108 research outputs found

    Design of eco-friendly fabric softeners: structure, rheology and interaction with cellulose nanocrystals

    Get PDF
    Concentrated fabric softeners are water-based formulations containing around 10 - 15 wt. % of double tailed esterquat surfactants primarily synthesized from palm oil. In recent patents, it was shown that a significant part of the surfactant contained in today formulations can be reduced by circa 50 % and replaced by natural guar polymers without detrimental effects on the deposition and softening performances. We presently study the structure and rheology of these softener formulations and identify the mechanisms at the origin of these effects. The polymer additives used are guar gum polysaccharides, one cationic and one modified through addition of hydroxypropyl groups. Formulations with and without guar polymers are investigated using optical and cryo-transmission electron microscopy, small-angle light and Xray scattering and finally rheology. Similar techniques are applied to study the phase behavior of softener and cellulose nanocrystals considered here as a model for cotton. The esterquat surfactants are shown to assemble into micron-sized vesicles in the dilute and concentrated regimes. In the former, guar addition in small amounts does not impair the vesicular structure and stability. In the concentrated regime, cationic guars induce a local crowding associated to depletion interactions and leads to the formation of a local lamellar order. In rheology, adjusting the polymer concentration at one tenth that of the surfactant is sufficient to offset the decrease of the elastic property associated with the surfactant reduction. In conclusion, we have shown that through an appropriate choice of natural additives it is possible to lower the concentration of surfactants in fabric conditioners by about half, a result that could represent a significant breakthrough in current home care formulations.Comment: 10 pages 8 figure

    Structure of nanoparticles embedded in micellar polycrystals

    Full text link
    We investigate by scattering techniques the structure of water-based soft composite materials comprising a crystal made of Pluronic block-copolymer micelles arranged in a face-centered cubic lattice and a small amount (at most 2% by volume) of silica nanoparticles, of size comparable to that of the micelles. The copolymer is thermosensitive: it is hydrophilic and fully dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into micelles at room temperature, where the block-copolymer is amphiphilic. We use contrast matching small-angle neuron scattering experiments to probe independently the structure of the nanoparticles and that of the polymer. We find that the nanoparticles do not perturb the crystalline order. In addition, a structure peak is measured for the silica nanoparticles dispersed in the polycrystalline samples. This implies that the samples are spatially heterogeneous and comprise, without macroscopic phase separation, silica-poor and silica-rich regions. We show that the nanoparticle concentration in the silica-rich regions is about tenfold the average concentration. These regions are grain boundaries between crystallites, where nanoparticles concentrate, as shown by static light scattering and by light microscopy imaging of the samples. We show that the temperature rate at which the sample is prepared strongly influence the segregation of the nanoparticles in the grain-boundaries.Comment: accepted for publication in Langmui

    Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder

    Get PDF
    The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview, followed by a systematic literature study to identify state of the art robots matching these objectives. Professionals identified many ASD objectives (n = 74) in 9 different domains. State of the art robots addressed 24 of these objectives in 8 domains. Robots can potentially be applied to a large scope of objectives for children with ASD. This objectives overview functions as a base to guide development of robot interventions for these children

    Effective description of general extensions of the Standard Model: the complete tree-level dictionary

    Get PDF
    We thank Nuria Rius and Arcadi Santamaria for an interesting discussion that motivated this work. We also thank Paco del Águila and Toni Pich for useful comments.We compute all the tree-level contributions to the Wilson coefficients of the dimension-six Standard-Model effective theory in ultraviolet completions with general scalar, spinor and vector feld content and arbitrary interactions. No assumption about the renormalizability of the high-energy theory is made. This provides a complete ultraviolet/ infrared dictionary at the classical level, which can be used to study the low-energy implications of any model of interest, and also to look for explicit completions consistent with low-energy dataThe work of J.C.C., M.P.V. and J.S. has been supported by the Spanish MICINN project FPA2013- 47836-C3-2-P, the MINECO project FPA2016-78220-C3-1-P (Fondos FEDER) and the Junta de Andalucía grant FQM101. The work of J.C.C. has also been supported by the Spanish MECD grant FPU14. The work of M.P.V. and J.S. has also been supported by the European Commission through the contract PITN-GA-2012-316704 (HIGGSTOOLS). J.C.C. is grateful for the hospitality of the Dipartimento di Fisica e Astronomia \Galileo Galilei" of the University of Padova during part of this work. J.S. would like to thank the Mainz Institute for Theoretical Physics (MITP) for its hospitality and partial support during the completion of this work

    Probing non-standard interactions at Daya Bay

    Get PDF
    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude

    Combined explanations of B-physics anomalies: the sterile neutrino solution

    Get PDF
    In this paper we provide a combined explanation of charged- and neutral-current B-physics anomalies assuming the presence of a light sterile neutrino NR which contributes to the B \u2192 D(*)\u3c4\u3bd processes. We focus in particular on two simplified models, where the mediator of the flavour anomalies is either a vector leptoquark U1\u3bc 3c (3, 1, 2/3) or a scalar leptoquark S1 3c (3\uaf , 1, 1/3). We find that U1\u3bc can successfully reproduce the required deviations from the Standard Model while being at the same time compatible with all other flavour and precision observables. The scalar leptoquark instead induces a tension between Bs mixing and the neutral-current anomalies. For both states we present the limits and future projections from direct searches at the LHC finding that, while at present both models are perfectly allowed, all the parameter space will be tested with more luminosity. Finally, we study in detail the cosmological constraints on the sterile neutrino NR and the conditions under which it can be a candidate for dark matter
    corecore