20 research outputs found

    Association between ATN profiles and mortality in a clinical cohort of patients with cognitive disorders

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is the 5th leading cause of death in people 65 years and older. The ATN classification reflects a biological definition of AD pathology with markers of Aβ deposition (A), pathologic tau (T), and neurodegeneration (N). Little is known about the relationship between ATN status and the risk of mortality, leading us to examine this association in a relatively large population of patients seen at a memory clinic for cognitive disorders. METHODS: Data were drawn from the BioCogBank Study, including patients seen for cognitive disorders in Lariboisiere Hospital (Paris, France), followed up to 15 years. All participants underwent a lumbar puncture for an assessment of the levels of CSF tau (tau), phosphorylated tau (p-tau181), and β-amyloid 42 peptide (Aβ42). Vital status on July 1, 2020, was recorded for each participant using the national mortality register. Individuals were categorized according to their ATN profiles based on CSF Aβ42 or Aβ42/40 ratio, p-tau181, and tau. Kaplan-Meier and multivariate Cox analyses were performed with A-T-N - participants as the reference using a short (5 years) and long follow-up (15 years). RESULTS: Of the 1353 patients in the study (mean age: 68 years old, 53% of women, mean MMSE score: 22.6), 262 died during the follow-up. At 5 years of follow-up, A-T-N + individuals had the highest risk of mortality in Kaplan-Meier and adjusted Cox analyses [HR (95% CI) = 2.93 (1.31-6.56)]. At 15 years of follow-up, patients in the AD spectrum had a higher mortality risk with a gradient effect for biomarker positivity: A-T + [HR = 1.63 (1.04-2.55)], A + T - [HR = 2.17 (1.44-3.26)], and A + T + individuals [HR = 2.38 (1.66-3.39)], compared to A-T-N - patients. Adjustments on potential confounders had little impact on these associations. CONCLUSION: This study shows ATN profiles to be associated with mortality in a relatively large patient cohort based on a memory clinic. Patients with isolated evidence of neurodegeneration had a higher mortality rate in the short follow-up, and patients with the AD profile had the highest mortality rate in the long follow-up

    CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer’s disease

    Get PDF
    Background: The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer’s disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. / Methods: This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for Aβ1–42, Aβ1–40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. / Results: Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with Aβ1–42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. / Conclusions: Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD

    Full-length and C-terminal neurogranin in Alzheimer's disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays

    Get PDF
    Background: Neurogranin (Ng) is a neuron-specific and postsynaptic protein that is abundantly expressed in the brain, particularly in the dendritic spine of the hippocampus and cerebral cortex. The enzymatic cleavage of Ng produces fragments that are released into cerebrospinal (CSF), which have been shown to be elevated in Alzheimer’s disease (AD) patients and predict cognitive decline. Thus, quantification of distinctive cleavage products of Ng could elucidate different features of the disease. Methods: In this study, we developed novel ultrasensitive single molecule array (Simoa) assays for measurement of full-length neurogranin (FL-Ng) and C-terminal neurogranin (CT-Ng) fragments in CSF. The Ng Simoa assays were evaluated in CSF samples from AD patients (N = 23), mild cognitive impairment due to AD (MCI-AD) (N = 18), and from neurological controls (N = 26). Results: The intra-assay repeatability and inter-assay precision of the novel methods had coefficients of variation below 7% and 14%, respectively. CSF FL-Ng and CSF CT-Ng median concentrations were increased in AD patients (6.02 ng/L, P < 0.00001 and 452 ng/L, P = 0.00001, respectively) and in patients with MCI-AD (5.69 ng/L, P < 0.00001 and 566 ng/L, P < 0.00001) compared to neurological controls (0.644 ng/L and 145 ng/L). The median CSF ratio of CT-Ng/FL-Ng were decreased in AD patients (ratio = 101, P = 0.008) and in patients with MCI-AD (ratio = 115, P = 0.016) compared to neurological controls (ratio = 180). CSF of FL-Ng, CT-Ng, and ratio of CT-Ng/FL-Ng could each significantly differentiate AD patients from controls (FL-Ng, AUC = 0.907; CT-Ng, AUC = 0.913; CT-Ng/FL-Ng, AUC = 0.775) and patients with MCI-AD from controls (FL-Ng, AUC = 0.937; CT-Ng, AUC = 0.963; CT-Ng/FL-Ng, AUC = 0.785). Conclusions: Assessments of the FL-Ng and CT-Ng levels in CSF with the novel sensitive immunoassays provide a high separation of AD from controls, even in early phase of the disease. The novel Ng assays are robust and highly sensitive and may be valuable tools to study synaptic alteration in AD, as well as to monitor the effect on synaptic integrity of novel drug candidates in clinical trials

    A novel ELISA for the measurement of cerebrospinal fluid SNAP-25 in patients with Alzheimer's disease

    Get PDF
    Synaptic degeneration is central in Alzheimer's disease (AD) pathogenesis and biomarkers to monitor this pathophysiology in living patients are warranted. We developed a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the measurement of the pre-synaptic protein SNAP-25 in cerebrospinal fluid (CSF) and evaluated it as a biomarker for AD. CSF samples included a pilot study consisting of AD (N=26) and controls (N=26), and two independent clinical cohorts of AD patients and controls. Cohort I included CSF samples from patients with dementia due to AD (N=17), patients with mild cognitive impairment (MCI) due to AD (N=5) and controls (N=17), and cohort II CSF samples from patients with dementia due to AD (N=24), patients with MCI due to AD (N=18) and controls (N=36). CSF levels of SNAP-25 were significantly increased in patients with AD compared with controls (P≤0.00001). In both clinical cohorts, CSF levels of SNAP-25 were significantly increased in patients with MCI due to AD (P<0.0001). SNAP-25 could differentiate dementia due to AD (N=41) from controls (N=52) and MCI due to AD (N=23) from controls (N=52) with areas under the curve of 0.967 (P<0.0001) and 0.948 (P<0.0001), respectively. CSF SNAP-25 is a promising AD biomarker that differentiates AD patients in different clinical stages of the disease from controls with excellent diagnostic accuracy. Future studies should address the specificity of the CSF SNAP-25 against common differential diagnoses to AD, as well as how the biomarker changes in response to treatment with disease-modifying drug candidates

    CSF level of beta-amyloid peptide predicts mortality in Alzheimer's disease

    Get PDF
    Objective Alzheimer’s disease (AD) is the sixth leading cause of death, with an average survival estimated between 5 and 10 years after diagnosis. Despite recent advances in diagnostic criteria of AD, few studies have used biomarker-based diagnostics to determine the prognostic factors of AD. We investigate predictors of death and institutionalization in a population of AD patients with high probability of AD physiopathology process assessed by positivity of three CSF biomarkers. Methods Three hundred twenty-one AD patients with abnormal values for CSF beta-amyloid peptide (Aβ42), tau, and phosphorylated tau levels were recruited from a memory clinic-based registry between 2008 and 2017 (Lariboisiere hospital, Paris, France) and followed during a median period of 3.9 years. We used multivariable Cox models to estimate the hazard ratio (HR) of death and institutionalization for baseline clinical data, genotype of the apolipoprotein E (APOE), and levels of CSF biomarkers. Results A total of 71 (22%) patients were institutionalized and 57 (18%) died during the follow-up. Greater age, male sex, lower MMSE score, and lower CSF Aβ42 level were associated with an increased risk of mortality. One standard deviation lower CSF Aβ42 (135 pg/mL) was associated with a 89% increased risk of death (95% CI = 1.25–2.86; p = 0.002). This association was not modified by age, sex, education, APOE ε4, and disease severity. There was no evidence of an association of tau CSF biomarkers with mortality. None of the CSF biomarkers were associated with institutionalization. Conclusions Lower CSF Aβ42 is a strong prognostic marker of mortality in AD patients, independently of age or severity of the disease. Whether drugs targeting beta-amyloid peptide could have an effect on mortality of AD patients should be investigated in future clinical trials

    Age and the association between apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker-based case-control study

    Get PDF
    Background: The ε4 allele of apolipoprotein E (APOE) gene and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The diagnosis of AD based on clinical symptoms alone is known to have poor specificity; recently developed diagnostic criteria based on biomarkers that reflect underlying AD neuropathology allow better assessment of the strength of the associations of risk factors with AD. Accordingly, we examined the global and age-specific association between APOE genotype and AD by using the A/T/N classification, relying on the cerebrospinal fluid (CSF) levels of β-amyloid peptide (A, β-amyloid deposition), phosphorylated tau (T, pathologic tau), and total tau (N, neurodegeneration) to identify patients with AD. Methods and findings: This case–control study included 1,593 white AD cases (55.4% women; mean age 72.8 [range = 44–96] years) with abnormal values of CSF biomarkers from nine European memory clinics and the American Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. A total of 11,723 dementia-free controls (47.1% women; mean age 65.6 [range = 44–94] years) were drawn from two longitudinal cohort studies (Whitehall II and Three-City), in which incident cases of dementia over the follow-up were excluded from the control population. Odds ratio (OR) and population attributable fraction (PAF) for AD associated with APOE genotypes were determined, overall and by 5-year age categories. In total, 63.4% of patients with AD and 22.6% of population controls carried at least one APOE ε4 allele. Compared with non-ε4 carriers, heterozygous ε4 carriers had a 4.6 (95% confidence interval 4.1–5.2; p < 0.001) and ε4/ε4 homozygotes a 25.4 (20.4–31.2; p < 0.001) higher OR of AD in unadjusted analysis. This association was modified by age (p for interaction < 0.001). The PAF associated with carrying at least one ε4 allele was greatest in the 65–70 age group (69.7%) and weaker before 55 years (14.2%) and after 85 years (22.6%). The protective effect of APOE ε2 allele for AD was unaffected by age. Main study limitations are that analyses were based on white individuals and AD cases were drawn from memory centers, which may not be representative of the general population of patients with AD. Conclusions: In this study, we found that AD diagnosis based on biomarkers was associated with APOE ε4 carrier status, with a higher OR than previously reported from studies based on only clinical AD criteria. This association differs according to age, with the strongest effect at 65–70 years. These findings highlight the need for early interventions for dementia prevention to mitigate the effect of APOE ε4 at the population level

    Diagnosis associated with Tau higher than 1200 pg/mL: Insights from the clinical and laboratory practice

    No full text
    International audienceContext: Cerebrospinal fluid (CSF) biomarkers are valuable tools for the diagnosis of neurological diseases. We aimed to investigate within a retrospective multicentric study the final diagnosis associated with very high CSF Tau levels and to identify patterns of biomarkers that would differentiate them in clinical practice, to help clinical biologists into physicians' counseling.Patients and methods: Within the national multicentric network ePLM, we included 1743 patients from January 1, 2008, to December 31, 2013, with CSF biomarkers assayed by the same Innotest assays (protein Tau, phospho-Tau [pTau], and Aβ 1-42). We identified 205 patients with protein Tau concentration higher than 1200 pg/mL and final diagnosis.Results: Among those patients, 105 (51.2%) were suffering from Alzheimer's disease, 37 (18%) from sporadic Creuztfeldt-Jakob disease, and 63 (30.7%) from other neurological diseases including paraneoplastic/ central nervous system tumor, frontotemporal dementia, other diagnoses, amyloid angiopathy, Lewy body dementia, and infections of the central nervous system. Phospho-Tau, Aβ1-42 and Aβ1-42/pTau values differed significantly between the three groups of patients (p 60 pg/mL.Conclusion: This work emphasizes the interest of a well-thought-out interpretation of CSF biomarkers in neurological diseases, particularly in the case of high Tau protein concentrations in the CSF

    Les biomarqueurs du liquide cérébro-spinal dans la maladie d’Alzheimer : un outil de recherche utile dans la pratique clinique courante des consultations mémoire pour les cas complexes

    No full text
    International audienceThe role of biomarkers in clinical research was recently highlighted in the new criteria for the diagnosis of Alzheimer's disease. Cerebro-spinal fluid (CSF) biomarkers (total Tau protein, threonine 181 phosphorylated Tau protein and amyloid Aβ1-42 peptide) are associated with cerebral neuropathological lesions observed in Alzheimer's disease (neuronal death, neurofibrillary tangle with abnormal Tau deposits and amyloid plaque). Aβ1-40 amyloid peptide dosage helps to interpret Aβ1-42 results. As suggested in the latest international criteria and the French HAS (Haute Autorité de santé) recommendations, using theses CSF biomarkers should not be systematic but sometimes could be performed to improve confidence about the diagnostic of Alzheimer's disease in young subjects or in complex clinical situations. Future biomarkers actually in development will additionally help in diagnostic process (differential diagnosis) and in prognostic evaluation of neurodegenerative diseases
    corecore