2,962 research outputs found

    Error estimation for the MAP experiment

    Get PDF
    We report here the first full sky component separation and CMB power spectrum estimation using a Wiener filtering technique on simulated data from the upcoming MAP experiment, set to launch in early 2001. The simulations included contributions from the three dominant astrophysical components expected in the five MAP spectral bands, namely CMB radiation, Galactic dust, and synchrotron emission. We assumed a simple homogeneous and isotropic white noise model and performed our analysis up to a spherical harmonic multipole lmax=512 on the fraction of the sky defined by b>20 degrees. We find that the reconstruction errors are reasonably well fitted by a Gaussian with an rms of 24 ÎĽ\mu K, but with significant deviations in the tails. Our results further support the predictions on the resulting CMB power spectrum of a previous estimate by Bouchet and Gispert (1999), which entailed a number of assumptions this work removes.Comment: 5 pages, 3 color figures, version accepted in A&A Letter

    Extended Perturbation Theory for the Local Density Distribution Function

    Full text link
    Perturbation theory makes it possible to calculate the probability distribution function (PDF) of the large scale density field in the small variance limit. For top hat smoothing and scale-free Gaussian initial fluctuations, the result depends only on the linear variance, sigma_linear, and its logarithmic derivative with respect to the filtering scale -(n_linear+3)=dlog sigma_linear^2/dlog L (Bernardeau 1994). In this paper, we measure the PDF and its low-order moments in scale-free simulations evolved well into the nonlinear regime and compare the results with the above predictions, assuming that the spectral index and the variance are adjustable parameters, n_eff and sigma_eff=sigma, where sigma is the true, nonlinear variance. With these additional degrees of freedom, results from perturbation theory provide a good fit of the PDFs, even in the highly nonlinear regime. The value of n_eff is of course equal to n_linear when sigma << 1, and it decreases with increasing sigma. A nearly flat plateau is reached when sigma >> 1. In this regime, the difference between n_eff and n_linear increases when n_linear decreases. For initial power-spectra with n_linear=-2,-1,0,+1, we find n_eff ~ -9,-3,-1,-0.5 when sigma^2 ~ 100.Comment: 13 pages, 6 figures, Latex (MN format), submitted to MNRA

    The spectral catalogue of INTEGRAL gamma-ray bursts: results of the joint IBIS/SPI spectral analysis

    Get PDF
    We present the updated INTEGRAL catalogue of gamma-ray bursts (GRBs) observed between December 2002 and February 2012. The catalogue contains the spectral parameters for 59 GRBs localized by the INTEGRAL Burst Alert System (IBAS). We used the data from the two main instruments on board the INTEGRAL satellite: the spectrometer SPI (SPectrometer on INTEGRAL) nominally covering the energy range 18 keV - 8 MeV, and the imager IBIS (the Imager on Board the INTEGRAL Satellite) operating in the range from 15 keV to 10 MeV. For the spectral analysis we applied a new data extraction technique, developed in order to explore the energy regions of highest sensitivity for both instruments, SPI and IBIS. It allowed us to perform analysis of the GRB spectra over a broad energy range and to determine the bursts' spectral peak energies. The spectral analysis was performed on the whole sample of GRBs triggered by IBAS, including all the events observed in period December 2002 - February 2012. The catalogue contains the trigger times, burst coordinates, positional errors, durations and peak fluxes for 28 unpublished GRBs observed between September 2008 and February 2012. The light curves in 20 - 200 keV energy band of these events were derived using IBIS data. We compare the prompt emission properties of the INTEGRAL GRB sample with the BATSE and Fermi samples.Comment: 16 pages, 40 figures, accepted for publication in Astronomy & Astrophysic

    Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model

    Full text link
    We perform a detailed study of the relaxation towards equilibrium in the Hamiltonian Mean-Field (HMF) model, a prototype for long-range interactions in NN-particle dynamics. In particular, we point out the role played by the infinity of stationary states of the associated N N ~ Vlasov dynamics. In this context, we derive a new general criterion for the stability of any spatially homogeneous distribution, and compare its analytical predictions with numerical simulations of the Hamiltonian, finite NN, dynamics. We then propose and verify numerically a scenario for the relaxation process, relying on the Vlasov equation. When starting from a non stationary or a Vlasov unstable stationary initial state, the system shows initially a rapid convergence towards a stable stationary state of the Vlasov equation via non stationary states: we characterize numerically this dynamical instability in the finite NN system by introducing appropriate indicators. This first step of the evolution towards Boltzmann-Gibbs equilibrium is followed by a slow quasi-stationary process, that proceeds through different stable stationary states of the Vlasov equation. If the finite NN system is initialized in a Vlasov stable homogenous state, it remains trapped in a quasi-stationary state for times that increase with the nontrivial power law N1.7N^{1.7}. Single particle momentum distributions in such a quasi-stationary regime do not have power-law tails, and hence cannot be fitted by the qq-exponential distributions derived from Tsallis statistics.Comment: To appear in Physica

    Kinetic theory for non-equilibrium stationary states in long-range interacting systems

    Full text link
    We study long-range interacting systems perturbed by external stochastic forces. Unlike the case of short-range systems, where stochastic forces usually act locally on each particle, here we consider perturbations by external stochastic fields. The system reaches stationary states where external forces balance dissipation on average. These states do not respect detailed balance and support non-vanishing fluxes of conserved quantities. We generalize the kinetic theory of isolated long-range systems to describe the dynamics of this non-equilibrium problem. The kinetic equation that we obtain applies to plasmas, self-gravitating systems, and to a broad class of other systems. Our theoretical results hold for homogeneous states, but may also be generalized to apply to inhomogeneous states. We obtain an excellent agreement between our theoretical predictions and numerical simulations. We discuss possible applications to describe non-equilibrium phase transitions.Comment: 11 pages, 2 figures; v2: small changes, close to the published versio

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties

    Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture

    Get PDF
    Cryoelectron microscopy of vitrified sections has become a powerful tool for investigating the fine structural features of cellular compartments. In the present study, this approach has been applied in order to explore the ultrastructural morphology of the interphase nucleus in different mammalian cultured cells. Rat hepatoma, Chinese hamster ovary and Potorus kidney cells were cryofixed by high-pressure freezing and the cryosections were examined at low temperature by transmission electron microscopy. Our results show that while the contrast of nuclear structural domains is remarkably homogeneous in hydrated sections, some of them can be recognised due to their characteristic texture. Thus, condensed chromatin appears finely granular and the perichromatin region contains rather abundant fibro-granular elements suggesting the presence of dispersed chromatin fibres and of perichromatin fibrils and granules. The interchromatin space looks homogeneous and interchromatin granules have not been identified under these preparative conditions. In the nucleolus, the most striking feature is the granular component, while the other parts of the nucleolar body, which appear less contrasted, are difficult to resolve. The nuclear envelope is easily recognisable with its regular perinuclear space and nuclear pore complexes. Our observations are discussed in the context of results obtained by other, more conventional electron microscopic method
    • …
    corecore