61 research outputs found

    Leishmania infantum Amastigotes Enhance HIV-1 Production in Cocultures of Human Dendritic Cells and CD4+ T Cells by Inducing Secretion of IL-6 and TNF-α

    Get PDF
    Visceral leishmaniasis (VL) is a potentially deadly parasitic disease afflicting millions worldwide. Although itself an important infectious illness, VL has also emerged as an opportunistic disease among patients infected with HIV-1. This is partly due to the increasing overlap between urban regions of high HIV-1 transmission and areas where Leishmania is endemic. Furthermore, VL increases the development and clinical progression of AIDS-related diseases. Conversely, HIV-1-infected individuals are at greater risk of developing VL or suffering relapse. Finally, HIV-1 and Leishmania can both productively infect cells of the macrophage-dendritic cell lineage, resulting in a cumulative deficiency of the immune response. We therefore studied the effect of Leishmania infantum on HIV-1 production when dendritic cells (DCs) are cocultured with autologous CD4+ T cells. We show that amastigotes promote virus replication in both DCs and lymphocytes, due to a parasite-mediated production of soluble factors by DCs. Micro-beads array analyses indicate that Leishmania infantum amastigotes infection induces a higher secretion of several cytokines in these cells, and use of specific neutralizing antibodies revealed that the Leishmania-induced increase in HIV-1 replication is due to IL-6 and TNF-α. These findings suggest that Leishmania's presence within DC/T-cell conjugates leads to an enhanced HIV-1 production

    <i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

    Get PDF
    BackgroundCurrent approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity.MethodsSARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19.ResultsDaclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans.ConclusionsDaclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy

    The Role of Extracellular Vesicles from Human Macrophages on Host-Pathogen Interaction

    No full text
    The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases

    Report of the Fifth Brazilian Symposium on HIV/AIDS Research

    No full text
    In 2003, the Fifth Brazilian Symposium on HIV/AIDS Research was held in Rio de Janeiro, RJ, with 264 participants and comprising lectures delivered by 33 invited speakers, 48 short-presentations, and 137 posters. The main subjects were immunology, epidemiology, therapy, molecular biology, and co-infections

    The Neuropeptides Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide Control HIV-1 Infection in Macrophages Through Activation of Protein Kinases A and C

    No full text
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of β-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection

    Neuroendocrine Control of Macrophage Development and Function

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2019-02-10T19:28:55Z No. of bitstreams: 1 arnondias_juberg_etal_IOC_2018.pdf: 2042436 bytes, checksum: e62a73d671b9925b43cab1a45f36a80a (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-02-10T19:40:25Z (GMT) No. of bitstreams: 1 arnondias_juberg_etal_IOC_2018.pdf: 2042436 bytes, checksum: e62a73d671b9925b43cab1a45f36a80a (MD5)Made available in DSpace on 2019-02-10T19:40:25Z (GMT). No. of bitstreams: 1 arnondias_juberg_etal_IOC_2018.pdf: 2042436 bytes, checksum: e62a73d671b9925b43cab1a45f36a80a (MD5) Previous issue date: 2018Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação. Rio de Janeiro, RJ, Brasil.Macrophages carry out numerous physiological activities that are essential for both systemic and local homeostasis, as well as innate and adaptive immune responses. Their biology is intricately regulated by hormones, neuropeptides, and neurotransmitters, establishing distinct neuroendocrine axes. The control is pleiotropic, including maturation of bone marrow-derived myeloid precursors, cell differentiation into functional subpopulations, cytotoxic activity, phagocytosis, production of inflammatory mediators, antigen presentation, and activation of effector lymphocytes. Additionally, neuroendocrine components modulate macrophage ability to influence tumor growth and to prevent the spreading of infective agents. Interestingly, macrophage-derived factors enhance glucocorticoid production through the stimulation of the hypothalamic–pituitary–adrenal axis. These bidirectional effects highlight a tightly controlled balance between neuroendocrine stimuli and macrophage function in the development of innate and adaptive immune responses. Herein, we discuss how components of neuroendocrine axes impact on macrophage development and function and may ultimately influence inflammation, tissue repair, infection, or cancer progression. The knowledge of the crosstalk between macrophages and endocrine or brain-derived components may contribute to improve and create new approaches with clinical relevance in homeostatic or pathological conditions

    Macrophage Resistance to HIV-1 Infection Is Enhanced by the Neuropeptides VIP and PACAP

    Get PDF
    <div><p>It is well established that host factors can modulate HIV-1 replication in macrophages, critical cells in the pathogenesis of HIV-1 infection due to their ability to continuously produce virus. The neuropeptides VIP and PACAP induce well-characterized effects on macrophages through binding to the G protein-coupled receptors VPAC1, VPAC2 and PAC1, but their influence on HIV-1 production by these cells has not been established. Here, we describe that VIP and PACAP reduce macrophage production of HIV-1, acting in a synergistic or additive manner to decrease viral growth. Using receptor antagonists, we detected that the HIV-1 inhibition promoted by VIP is dependent on its ligation to VPAC1/2, whereas PACAP decreases HIV-1 growth via activation of the VPAC1/2 and PAC1 receptors. Specific agonists of VPAC2 or PAC1 decrease macrophage production of HIV-1, whereas sole activation of VPAC1 enhances viral growth. However, the combination of specific agonists mimicking the receptor preference of the natural neuropeptides reproduces the ability of VIP and PACAP to increase macrophage resistance to HIV-1 replication. VIP and PACAP up-regulated macrophage secretion of the β-chemokines CCL3 and CCL5 and the cytokine IL-10, whose neutralization reversed the neuropeptide-induced inhibition of HIV-1 replication. Our results suggest that VIP and PACAP and the receptors VPAC2 and PAC1 could be used as targets for developing alternative therapeutic strategies for HIV-1 infection.</p></div

    The replication of human immunodeficiency virus type 1 in macrophages is enhanced after phagocytosis of apoptotic cells

    No full text
    Clearance of apoptotic cells increases macrophage secretion of antiinflammatory mediators and might modulate viral replication in human immunodeficiency virus (HIV) type 1-infected macrophages. To study this, primary macrophages were infected with HIV-1 and exposed to apoptotic cells. It was found that phagocytosis of apoptotic cells potently enhanced HIV-1 growth. The peptide Arg-Gly-Asp-Ser, which binds to integrin receptors, inhibited the uptake of apoptotic cells and the subsequent enhancement of HIV-1 replication. Viral replication was preceded by increased secretion of transforming growth factor (TGF)-beta1 and partially reverted by anti-TGF-beta1 antibodies. Moreover, anti-TGF-beta1 antibodies inhibited HIV-1 replication in macrophages not exposed to apoptotic cells. A positive correlation was observed between TGF-beta1 production and HIV-1 growth, and the addition of TGF-beta1 amplified HIV-1 replication in macrophages from low TGF-beta1 producers. The findings suggest that TGF-beta1 favors HIV-1 replication in macrophages and that the clearance of apoptotic cells by HIV-1-infected macrophages contributes to persistent viremia in patients infected with HIV-1.status: publishe
    • …
    corecore