13 research outputs found

    Best Unbiased Estimators for the Three-Point Correlators of the Cosmic Microwave Background Radiation

    Get PDF
    Measuring the three-point correlators of the Cosmic Microwave Background (CMB) anisotropies could help to get a handle on the level of non-Gaussianity present in the observational datasets and therefore would strongly constrain models of the early Universe. However, typically, the expected non-Gaussian signal is very small. Therefore, one has to face the problem of extracting it from the noise, in particular from the `cosmic variance' noise. For this purpose, one has to construct the best unbiased estimators for the three-point correlators that are needed for concrete detections of non-Gaussian features. In this article, we study this problem for both the CMB third moment and the CMB angular bispectrum. We emphasize that the knowledge of the best estimator for the former does not permit one to infer the best estimator for the latter and vice versa. We present the corresponding best unbiased estimators in both cases and compute their corresponding cosmic variances

    Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2.

    Get PDF
    Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.journal article2014 Mar 182014 03 18importe

    The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane

    Get PDF
    Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention

    Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

    Get PDF
    International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment

    New Caledonia: a very old Darwinian island?

    No full text
    New Caledonia has generally been considered a continental island, the biota of which largely dates back to Gondwanan times owing to its geological origin and the presence of phylogenetic relicts. This view is contradicted by geological evidence indicating long Palaeocene and Eocene submersions and by recent biogeographic and phylogenetic studies, with molecular or geophysical dating placing the biota no older than the Oligocene. Phylogenetic relicts do not provide conclusive information in this respect, as their presence cannot be explained by simple hypotheses but requires assumption of many ad hoc extinction events. The implication of this new scenario is that all the New Caledonian biota colonized the island since 37 Ma Local richness can be explained by local radiation and adaptation after colonization but also by many dispersal events, often repeated within the same groups of organisms. Local microendemism is another remarkable feature of the biota. It seems to be related to recent speciation mediated by climate, orography, soil type and perhaps unbalanced biotic interactions created by colonization disharmonies. New Caledonia must be considered as a very old Darwinian island, a concept that offers many more fascinating opportunities of study
    corecore