49 research outputs found

    The Oncogenic Lipid Sphingosine-1-Phosphate Impedes the Phagocytosis of Tumor Cells by M1 Macrophages in Diffuse Large B Cell Lymphoma

    Get PDF
    Background: A total of 30–40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. Methods: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. Results: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. Conclusions: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients

    The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance

    Get PDF
    Tumors are not merely masses of neoplastic cells but complex tissues composed of cellular and noncellular elements. This review provides recent data on the main components of a dynamic system, such as carcinoma associated fibroblasts that change the extracellular matrix (ECM) topology, induce stemness and promote metastasis-initiating cells. Altered production and characteristics of collagen, hyaluronan and other ECM proteins induce increased matrix stiffness. Stiffness along with tumor growth-induced solid stress and increased interstitial fluid pressure contribute to tumor progression and therapy resistance. Second, the role of immune cells, cytokines and chemokines is outlined. We discuss other noncellular characteristics of the tumor microenvironment such as hypoxia and extracellular pH in relation to neoangiogenesis. Overall, full understanding of the events driving the interactions between tumor cells and their environment is of crucial importance in overcoming treatment resistance and improving patient outcome

    The Important Molecular Markers on Chromosome 17 and Their Clinical Impact in Breast Cancer

    Get PDF
    Abnormalities of chromosome 17 are important molecular genetic events in human breast cancers. Several famous oncogenes (HER2, TOP2A and TAU), tumor suppressor genes (p53, BRCA1 and HIC-1) or DNA double-strand break repair gene (RDM1) are located on chromosome 17. We searched the literature on HER2, TOP2A, TAU, RDM1, p53, BRCA1 and HIC-1 on the Pubmed database. The association of genes with chromosome 17, biological functions and potential significance are reviewed. In breast cancer, the polysomy 17 (three or more) is the predominant numerical aberration. HER2 amplification is widely utilized as molecular markers for trastuzumab target treatment. Amplified TOP2A, TAU and RDM1 genes are related to a significant response to anthracycline-based chemotherapy, taxane or cisplatin, respectively. In contrast, p53, BRCA1 and HIC-1 are important tumor suppressor genes related to breast carcinogenesis. This review focused on several crucial molecular markers residing on chromosome 17. The authors consider the somatic aberrations of chromosome 17 and associated genes in breast cancer

    Proceedings of the 24th Paediatric Rheumatology European Society Congress: Part three

    Get PDF
    From Springer Nature via Jisc Publications Router.Publication status: PublishedHistory: collection 2017-09, epub 2017-09-0

    Combinatorial biomarker expression in breast cancer

    Full text link

    Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment

    No full text
    Renal cell carcinoma (RCC) represents about 2–3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance

    Desmocollin-1 is associated with pro-metastatic phenotype of luminal A breast cancer cells and is modulated by parthenolide

    No full text
    Abstract Background Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. Methods Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC–MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC–MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. Results Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC–MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. Conclusions Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide. Graphical Abstrac
    corecore