337 research outputs found
Recommended from our members
Conserved community structure and simultaneous divergence events in the fig wasps associated with Ficus benjamina in Australia and China
Localised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions. Despite recognition of these issues, we still know surprisingly little about how invertebrate biodiversity is structured across geographic scales. In particular, there have been few studies of how insect communities vary geographically while using the same plant host. We compared the composition (species, genera) and functional structure (guilds) of the chalcid wasp communities associated with the widespread fig tree, Ficus benjamina, towards the northern (Hainan province, China) and southern (Queensland, Australia) edges of its natural range. Sequence data were generated for nuclear and mtDNA markers and used to delimit species, and Bayesian divergence analyses were used to test patterns of community cohesion through evolutionary time. Both communities host at least 14 fig wasp species, but no species are shared across continents. Community composition is similar at the genus level, with six genera shared although some differ in species diversity between China and Australia; a further three genera occur in only China or Australia. Community functional structure remains very similar in terms of numbers of species in each ecological guild despite community composition differing a little (genera) or a lot (species), depending on taxonomic level. Bayesian clustering analyses favour a single community divergence event across continents over multiple events for different ecological guilds. Molecular dating estimates of lineage splits between nearest inter-continental species pairs are broadly consistent with a scenario of synchronous community divergence from a shared "ancestral community". Fig wasp community structure and genus-level composition are largely conserved in a wide geographic comparison between China and Australia. Moreover, dating analyses suggest that the functional community structure has remained stable for long periods during historic range expansions. This suggests that ecological interactions between species may play a persistent role in shaping these communities, in contrast to findings in some comparable temperate systems
Donor heart selection: the outcome of "unacceptable" donors
BACKGROUND: The decline in the number of suitable donor hearts has led to an increasing interest in the use of previously unacceptable donors. In the United Kingdom, if one centre declines a donor heart on medical grounds it may be offered to other centres. This multi-centre study aimed to evaluate the outcome of recipients of donor hearts considered medically unsuitable for transplantation by one centre that were used in other centres. METHODS: Between April 1998 and March 2003, ninety-three donor hearts (group A) were transplanted, after being considered medically unsuitable for transplantation by another centre. During the same period, 723 hearts (group B) were transplanted in the UK using donors not previously rejected. Data on the donors and recipients was obtained from the UK transplant database. Comparative analysis on the two groups was performed using SPSS 11.5 for Windows. RESULTS: The characteristics of recipients were similar in both groups. The main reasons for refusal of hearts are listed below. In most cases there was more than one reason for refusing the donor heart. We did not find significant differences in the post-operative mortality (up to 30 days), ICU and hospital stay and cardiac cause of death between the two groups. Kaplan-Meier survival curves showed no significant difference in the long-term survival, with Log Rank test = 0.30. CONCLUSION: This study demonstrates that some hearts declined on medical grounds by one centre can safely be transplanted and should be offered out nationally. The use of these hearts was useful to expand the scarce donor pool and there does not seem to be a justification for denying recipients this extra source of organs
Time lags: insights from the U.S. Long Term Ecological Research Network
Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long-term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundation’s Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about “what their site would look like” in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long-term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems
Whole-genome resequencing of two elite sires for the detection of haplotypes under selection in dairy cattle
New data on the morphology of Sphenothallus Hall: implications for its affinities
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73676/1/j.1502-3931.1992.tb01378.x.pd
Whole-genome resequencing of two elite sires for the detection of haplotypes under selection in dairy cattle
Using a combination of whole-genome resequencing and high-density genotyping arrays, genome-wide haplotypes were reconstructed for two of the most important bulls in the history of the dairy cattle industry, Pawnee Farm Arlinda Chief (“Chief”) and his son Walkway Chief Mark (“Mark”), each accounting for ∼7% of all current genomes. We aligned 20.5 Gbp (∼7.3× coverage) and 37.9 Gbp (∼13.5× coverage) of the Chief and Mark genomic sequences, respectively. More than 1.3 million high-quality SNPs were detected in Chief and Mark sequences. The genome-wide haplotypes inherited by Mark from Chief were reconstructed using ∼1 million informative SNPs. Comparison of a set of 15,826 SNPs that overlapped in the sequence-based and BovineSNP50 SNPs showed the accuracy of the sequence-based haplotype reconstruction to be as high as 97%. By using the BovineSNP50 genotypes, the frequencies of Chief alleles on his two haplotypes then were determined in 1,149 of his descendants, and the distribution was compared with the frequencies that would be expected assuming no selection. We identified 49 chromosomal segments in which Chief alleles showed strong evidence of selection. Candidate polymorphisms for traits that have been under selection in the dairy cattle population then were identified by referencing Chief’s DNA sequence within these selected chromosome blocks. Eleven candidate genes were identified with functions related to milk-production, fertility, and disease-resistance traits. These data demonstrate that haplotype reconstruction of an ancestral proband by whole-genome resequencing in combination with high-density SNP genotyping of descendants can be used for rapid, genome-wide identification of the ancestor’s alleles that have been subjected to artificial selection
Relationship between Neural Alteration and Perineural Invasion in Pancreatic Cancer Patients with Hyperglycemia
Background: Patients with higher levels of fasting serum glucose have higher death rates from pancreatic cancer compared to patients with lower levels of fasting serum glucose. However, the reasons have not been studied. The goal of the current study was to examine the neural alterations in pancreatic cancer patients with hyperglycemia and to identify the relationship between the neural alterations and perineural invasion. Methodology/Principal Findings: The clinical and pathological features of 61 formalin-fixed pancreatic cancer specimens and 10 normal pancreases as controls were analyzed. Furthermore, the expression of Protein Gene Product 9.5 (PGP9.5), Myelin P0 protein (MPP), NGF, TrkA, and p75 were examined by immunohistochemistry. The median number of nerves, the median area of neural tissue, and the median nerve diameter per 10 mm 2 were larger in the hyperglycemia group than those in the euglycemia group (p = 0.007, p = 0.009, and p = 0.004, respectively). The integrated optical density (IOD) of MPP staining was lower in the hyperglycemia group than those in the euglycemia group (p = 0.019), while the expression levels of NGF and p75 were higher in the hyperglycemia group than those in the euglycemia group (p = 0.002, and p = 0.026, respectively). The nerve bundle invasion of pancreatic cancer was more frequent in the hyperglycemia group than in the euglycemia group (p = 0.000). Conclusions/Significance: Nerve damage and regeneration occur simultaneously in the tumor microenvironment o
Kidney transplant in diabetic patients: modalities, indications and results
<p>Abstract</p> <p>Background</p> <p>Diabetes is a disease of increasing worldwide prevalence and is the main cause of chronic renal failure. Type 1 diabetic patients with chronic renal failure have the following therapy options: kidney transplant from a living donor, pancreas after kidney transplant, simultaneous pancreas-kidney transplant, or awaiting a deceased donor kidney transplant. For type 2 diabetic patients, only kidney transplant from deceased or living donors are recommended. Patient survival after kidney transplant has been improving for all age ranges in comparison to the dialysis therapy. The main causes of mortality after transplant are cardiovascular and cerebrovascular events, infections and neoplasias. Five-year patient survival for type 2 diabetic patients is lower than the non-diabetics' because they are older and have higher body mass index on the occasion of the transplant and both pre- and posttransplant cardiovascular diseases prevalences. The increased postransplant cardiovascular mortality in these patients is attributed to the presence of well-known risk factors, such as insulin resistance, higher triglycerides values, lower HDL-cholesterol values, abnormalities in fibrinolysis and coagulation and endothelial dysfunction. In type 1 diabetic patients, simultaneous pancreas-kidney transplant is associated with lower prevalence of vascular diseases, including acute myocardial infarction, stroke and amputation in comparison to isolated kidney transplant and dialysis therapy.</p> <p>Conclusion</p> <p>Type 1 and 2 diabetic patients present higher survival rates after transplant in comparison to the dialysis therapy, although the prevalence of cardiovascular events and infectious complications remain higher than in the general population.</p
Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant
Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease
- …
