss solutions for each type of CKD outcome. Three hundred and four papers were selected. Time-to-event outcomes were more often investigated than quantitative outcome variables measuring kidney function over time. The most frequently investigated events in survival analyses were all-cause death, initiation of kidney replacement therapy, and progression to a specific value of GFR. While competing risks were commonly accounted for, interval censoring was rarely acknowledged when appropriate despite existing methods. When the outcome of interest was the quantitative decline of kidney function over time, standard linear models focussing on the slope of GFR over time were almost as often used as linear mixed models which allow various numbers of repeated measurements of kidney function per patient. Informative dropout was accounted for in some of these longitudinal analyses. This study provides a broad overview of the statistical methods used in the last ten years for investigating risk factors of CKD progression, as well as a discussion of their limitations. Some existing potential alternatives that have been proposed in the context of CKD or in other contexts are also highlighte

    Representation of exposures in regression analysis and interpretation of regression coefficients: basic concepts and pitfalls

    No full text
    Regression models are being used to quantify the effect of an exposure on an outcome, while adjusting for potential confounders. While the type of regression model to be used is determined by the nature of the outcome variable, e.g. linear regression has to be applied for continuous outcome variables, all regression models can handle any kind of exposure variables. However, some fundamentals of representation of the exposure in a regression model and also some potential pitfalls have to be kept in mind in order to obtain meaningful interpretation of results. The objective of this educational paper was to illustrate these fundamentals and pitfalls, using various multiple regression models applied to data from a hypothetical cohort of 3000 patients with chronic kidney disease. In particular, we illustrate how to represent different types of exposure variables (binary, categorical with two or more categories and continuous), and how to interpret the regression coefficients in linear, logistic and Cox models. We also discuss the linearity assumption in these models, and show how wrongly assuming linearity may produce biased results and how flexible modelling using spline functions may provide better estimate

    Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches

    No full text
    The most commonly used methods to investigate risk factors associated with renal function trajectory over time include linear regression on individual glomerular filtration rate (GFR) slopes, linear mixed models and generalized estimating equations (GEEs). The objective of this study was to explain the principles of these three methods and to discuss their advantages and limitations in particular when renal function trajectories are not completely observable due to dropout. We generated data from a hypothetical cohort of 200 patients with chronic kidney disease at inclusion and seven subsequent annual measurements of GFR. The data were generated such that both baseline level and slope of GFR over time were associated with baseline albuminuria status. In a second version of the dataset, we assumed that patients systematically dropped out after a GFR measurement of <15 mL/min/1.73 m(2). Each dataset was analysed with the three methods. The estimated effects of baseline albuminuria status on GFR slope were similar among the three methods when no patient dropped out. When 32.7% dropped out, standard GEE provided biased estimates of the mean GFR slope in normo-, micro- and macroalbuminuric patients. Linear regression on individual slopes and linear mixed models provided slope estimates of the same magnitude, likely because most patients had at least three GFR measurements. However, the linear mixed model was the only method to provide effect estimates on both slope and baseline level of GFR unaffected by dropout. This study illustrates that the linear mixed model is the preferred method to investigate risk factors associated with renal function trajectories in studies, where patients may dropout during the study period because of initiation of renal replacement therap

    Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches

    No full text
    The most commonly used methods to investigate risk factors associated with renal function trajectory over time include linear regression on individual glomerular filtration rate (GFR) slopes, linear mixed models and generalized estimating equations (GEEs). The objective of this study was to explain the principles of these three methods and to discuss their advantages and limitations in particular when renal function trajectories are not completely observable due to dropout. We generated data from a hypothetical cohort of 200 patients with chronic kidney disease at inclusion and seven subsequent annual measurements of GFR. The data were generated such that both baseline level and slope of GFR over time were associated with baseline albuminuria status. In a second version of the dataset, we assumed that patients systematically dropped out after a GFR measurement of <15 mL/min/1.73 m(2). Each dataset was analysed with the three methods. The estimated effects of baseline albuminuria status on GFR slope were similar among the three methods when no patient dropped out. When 32.7% dropped out, standard GEE provided biased estimates of the mean GFR slope in normo-, micro- and macroalbuminuric patients. Linear regression on individual slopes and linear mixed models provided slope estimates of the same magnitude, likely because most patients had at least three GFR measurements. However, the linear mixed model was the only method to provide effect estimates on both slope and baseline level of GFR unaffected by dropout. This study illustrates that the linear mixed model is the preferred method to investigate risk factors associated with renal function trajectories in studies, where patients may dropout during the study period because of initiation of renal replacement therap

    Should we use standard survival models or the illness-death model for interval-censored data to investigate risk factors of chronic kidney disease progression?

    No full text
    BackgroundIn studies investigating risk factors of chronic kidney disease (CKD) progression, one may be interested in estimating factors effects on both a fall of glomerular filtration rate (GFR) below a specific level (i.e., a CKD stage) and death. Such studies have to account for the fact that GFR is measured at intermittent visit only, which implies that progression to the stage of interest is unknown for patients who die before being observed at that stage. Our objective was to compare the results of an illness-death model that handles this uncertainty, with frequently used survival models.MethodsThis study included 1,519 patients from the NephroTest cohort with CKD stages 1-4 at baseline (69% males, 59±15 years, median protein/creatinine ratio [PCR] 27.4 mg/mmol) and subsequent annual measures of GFR (follow-up time 4.3±2.7 years). Each model was used to estimate the effects of sex, age, PCR, and GFR at baseline on the hazards of progression to CKD stage 5 (GFRResultsFor progression to stage 5, there were only minor differences between results from the different models. The differences between results were higher for the hazard of death before or after progression. Our results also suggest that previous findings on the effect of age on end-stage renal disease are more likely due to a strong impact of age on death than to an effect on progression. The probabilities of progression were systematically under-estimated with the survival model as compared with the illness-death model.ConclusionsThis study illustrates the advantages of the illness-death model for accurately estimating the effects of risk factors on the hazard of progression and death, and probabilities of progression. It avoids the need to choose arbitrary time-to-event and time-to-censoring, while accounting for both interval censoring and competition by death, using a single analytical model
    corecore