3,351 research outputs found

    On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL

    Full text link
    The 511 keV positron annihilation emission remains a mysterious component of the high energy emission of our Galaxy. Its study was one of the key scientific objective of the SPI spectrometer on-board the INTEGRAL satellite. In fact, a lot of observing time has been dedicated to the Galactic disk with a particular emphasis on the central region. A crucial issue in such an analysis concerns the reduction technique used to treat this huge quantity of data, and more particularly the background modeling. Our method, after validation through a variety of tests, is based on detector pattern determination per ~6 month periods, together with a normalisation variable on a few hour timescale. The Galactic bulge is detected at a level of ~70 sigma allowing more detailed investigations. The main result is that the bulge morphology can be modelled with two axisymmetric Gaussians of 3.2 deg. and 11.8 deg. FWHM and respective fluxes of 2.5 and 5.4 x 10^-4 photons/(cm^2.s^1). We found a possible shift of the bulge centre towards negative longitude at l=-0.6 +/- 0.2 degrees. In addition to the bulge, a more extended structure is detected significantly with flux ranging from 1.7 to 2.9 x10^-3 photons/(cm^2.s^1) depending on its assumed geometry (pure disk or disk plus halo). The disk emission is also found to be symmetric within the limits of the statistical errors.Comment: This paper has 12 pages and 14 figures. Accepted for publication by the Astrophysical Journa

    Self-similarity and scaling behavior of scale-free gravitational clustering

    Full text link
    We measure the scaling properties of the probability distribution of the smoothed density field in NN-body simulations of expanding universes with scale-free initial power-spectra, with particular attention to the predictions of the stable clustering hypothesis. We concentrate our analysis on the ratios SQ(ℓ)â‰ĄÎŸË‰Q/Οˉ2Q−1S_Q(\ell)\equiv {\bar \xi}_Q/{\bar \xi}_2^{Q-1}, Q≀5Q \leq 5, where ΟˉQ{\bar \xi}_Q is the averaged QQ-body correlation function over a cell of radius ℓ\ell. The behavior of the higher order correlations is studied through that of the void probability distribution function. As functions of Οˉ2{\bar \xi}_2, the quantities SQS_Q, 3≀Q≀53 \leq Q \leq 5, exhibit two plateaus separated by a smooth transition around Οˉ2∌1{\bar \xi}_2 \sim 1. In the weakly nonlinear regime, {\bar \xi}_2 \la 1, the results are in reasonable agreement with the predictions of perturbation theory. In the nonlinear regime, Οˉ2>1{\bar \xi}_2 > 1, the function SQ(Οˉ2)S_Q({\bar \xi}_2) is larger than in the weakly nonlinear regime, and increasingly so with −n-n. It is well-fitted by the expression $S_Q= ({\bar \xi}_2/100)^{0.045(Q-2)}\ {\widetilde S}_Qforall for all n. This weak dependence on scale proves {\em a small, but significant departure from the stable clustering predictions} at least for n=0and and n=+1.Theanalysisof. The analysis of P_0confirmsthattheexpectedscale−invarianceofthefunctions confirms that the expected scale-invariance of the functions S_Qisnotexactlyattainedinthepartofthenonlinearregimeweprobe,exceptpossiblyfor is not exactly attained in the part of the nonlinear regime we probe, except possibly for n=-2andmarginallyfor and marginally for n=-1$. In these two cases, our measurements are not accurate enough to be discriminant.Comment: 31 pages, postscript file, figure 1 missing. Postscript file including figure 1 available at ftp://ftp-astro-theory.fnal.gov:/pub/Publications/Pub-95-256-

    Extended Perturbation Theory for the Local Density Distribution Function

    Full text link
    Perturbation theory makes it possible to calculate the probability distribution function (PDF) of the large scale density field in the small variance limit. For top hat smoothing and scale-free Gaussian initial fluctuations, the result depends only on the linear variance, sigma_linear, and its logarithmic derivative with respect to the filtering scale -(n_linear+3)=dlog sigma_linear^2/dlog L (Bernardeau 1994). In this paper, we measure the PDF and its low-order moments in scale-free simulations evolved well into the nonlinear regime and compare the results with the above predictions, assuming that the spectral index and the variance are adjustable parameters, n_eff and sigma_eff=sigma, where sigma is the true, nonlinear variance. With these additional degrees of freedom, results from perturbation theory provide a good fit of the PDFs, even in the highly nonlinear regime. The value of n_eff is of course equal to n_linear when sigma << 1, and it decreases with increasing sigma. A nearly flat plateau is reached when sigma >> 1. In this regime, the difference between n_eff and n_linear increases when n_linear decreases. For initial power-spectra with n_linear=-2,-1,0,+1, we find n_eff ~ -9,-3,-1,-0.5 when sigma^2 ~ 100.Comment: 13 pages, 6 figures, Latex (MN format), submitted to MNRA

    Ground-based follow up of IRAS galaxies

    Get PDF
    Optical, near infrared, radio continuum and HI observations were undertaken of the galaxies identified with IRAS sources in a few fields roughly of the size of a sky survey plate. Results are presented from two fields at galactic latitude +27 and +43 deg over a total area of 100 sq. deg. These regions contained 115 IRAS point sources, out of which 26 were identified with stars and 81 with faint galaxies, 10 of which were difficult to recognize on the Schmidt plates. Spectroscopy was obtained with the ESO telescopes at a resolution of about 10 A. The vast majority of galaxies have low excitation spectra dominated by low ionization lines. The spectra are typical of HII region type galaxies, however of much lower excitation that other starbursts galaxies. The importance of the reddening as determined from the H alpha/H beta ratio is stressed: the visual absorption A sub v ranges from 2 to 6 magnitudes and as a consequence the corrected L sub IR/L sub B ratios are considerably reduced if those reddenings apply to the whole galaxy

    The spectral catalogue of INTEGRAL gamma-ray bursts: results of the joint IBIS/SPI spectral analysis

    Get PDF
    We present the updated INTEGRAL catalogue of gamma-ray bursts (GRBs) observed between December 2002 and February 2012. The catalogue contains the spectral parameters for 59 GRBs localized by the INTEGRAL Burst Alert System (IBAS). We used the data from the two main instruments on board the INTEGRAL satellite: the spectrometer SPI (SPectrometer on INTEGRAL) nominally covering the energy range 18 keV - 8 MeV, and the imager IBIS (the Imager on Board the INTEGRAL Satellite) operating in the range from 15 keV to 10 MeV. For the spectral analysis we applied a new data extraction technique, developed in order to explore the energy regions of highest sensitivity for both instruments, SPI and IBIS. It allowed us to perform analysis of the GRB spectra over a broad energy range and to determine the bursts' spectral peak energies. The spectral analysis was performed on the whole sample of GRBs triggered by IBAS, including all the events observed in period December 2002 - February 2012. The catalogue contains the trigger times, burst coordinates, positional errors, durations and peak fluxes for 28 unpublished GRBs observed between September 2008 and February 2012. The light curves in 20 - 200 keV energy band of these events were derived using IBIS data. We compare the prompt emission properties of the INTEGRAL GRB sample with the BATSE and Fermi samples.Comment: 16 pages, 40 figures, accepted for publication in Astronomy & Astrophysic

    The FIR/submm window on galaxy formation

    Get PDF
    Our view on the deep universe has been so far biased towards optically bright galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and SCUBA instruments begin unveiling the ``optically dark side'' of galaxy formation. Though the origin of dust heating is still unsolved, it appears very likely that a large fraction of the FIR/submm emission is due to heavily-extinguished star formation. Consequently, the level of the CIRB implies that about 2/3 of galaxy/star formation in the universe is hidden by dust shrouds. In this review, we introduce a new modeling of galaxy formation and evolution that provides us with specific predictions in FIR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the capabilities of current and forthcoming instruments for all-sky and deep surveys of FIR/submm sources are briefly described.Comment: 10 pages, Latex, 5 postscript figures, to appear in ``The Birth of Galaxies'', 1999, B. Guiderdoni, F.R. Bouchet, T.X. Thuan & J. Tran Thanh Van (eds), Editions Frontiere

    The effect of point sources on satellite observations of the cosmic microwave background

    Full text link
    We study the effect of extragalactic point sources on satellite observations of the cosmic microwave background (CMB). In order to separate the contributions due to different foreground components, a maximum-entropy method is applied to simulated observations by the Planck Surveyor satellite. In addition to point sources, the simulations include emission from the CMB and the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron emission. We find that the main input components are faithfully recovered and, in particular, that the quality of the CMB reconstruction is only slightly reduced by the presence of point sources. In addition, we find that it is possible to recover accurate point source catalogues at each of the Planck Surveyor observing frequencies.Comment: 12 pages, 9 figures, submitted to MNRA

    Predicted Planck Extragalactic Point Source Catalogue

    Get PDF
    An estimation of the number and amplitude (in flux) of the extragalactic point sources that will be observed by the Planck Mission is presented in this paper. The study is based on the Mexican Hat wavelet formalism introduced by Cayon et al. 2000. Simulations at Planck observing frequencies are analysed, taking into account all the possible cosmological, Galactic and Extragalactic emissions together with noise. With the technique used in this work the Planck Mission will produce a catalogue of extragalactic point sources above fluxes: 1.03 Jy (857 GHz), 0.53 Jy (545 GHz), 0.28 Jy (353 GHz), 0.24 Jy (217 GHz), 0.32 Jy (143 GHz), 0.41 Jy (100 GHz HFI), 0.34 Jy (100 GHz LFI), 0.57 Jy (70 GHz), 0.54 Jy (44 GHz) and 0.54 Jy (30 GHz), which are only slightly model dependent (see text). Amplitudes of these sources are estimated with errors below 15%. Moreover, we also provide a complete catalogue (for the point sources simulation analysed) with errors in the estimation of the amplitude below 10%. In addition we discuss the possibility of identifying different point source populations in the Planck catalogue by estimating their spectral indices.Comment: 13 pages, 2 figures, submitted to MNRA

    The Optical - Infrared Colors of CORALS QSOs: Searching for Dust Reddening Associated With High Redshift Damped Lyman Alpha Systems

    Full text link
    The presence of dust in quasar absorbers, such as damped Lyman alpha (DLA) systems, may cause the background QSO to appear reddened. We investigate the extent of this potential reddening by comparing the optical-to-infrared (IR) colors of QSOs with and without intervening absorbers. Our QSO sample is based on the Complete Optical and Radio Absorption Line System (CORALS) survey of Ellison et al (2001). We have obtained near-simultaneous B and K band magnitudes for subset of the CORALS sample and supplemented our observations with further measurements published in the literature. To account for redshift-related color changes, the B-K colors are normalized using the Sloan Digital Sky Survey (SDSS) QSO composite. The mean normalized B-K color of the DLA sub-sample is +0.12, whereas the mean for the no-DLA sample is -0.10; both distributions have RMS scatters ~0.5. Neither a student's T-test nor a KS test indicate that there is any significant difference between the two color distributions. Based on simulations which redden the colors of QSOs with intervening DLAs, we determine a reddening limit which corresponds to E(B-V) < 0.04 (SMC-like extinction) at 99% confidence (3 sigma), assuming that E(B-V) is the same for all DLAs. Finally, we do not find any general correlation between absorber properties (such as [Fe/Zn] or neutral hydrogen column density) and B-K color. One of these two QSOs shows evidence for strong associated absorption from X-ray observations, an alternative explanation for its very red color. We conclude that the presence of intervening galaxies causes a minimal reddening of the background QSO.Comment: Accepted for publication in A
    • 

    corecore