2,657 research outputs found

    The Bispectrum of IRAS Galaxies

    Full text link
    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the results with predictions from gravitational instability in perturbation theory. Taking into account redshift space distortions, nonlinear evolution, the survey selection function, and discreteness and finite volume effects, all three catalogs show evidence for the dependence of the bispectrum on configuration shape predicted by gravitational instability. Assuming Gaussian initial conditions and local biasing parametrized by linear and non-linear bias parameters b_1 and b_2, a likelihood analysis yields 1/b_1 = 1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30}, -0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively. This implies that IRAS galaxies trace dark matter increasingly weakly as the density contrast increases, consistent with their being under-represented in clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum displays an amplitude and scale dependence different than that found in the Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure

    Search for Outbursts in the Narrow 511-keV Line from Compact Sources Based on INTEGRAL Data

    Full text link
    We present the results of a systematic search for outbursts in the narrow positron annihilation line on various time scales (5x10^4 - 10^6 s) based on the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts were detected with a statistical significance higher than ~6 sigma for any of the time scales considered over the entire period of observations. We also show that, given the large number of independent trials, all of the observed spikes could be associated with purely statistical flux fluctuations and, in part, with a small systematic prediction error of the telescope's instrumental background. Based on the exposure achieved in ~6 yr of INTEGRAL operation, we provide conservative upper limits on the rate of outbursts with a given duration and flux in different parts of the sky.Comment: 16 pages, 8 figures. To be published in Astronomy Letters, 2010, Vol. 36, No 4, p. 23

    CMB Polarization Data and Galactic Foregrounds: Estimation of Cosmological Parameters

    Get PDF
    We estimate the accuracy with which various cosmological parameters can be determined from the CMB temperature and polarization data when various galactic unpolarized and polarized foregrounds are included and marginalized using the multi-frequency Wiener filtering technique. We use the specifications of the future CMB missions MAP and PLANCK for our study. Our results are in qualitative agreement with earlier results obtained without foregrounds, though the errors in most parameters are higher because of degradation of the extraction of polarization signal in the presence of foregrounds.Comment: 6 pages, submitted to MNRA

    Correlations in the Far Infrared Background

    Full text link
    We compute the expected angular power spectrum of the cosmic Far Infrared Background (FIRB). We find that the signal due to source correlations dominates the shot--noise for \ell \la 1000 and results in anisotropies with rms amplitudes ((+1)C/2π)(\sqrt{\ell(\ell+1)C_\ell/2\pi}) between 5% and 10% of the mean for l \ga 150. The angular power spectrum depends on several unknown quantities, such as the UV flux density evolution, optical properties of the dust, biasing of the sources of the FIRB, and cosmological parameters. However, when we require our models to reproduce the observed DC level of the FIRB, we find that the anisotropy is at least a few percent in all cases. This anisotropy is detectable with proposed instruments, and its measurement will provide strong constraints on models of galaxy evolution and large-scale structure at redshifts up to at least z5z \sim5.Comment: 7 pages, 4 figures included, uses emulateapj.sty. More models explored than in original version. Accepted for publication in Ap

    The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    Full text link
    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 x 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper (Ressler et al. (2015)). We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflection can produce the extended cross-like artifacts around images with these arrays at short wavelengths, ~ 5 microns. The modeling of the behavior of these devices is helping optimize how we operate them and also providing inputs to the development of the data pipeline

    Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations

    Full text link
    We explore some of the effects that discreteness and two-body scattering may have on N-body simulations with ``realistic'' cosmological initial conditions. We use an identical subset of particles from the initial conditions for a 1283128^3 Particle-Mesh (PM) calculation as the initial conditions for a variety P3^3M and Tree code runs. We investigate the effect of mass resolution (the mean interparticle separation) since most ``high resolution'' codes only have high resolution in gravitational force. The phase-insensitive two--point statistics, such as the power spectrum (autocorrelation) are somewhat affected by these variations, but phase-sensitive statistics show greater differences. Results converge at the mean interparticle separation scale of the lowest mass-resolution code. As more particles are added, but the force resolution is held constant, the P3^3M and the Tree runs agree more and more strongly with each other and with the PM run which had the same initial conditions. This shows high particle density is necessary for correct time evolution, since many different results cannot all be correct. However, they do not so converge to a PM run which continued the fluctuations to small scales. Our results show that ignoring them is a major source of error on comoving scales of the missing wavelengths. This can be resolved by putting in a high particle density. Since the codes never agree well on scales below the mean comoving interparticle separation, we find little justification for quantitative predictions on this scale. Some measures vary by 50%, but others can be off by a factor of three or more. Our results suggest possible problems with the density of galaxy halos, formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure changed; expanded discussion, more information on code parameters. Latex, 44 pages, including 19 figures. Higher resolution versions of Figures 10-15 available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod

    The INTEGRAL/SPI response and the Crab observations

    Get PDF
    The Crab region was observed several times by INTEGRAL for calibration purposes. This paper aims at underlining the systematic interactions between (i) observations of this reference source, (ii) in-flight calibration of the instrumental response and (iii) the development and validation of the analysis tools of the SPI spectrometer. It first describes the way the response is produced and how studies of the Crab spectrum lead to improvements and corrections in the initial response. Then, we present the tools which were developed to extract spectra from the SPI observation data and finally a Crab spectrum obtained with one of these methods, to show the agreement with previous experiments. We conclude with the work still ahead to understand residual uncertainties in the response.Comment: 4 pages, 4 figures, Proc. of the 5th INTEGRAL Workshop (Feb. 16-20 2004), to be published by ES

    Relaxation times of unstable states in systems with long range interactions

    Full text link
    We consider several models with long-range interactions evolving via Hamiltonian dynamics. The microcanonical dynamics of the basic Hamiltonian Mean Field (HMF) model and perturbed HMF models with either global anisotropy or an on-site potential are studied both analytically and numerically. We find that in the magnetic phase, the initial zero magnetization state remains stable above a critical energy and is unstable below it. In the dynamically stable state, these models exhibit relaxation time scales that increase algebraically with the number NN of particles, indicating the robustness of the quasistationary state seen in previous studies. In the unstable state, the corresponding time scale increases logarithmically in NN.Comment: Minor change
    corecore